REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS
|
|
- Virginia Chávez Rico
- hace 5 años
- Vistas:
Transcripción
1 REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS DOMINIO - Polinomio : D = R - Cocientes : D = R {puntos que anulan el denominador} - Raíces de índice par : D = {Lo de dentro de la raíz 0} - Raíces de índice impar : D = R - Logaritmos : D = {Lo de dentro del logaritmo > 0} - Eponenciales : D = R - Trigonométricas : Seno y coseno D = R ; El resto se estudia como un cociente - Arcoseno y arcocoseno : D = {-1 Lo de dentro del arco 1} PUNTOS DE CORTE - Con el eje OX : y = 0 = 0 P( 0,0) - Con el eje OY : = 0 y = y 0 P(0,y 0 ) SIMETRÍA - Simétrica respecto del OY o par: (-) = () - Simétrica respecto del Origen o impar : -(-) = () - No simétrica SIGNO DE LA FUNCIÓN - Se calculan los puntos que no pertenecen al dominio = a,... - Se resuelve la ecuación () = 0 = 0, = 1,... - Estos puntos dividen la recta real en partes, tomando un punto en cada intervalo y sustituyendo en y = () se obtiene el signo de la unción ASÍNTOTAS - Asíntotas verticales: Puntos donde la unción se va al ininito: y, = a - Cocientes: Puntos que anulan el denominador - Logaritmos : Puntos que anulan lo de dentro del logaritmo - Aproimación a la asíntota : Calcular ites laterales - Asíntotas horizontales : Puntos donde la se va al ininito :, y = b - Cálculo : lim () = b y = b - Aproimación (±100) - Asíntotas oblicuas - Cálculo : y = m + n; m = > b La unción por encima de la asíntota < b La unción por debajo de la asíntota () lim - Aproimación (±100) Asínt(±100) ; n = lim[ () m] > 0 La unción por encima de la asíntota < 0 La unción por debajo de la asíntota
2 MONOTONIA Y PUNTOS CRÍTICOS - Se calculan los puntos que no pertenecen al dominio = a,... - Se resuelve la ecuación () = 0 = 0, = 1,... - Estos puntos dividen la recta real en partes, tomando un punto en cada intervalo y sustituyendo en y = () se obtiene el signo de la unción - Si (a) > 0 la unción es creciente en dicho intervalo, y si es < 0 es decreciente. - Máimo relativo : P(a,(a)) : = a es el punto del dominio donde la unción pasa de creciente a decreciente. - Mínimo relativo : P(a,(a)) : = a es el punto del dominio donde la unción pasa de decreciente a creciente. CURVATURA Y PUNTOS DE INFLEXIÓN - Se calculan los puntos que no pertenecen al dominio = a,... - Se resuelve la ecuación () = 0 = 0, = 1,... - Estos puntos dividen la recta real en partes, tomando un punto en cada intervalo y sustituyendo en y = () se obtiene el signo de la unción - Si (a) > 0 la unción es convea en dicho intervalo, y si es < 0 es concava. - Puntos de inleión : P(a,(a)) : = a es el punto del dominio donde la unción cambia la curvatura. TABLA DE VALORES Dando valores a la se calculan los correspondientes de la y sustituyendo en la unción REPRESENTACIÓN GRÁFICA 11. REPRESENTACIÓN DE FUNCIONES POLINÓMICAS F() = P() DOMINIO: D() = R PUNTOS DE CORTE CON LOS EJES: OX: y = 0 = 0 P( 0,0) OY: = 0 y = y 0 Q(0,y 0 ) RAMAS INFINITAS DE LA FUNCIÓN (No hay asíntotas) lim () = ± lim () = ± + MONOTONÍA Y EXTREMOS CURVATURA Y PUNTOS DE INFLEXIÓN REPRESENTACIÓN GRÁFICA (Y tabla de valores)
3 11. REPRESENTACIÓN DE FUNCIONES RACIONALES F() = g() / h() DOMINIO: D() = R { / h() = 0} PUNTOS DE CORTE CON LOS EJES: OX: y = 0 = 0 P( 0,0) OY: = 0 y = y 0 Q(0,y 0 ) ASÍNTOTAS O RAMAS INFINITAS DE LA FUNCIÓN MONOTONÍA Y EXTREMOS CURVATURA Y PUNTOS DE INFLEXIÓN REPRESENTACIÓN GRÁFICA (Y tabla de valores) 11. REPRESENTACIÓN DE OTRO TIPO DE FUNCIONES RAÍCES DOMINIO: Tenerlo en cuenta en el resto de apartados ASÍNTOTAS OBLICUAS: Hacer por separado en el más ininito y en el menos ininito. LOGARITMOS y = log (()) DOMINIO: Tenerlo en cuenta en el resto de apartados ASÍNTOTAS HORIZANTALES: () = 0 EXPONENCIALES y = a () ASÍNTOTAS: hacer por separado en el más ininito y en el menos ininito. TRIGONOMÉTRICAS DOMINIO: Tenerlo en cuenta en el resto de apartados PERIODICIDAD: - seno y coseno: π ó 60º - tangente: π ó 180º
4 TEMA 11 - REPRESENTACIÓN DE FUNCIONES EJERCICIO 1 : Estudia y representa las siguientes unciones: 8 a) b) c) 9 d) () ( ) e e) g) y = ln( - 9) h) ) ln 1 i) y = ln 1 j) k) () = e + l) m) n) ln e 1 e 1 ñ)y = o) y = p) q) 6 r) y s) y u) y 1 t) v) w) ( ) 1 1 ) y = ( -1)e y) () = e z) y = + sen, [0, ] 1) y = sen + sen, [0, ] ) () = sen - sen, [0, ] ) () = cos + cos, [0, ] ) () = cos + sen, [0, ] 5) y = e 1-
5 REPRESENTACIÓN DE FUNCIONES EJERCICIO 1 : Representa gráicamente la unción: 18 1 Dominio R 18 respecto al origen. 1 Simetrías:. No es par ni impar: no es simétrica respecto al eje Y ni Ramas ininitas: ; Puntos singulares: 1 ' ' Puntos singulares:, ;, 9 Cortes con los ejes: - Con el eje Y 0 y 0 Punto (0, 0) - Con el eje X y , 7 0 6,8 Puntos: (0, 0); (5,; 0) y (6,8; 0) '' ; '' 0 Punto, 6 7 Gráica: Puntos de inleión: EJERCICIO : Dibuja la gráica de la siguiente unción: Dominio R {0} Simetrías: () (). Es impar: simétrica respecto al origen. 0 Asíntotas verticales: 0 Asíntota horizontal: 1 0 es asíntota vertical. 0 si, 0 y 0 es asíntota horizontal. 0 si, 0
6 Puntos singulares. Crecimiento y decrecimiento: 1 ' 6 6 ' 0 0 Signo de '(): 6 6 es decreciente en (, Tiene un mínimoen ( ; 0,8) ) (, ); es crecienteen ( y un máimoen Cortes con los ejes: - No corta al eje Y, pues en 0 no está deinida. ( ; 0,8)., 0) (0, - Con el eje X y Puntos (1, 0) y (1, 0). Gráica: ). EJERCICIO : Estudia la siguiente unción y dibuja su gráica: Dominio R {1, 1} Simetrías: () (). Es impar: simétrica respecto al origen. Asíntotas verticales: 1 1 es asíntota vertical. 1 Asíntota oblícua: y 1 1 Posición de la curva respecto a la asíntota: () < 0 si (curva por debajo). () > 0 si (curva por encima). Puntos singulares. Crecimiento y decrecimiento: ' 1 ( 1) ( 1) y 1 1 es asíntota oblícua. ( 1) 0 0 0,, ' Signo de '(): 1 1 es asíntota vertical. es creciente en (, Tiene un máimoen ) ( Solo corta a los ejes en el punto (0, 0). Gráica:, ); es decreciente en (, 1) ( 1, 0) (0, 1) (1, ( ;,6); un punto de inleión en (0, 0) y un mínimoen ( ;,6). )
7 EJERCICIO : Representa la unción: Dominio R 8 8 Simetrías:. No es par ni impar: no es simétrica respecto al eje Y ni respecto al origen. Ramas ininitas: ; Puntos singulares: 1 ' 6 0 ' 0 0 Puntos singulares: (0, 0) y (, ) Cortes con los ejes: - Con el eje Y 0 y 0 Punto (0, 0) Con el eje X y Puntos de inleión: ''() 9 1 ( ) ' ' 0 0, 8 0 Puntos 0, 0 y, 6 7 Puntos 0, 0 y, Gráica: EJERCICIO 5 : Halla los puntos de corte con los ejes y los máimos y mínimos de la unción: () cos, [0, ] Dominio [0, ] Puntos de corte con los ejes: - Con el eje Y 0 y 1 Punto (0, 1) - Con el eje X y 0 cos 0 cos cos No tiene solución No corta al eje X. Utilizando la inormación obtenida, represéntala gráicamente. Máimos y mínimos: '() cos (sen ) cos sen cos 0, ' 0 cos sen 0 sen 0 0,, Estudiamos el signo de ''() [cos sen ] en esos puntos: y '' < 0 en 0, y Máimos: (0, 1), (, 1), (, 1) y'' 0 en y Mínimos :, ;, Gráica:
8 EJERCICIO 6 : Estudia y representa esta unción: Dominio (, 1) (, ) Asíntotas: Asíntotas verticales: 1 es asíntota 1 vertical. ln 1 ln ln Asíntotas horizontales ln ln y 0 es asíntota horizontal. Puntos singulares. Crecimiento y decrecimiento: ' ( 1) ( ) ( 1) ( ) ( 1) 1 '() 0 para todo. Signo de '(): es asíntota vertical. () es creciente en su dominio. No corta a los ejes. Gráica: EJERCICIO 7 : Representa la siguiente unción: Dominio R Asíntotas: No tiene asíntotas verticales. Asíntotas horizontales 0 y 0 ; e 1 es asíntota horizontalcuando y 0. Puntos singulares. Crecimiento y decrecimiento: Rama parabólica.
9 e 1 e e 1 e 1 ' ( 1) ( 1) '() 0 1 '() > 0 para todo 1 () es creciente. e Hay un punto de inleión en 1,. Corta al eje Y en (0, 1). No corta al eje X. Gráica: ( 1) 1 EJERCICIO 8 : Estudia y representa la unción: Dominio (, ) (0, ) 1 Simetrías: No es par ni impar: no es simétrica respecto al eje Y ni respecto al origen. Asíntotas: Asíntotas verticales: es asíntota vertical. Asíntotas horizontales: 0 y 0 es asíntota horizontal ( () > 0 para todo ). Puntos singulares. Crecimiento y decrecimiento: ' 1 1 '() 0 1 (no vale; pues () no está deinida en 1). () no tiene puntos singulares. Signo de ' (): es asíntota vertical. () es creciente en (, ) y es decreciente en (0, ). () no corta a los ejes. Gráica: EJERCICIO : Representa gráicamente la siguiente unción: () (1 ) e Dominio R Asíntotas: No tiene asíntotas verticales.
10 1 e Asíntotas horizontales: 1 e 0 y 0 es asíntota horizontal cuando (y > 0). Ramas ininitas: ; Puntos singulares. Crecimiento y decrecimiento: '() e (1 ) e (1 1 ) e e '() 0 0 Signo de '(): Rama parabólica. () es creciente en (, 0); es decreciente en (0, ). Tiene un máimo en (0, 1). Puntos de corte con los ejes: - Con el eje Y 0 y 1 Punto (0, 1) - Con el eje X y 0 1 Punto (1, 0) Gráica: EJERCICIO : Estudia y representa la siguiente unción: Dominio R {, } Simetrías: () (). Es par: simétrica respecto al eje Y. Asíntotas verticales: es asíntota vertical. 1 es asíntota vertical. Asíntota horizontal: 1 y 1 es asíntota horizontal. Si y si, () < 1 La curva está por debajo de la asíntota. Puntos singulares. Crecimiento y decrecimiento: ' ( ) '() Signo de ' (): 1 () es decreciente en (, ) (, 0); es creciente en (0, ) (, ). Tiene un mínimoen 0,. Cortes con los ejes: Con el eje Y 0 y Punto 0, - Con el eje X y ; 1 Puntos (1, 0) y (1, 0) Gráica:
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES Ejercicio nº.- Estudia y representa la siguiente unción: ( ) + 6 Ejercicio nº.- Dibuja la gráica de la unción: ( + ) ( ) Ejercicio nº.- Dada la unción: y sen sen, [0, ] a) Halla
Página 322. 3. Representa: a) y = b) y = c) y = cos 2x + cos x. a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales:
Página. Representa: e e a) y = b) y = c) y = cos + cos e a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales: f () = +@ 8 0 f () = +@ 8 0 + Asíntota vertical: = 0 f () = 0. Además, f () > 0
x + x 2 +1 = 1 1 = 0 = lím
UNIDAD Asíntota horizontal: 8 +@ + + = y = es asíntota horizontal hacia +@ (y > ). + + + + = = = 0 8 @ 8 +@ y = 0 es asíntota horizontal hacia @ (y < 0). CUESTIONES TEÓRICAS 30 Qué podemos decir del grado
12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO
INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo
REPRESENTACIÓN GRÁFICA DE FUNCIONES
REPRESENTACIÓN GRÁFICA DE FUNCIONES a. Dominio de definición: D = Dom f() = { R eiste f()} b. Puntos de corte con los ejes: Con el eje OX (abscisas): f() = 0 : (,0). Ninguno, uno o más puntos. Con el eje
TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO
TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bac TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación
TEMA 11 REPRESENTACIÓN DE FUNCIONES
Tema Representación de unciones Matemáticas II º Bachillerato TEMA REPRESENTACIÓN DE FUNCIONES EJERCICIO : Representa gráicamente la unción: Dominio R 8 respecto al origen. 8 Simetrías:. No es par ni impar:
Representación de funciones
Representación de unciones Ejercicio nº.- Representa una unciónpolinómica, de la que sabemosque : lim ; lim Suderivadaes en Corta a los ejesen, en,.,,,,,,. Ejercicio nº.- Dibuja la gráica de la unción,
Teoría Tema 9 Representación gráfica de funciones
página 1/24 Teoría Tema 9 Representación gráfica de funciones Índice de contenido Gráficas de funciones...2 Gráfica de una parábola...3 Gráfica de un polinomio de grado 3...6 Gráfica de un cociente de
GRÁFICA DE FUNCIONES
GRÁFICA DE FUNCIONES. Función cuadrática. Potencia. Eponencial 4. Logarítmica 5. Potencia de eponente negativo 6. Seno 7. Coseno 8. Tangente 9. Valor absoluto. Dominio. Puntos de corte con los ejes. Simetrías.
Tema 1. Cálculo diferencial
Tema 1. Cálculo diferencial 1 / 57 Una función es una herramienta mediante la que expresamos la relación entre una causa (variable independiente) y un efecto (variable dependiente). Las funciones nos permiten
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento
1. f(x) = x3 1 x 2. 2. f(x) = x2 9 x 2 4. 3. f(x) = x 3 x + 2. x 3 (x 1) 2. 4. f(x) = 5. f(x) = x + 5 x 2 9. 6. f(x) = x2 3 x 2. x 2 3 x 2. 7.
. f() =. f() = 9. f() =. f() = ( ). f() = 9 6. f() = 7. f() =. f() = 9. f() = p. f() =. f() =. f() = ( ). f() = 9. f() = ( ) . f() = Función racional con asíntota oblícua. Einamos los puntos que anulan
Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones.
Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. 0.. Concepto de derivada. Definición. Sea f : S R R, a (b, c) S. Decimos que f es derivable en a si existe: f(x) f(a)
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Función Derivada Función compuesta Derivada y f x y f x y f g x
Tabla de derivadas Función Derivada Función compuesta Derivada k ' 0 ' ' n ' ' ' e ' n n n n ' n ' e a ' ln ln log a a a ' ' e a ln ln a Reglas de derivación log a ' ' ' ' ' ' ' ' ' ln ' ' ' ' e a a '
Tipos de funciones. Clasificación de funciones. Funciones algebraicas
Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,
FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN
FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN 1 FUNCIONES FUNCIÓN REAL DE VARIABLE REAL Una función real de variable real es una relación que asocia a cada número real, (variable independiente),
SOLUCIONES ( ) ( ) ( ) 2 ( ) ( ) Fecha: La pendiente de la recta es m = = x = 4. x = 2 2x. Ejercicio nº 1.- Solución: La recta será:
Ejercicio nº.- Halla la ecuación de la recta tangente a la curva que sea paralela a la recta y. SOLUCIONES ' Fecha: La pendiente de la recta es m Cuando, y La recta será: Ejercicio nº.- y ( ) Averigua
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES GRÁFICA DE UNA FUNCIÓN: Conjunto de puntos del plano (,y), en los que y = f(), es decir, conjunto de puntos del plano en los que la segunda coordenada es la imagen de la primera.
APLICACIONES DE LA DERIVADA I. Ejercicios a resolver en la práctica. = x + 2. Determina y clasifica los puntos o valores
UNIVERSIDAD SIMÓN BOLÍVAR Enero-Marzo 010 DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS MATEMÁTICA I (MA-1111) Fecha de publicación: 0-0-010 Contenido Tercer Parcial APLICACIONES DE LA DERIVADA I Contenidos
Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca
Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo
TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO
TEMA 7 DERIVADAS Y APLICACIONES MATEMÁTICAS CCSSI º Bac TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Definición : Se llama
Tema 4: Representación de Funciones
Tema 4: Representación de Funciones.- Dominio y recorrido: Dominio: Valores de para los que está definida (eiste) f () Recorrido: Valores que toma f () Funciones Polinómicas, son de la forma f ( ) ao a...
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,
x = 0, la recta tangente a la gráfica de f (x)
CÁLCULO DIFERENCIAL JUNIO 004 1. Sea la función e y = estúdiese su monotonía, etremos relativos y asíntotas. (Solución: Es derivable en todos los puntos ecepto en =0. Creciente si < 0. No tiene asíntotas
1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}.
6. Estudiar y representar gráficamente las siguientes funciones: a) ( ) f e b) Solución f( ) + 3 + c) f( ) ln + a) Para estudiar la función e se realizan los siguientes pasos: f( ) ) La función no está
Asíntotas en una función.
Asíntotas en una unción. Las asíntotas son rectas a las cuales la unción se va aproimando indeinidamente, cuando por lo menos una de las variables ( o y) tienden al ininito. Deinición: Si un punto, y )
Teoría Tema 1 Propiedades de funciones elementales. Ejemplos exponencial y logaritmo
página 1/9 Teoría Tema 1 Propiedades de funciones elementales. Ejemplos exponencial y logaritmo Índice de contenido Dominio de una función...2 Rango o recorrido de una función...3 Simetría...4 Periodicidad...5
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES I ) DOMINIO DE DEFINICIÓN DE UNA FUNCIÓN: Es el conjunto de puntos donde tiene sentido realizar las operaciones indicadas en el criterio de definición de la
APUNTES DE FUNCIONES PARA 4º ESO
APUNTES DE FUNCIONES PARA 4º ESO - DEFINICIÓN: Una función es una relación entre dos magnitudes, X e Y, de forma que a cada valor de la magnitud X corresponde un único valor y de la magnitud Y. : variable
(Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de funciones. Extremos
(Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de unciones. Etremos INTRODUCCIÓN En múltiples problemas de ingeniería se requiere optimizar una o varias de las variables que intervienen
Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x)
Matemáticas aplicadas a las CCSS - Derivadas Tabla de Derivadas Función Derivada Función Derivada y k y 0 y y y y y f ) y f ) f ) y n y n n y f ) n y n f ) n f ) y y n y y f ) y n n+ y f ) n y f ) f )
TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE
TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE PROBLEMAS RESUELTOS + Dada F() =, escriba la ecuación de la secante a F que une los puntos (, F( )) y 4 (, F()). Eiste un punto c en el intervalo [, ]
Estudio de funciones mediante límites y derivadas
Estudio de funciones mediante límites y derivadas Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios españoles El precio
Tipos de Funciones. 40 Ejercicios para practicar con soluciones. 1 Representa en los mismos ejes las siguientes funciones: 1 x
Tipos de Funciones. 40 Ejercicios para practicar con soluciones Representa en los mismos ejes las siguientes funciones: a) y = ; b) y = ; c) y = y= y= y= Representa las siguientes funciones: a) y = b)
Grado en Química Bloque 1 Funciones de una variable
Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto
Determina las asíntotas de las siguientes funciones e interpreta gráficamente los resultados:
Tema. Límites y continuidad. HOJA ASÍNTOTAS º Bachillerato de CCSS Determina las asíntotas de las siguientes funciones e interpreta gráficamente los resultados: ) f ( ) 4 f ( ) es una función polinómica
TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS
Tema 8 Límites de funciones, continuidad y asíntotas Matemáticas II º Bach 1 TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8.1 LÍMITE DE UNA FUNCIÓN 8.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite
BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE. ESTUDIO DE LA GRÁFICA DE UNA FUNCIÓN
BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE. ESTUDIO DE LA GRÁFICA DE UNA FUNCIÓN Crecimiento y decrecimiento. Extremos absolutos y relativos. Concavidad y convexidad. Asíntotas.
Procedimiento para determinar las asíntotas verticales de una función
DETERMINACIÓN DE ASÍNTOTAS EN UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición
EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES
EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,
EXAMEN DE MATEMATICAS II 2ª ENSAYO (1) Apellidos: Nombre:
EXAMEN DE MATEMATICAS II ª ENSAYO () Apellidos: Nombre: Curso: º Grupo: A Día: CURSO 05 Instrucciones: a) Duración: HORA y 0 MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios de
Alonso Fernández Galián
Alonso Fernández Galián TEMA 3: ESTUDIO Y REPRESENTACIÓN DE FUNCIONES Para representar gráficamente una función deben estudiarse los siguientes aspectos: i) Dominio. ii) Puntos de corte con los ejes de
TEMA 1: Funciones elementales
MATEMATICAS TEMA 1 CURSO 014/15 TEMA 1: Funciones elementales 8.1 CONCEPTO DE FUNCIÓN: Una función es una ley que asigna a cada elemento de un conjunto un único elemento de otro. Con esto una función hace
1.- Sea la función f definida por f( x)
Solución Eamen Final de la 3ª Evaluación de º Bcto..- Sea la función f definida por f( ) a) El dominio de la función es Dom( f) estudiando las asíntotas verticales:, por tanto vamos a empezar La función
= y. Así pues, el domino lo forman los números x para los cuales existe el valor de f (x)
UAH Actualización de Conocimientos de Matemáticas para Tema 6 Funciones Concepto de función Dados dos conjuntos A y B, una función de A en B es una relación (una ley) que asigna a cada elemento de A uno
Problemas de 4 o ESO. Isaac Musat Hervás
Problemas de 4 o ESO Isaac Musat Hervás 5 de febrero de 01 Índice general 1. Problemas de Álgebra 7 1.1. Números Reales.......................... 7 1.1.1. Los números....................... 7 1.1.. Intervalos.........................
Tema 4. Representación de Funciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 4
Tema 4 Representación de Funciones 0.- Introducción.- Estudio de una función...- Dominio...- Simetrías...- Periodicidad..4.- Continuidad..5.- Puntos de Corte con los ejes..6.- Asíntotas y ramas infinitas..7.-
FUNCIONES REALES DE VARIABLE REAL
FUNCIONES REALES DE VARIABLE REAL Función: Es toda aplicación definida entre conjuntos numéricos. Cuando el conjunto inicial y final son los números Reales, se llaman funciones reales de variable real.
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES Tema 4: Representación de funciones Índice:. Información obtenida de la función... Dominio de la función.. Simetrías..3. Periodicidad.4. Puntos de corte con los ejes..5. Ramas
IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A
Opción A Ejercicio opción A, modelo 3 Septiembre 03 específico x Sea f la función definida por f(x) = para x > 0, x (donde ln denota el logaritmo neperiano) ln(x) [ 5 puntos] Estudia y determina las asíntotas
TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES
Tema Derivadas. Aplicaciones Matemáticas I º Bacillerato TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN EN UN INTERVALO EJERCICIO : Halla la tasa de variación
CÁLCULO DIFERENCIAL 9. UNIVERSIDAD CARLOS III DE MADRID Departamento de Matemáticas MATEMÁTICAS
CÁLCULO DIFERENCIAL 9 UNIVERSIDAD CARLOS III DE MADRID Departamento de Matemáticas MATEMÁTICAS SOLUCIONES DE LA COLECCIÓN DE PROBLEMAS - CAPÍTULO 3 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD
< La recta y = -4/5 es una asíntota horizontal en +4. < La misma recta es también asíntota en -4. < y asíntota y = -4/5 = -0,8
Ramas infinitas de una curva. Asíntotas horizontales Ejemplo 1. Analizar si la curva tiene o no asíntotas horizontales Análisis del comportamiento de la función en +4 : x 6 +4 < La recta y = -4/5 es una
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E1300, 29-OCTUBRE-1996. (1) 2x 3 > 4.
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E1300, 9-OCTUBRE-199 1) 3 > 4. +1 ) Sea la función 3 si 1 a + b si 1 . Encontrar los valores de a, b, c para que la función
"""##$##""" !!!""#""!!!
Unidad nº 9 CARACTERÍSTICAS DE LAS GRÁFICAS! 11 AUTTOEEVALLUACI IÓN 1 Eplica qué significan los símbolos 0 y -. 0 ( tiende a 0) significa que tomamos valores ( 0) cuya distancia a 0, dada por, se hace
INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES
INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA Supongamos que tenemos una función. Consideramos la recta que corta a la gráfica en los puntos A y B. Esta recta se llama secante
CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García
INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,
REPRESENTACIÓN DE FUNCIONES
8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta
TEMA 2: CONTINUIDAD DE FUNCIONES
TEMA : CONTINUIDAD DE FUNCIONES 1. Continuidad de una función en un punto Entre las primeras propiedades de las funciones aparece el concepto de continuidad. Durante mucho tiempo fue asumida como una idea
Solución. - Verticales: En los puntos excluidos del dominio donde el límite quede de la forma k. 3( ) = Asíntota vertical. = + x 2.
Estudiar sus asíntotas y ramas ininitas valorando la posición de la unción respecto de ellas.. ( ) - Verticales: En los puntos ecluidos del dominio donde el límite quede de la orma D[ ( ) ] R { } 6 : Se
Límites y continuidad
Estudio de la continuidad de la función en el punto = : Comprobemos, como primera medida, que la función está definida en =. Para =, tenemos que determinar f() = + = 6 + = 8, luego eiste. Calculamos, entonces
2 = ( ) = con vértice en (0, 3) y cortes con el. Tomando la parte continua de cada una de ellas se obtiene la grafica de la función.
Septiembre. Ejercicio B. Puntuación máima: puntos) Se considera la función real de variable real definida por: a si f ) Ln ) si > b) Represéntese gráficamente la función para el caso a. Nota: Ln denota
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva
Matemáticas Febrero 2013 Modelo A
Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las
FUNCIONES CONTINUAS EN UN INTERVALO. El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales:
FUNCIONES CONTINUAS EN UN INTERVALO Teoremas de continuidad y derivabilidad Teorema de Bolzano Sea una función que verifica las siguientes hipótesis:. Es continua en el intervalo cerrado [, ]. Las imágenes
Tema Derivadas. Aplicaciones Matemáticas CCSSI 1º Bachillerato 1
Tema Derivadas. Aplicaciones Matemáticas CCSSI 1º Bachillerato 1 EJERCICIO : A partir de la gráica de (): a b c Cuáles son los puntos de corte con los ejes? Di cuáles son sus asíntotas. Indica la posición
CRECIMIENTO Y DECRECIMIENTO. MÁXIMOS Y MÍNIMOS.
pág.1 CRECIMIENTO Y DECRECIMIENTO. MÁXIMOS Y MÍNIMOS. En la figura se observa la recta tangente a una función creciente. La recta tangente es siempre creciente también para cualquier punto, por lo que
ANDREA CALVO GARCÍA Nº 6 2º C
FUNCIONES ANDREA CALVO GARCÍA Nº 6 2º C Bach. INDICE FUNCIONES... 3 1. Funciones reales de variable real.... 4 2. Clasificación de funciones.... 6 3. Puntos de corte con los ejes.... 9 4. Signo de una
FUNCIONES RACIONALES. HIPÉRBOLAS
www.matesronda.net José A. Jiménez Nieto FUNCIONES RACIONALES. HIPÉRBOLAS 1. FUNCIÓN DE PROPORCIONALIDAD INVERSA El área de un rectángulo es 18 cm 2. La siguiente tabla nos muestra algunas medidas que
MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77
MATE 3031 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 77 P. Vásquez (UPRM) Conferencia 2 / 77 Qué es una función? MATE 3171 En esta parte se recordará la idea de función y su definición formal.
INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente:
INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Crecimiento de una Función en un Intervalo Tasa de Variación Media (T.V.M.) Se llama tasa de variación media (T.V.M.) de una función y f() en un intervalo
REPRESENTACIÓN DE CURVAS
ºBachillerato REPRESENTACIÓN DE CURVAS Esquema Para representar gráficamente una función se debe estudiar:. Dominio. Puntos de corte con los ejes coordenados. Paridad y periodicidad 4. Asíntotas 5. Monotonía
SOLUCIÓN. BLOQUE DE FUNCIONES.
SOLUCIÓN. BLOQUE DE FUNCIONES. Análisis de funciones 1. a) y c) son funciones, porque para cada valor de hay un único valor de y. b) no es una función, porque para cada valor de hay dos valores de y. 2.
4.2. Continuidad de una función en un punto. (A) Una función f es continua en un punto x=a, cuando se cumplen las siguientes condiciones:
4. CONTINUIDAD DE UNA FUNCIÓN. 4.. Noción intuitiva de continuidad de una unción en un punto. La mayor parte de las unciones que manejamos a nivel elemental, presentan en sus gráicas una propiedad característica
DERIVACIÓN DE FUNCIONES DE UNA VARIABLE
DERIVACIÓN DE FUNCIONES DE UNA VARIABLE Derivada de una función en un punto. Función derivada. Sea f () una función de una variable definida en un intervalo abierto (a, b) y sea (a, b). Se dice que f es
Concepto de función. Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B
Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función
Tema 8: Estudio y representación de funciones
Tema 8: Estudio y representación de funciones 1. Introducción El objetivo de esta unidad es representar gráficamente funciones polinómicas, racionales, irracionales, exponenciales y logarítmicas sencillas,
www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!
CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,
FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =
Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.
Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO
EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)
DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x):
FUNCIONES ELEMENTALES 0. CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, Dom, le hace corresponder un único número real, f(): Lo denotamos por : f : Dom -----> R ----->
UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2
UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD 1.- Límites en el Infinito: lim x + f(x) = L Se dice que el límite de f (x) cuando x tiende a + es L ϵ Ɽ, si podemos hacer que f(x) se aproxime a L tanto como
RESOLUCIÓN DE ACTIVIDADES
RESOLUCIÓN DE ACTIVIDADES Actividades iniciales. En las siguientes funciones estudia las características: dominio, los puntos de corte con los ejes, las simetrías, la periodicidad, las asíntotas, la monotonía,
L A D E R I V A D A. C Á L C U L O Y A P L I C A C I O N E S
L A D E R I V A D A. C Á L C U L O Y A P L I C A C I O N E S 1. T A S A D E V A R I A C I Ó N M E D I A Definimos la variación media de una función f en un intervalo [, + ], y la designamos por t m o TVM[,
EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES.
EJERCICIOS RESUELTOS TEMA : DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. Ejercicio 1 Calcula las funciones derivadas de las siguientes funciones y simplifícalas: a) f ( ) sine b)
Representación gráfica de funciones
Gráfica de una fución Representación gráfica de funciones La gráfica de una función está formada por el conjunto de puntos (x, y) para todos los valores de x pertenecientes al Dominio de la función gráfica
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
1 Elabora una tabla de valores de la función f(x) = x 2-4x + 3 en puntos x próximos a x = 2. Sugiere la tabla
Unidad nº 9 CARACTERÍSTICAS DE LAS GRÁFICAS! 1 PROBLEMAS PROPUESTOS 1 Elabora una tabla de valores de la función f() - + en puntos próimos a. Sugiere la tabla que f() es continua en? 1 9 1 99 1 999 1 01
FUNCIONES FUNCIONES POLINÓMICAS DE GRADO UNO Y CERO. Funciones de proporcionalidad directa
Funciones de ecuación: ( ) FUNCIONES = m + n ; m y n son números reales Dom = R. Es continua en su dominio. Gráica: una recta m es la pendiente de la recta La pendiente de una recta es el cociente entre
RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN:
RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN: Ejemplo: 1 Dominio Representación de en el intervalo [,] Los puntos que no pertenecen al dominio de una función racional, son aquellos que anulan
Límites y continuidad
Límites y continuidad.. Límites El ite por la izquierda de una función f en un punto 0, denotado como 0 f() es el valor al que se aproima f() cuando se acerca hacia 0 por la izquierda. De igual forma,
Gráficamente: una función es continua en un punto si en dicho punto su gráfica no se rompe. Función continua en x = 0 Función no continua en x = 0
Funciones continuas Funciones continuas Continuidad de una función Si x 0 es un número, la función f(x) es continua en este punto si el límite de la función en ese punto coincide con el valor de la función
{( ) ( ) ( ) ( )} 4. FUNCIONES. B y f es una función de A en B definida por y = x 2 1, = x + 3, encuentra 5 pares que pertenezcan a la
4 FUNCIONES 4 Conceptos básicos Sean A y B dos conjuntos dados, una unción de A en B es una regla de correspondencia que asigna a cada elemento de A uno y solamente uno de B En una unción: A es el dominio
Tema 9: Estudio y representación de funciones
1. Introducción Tema 9: Estudio y representación de funciones El objetivo de esta unidad es representar gráficamente funciones polinómicas, racionales, irracionales, exponenciales y logarítmicas sencillas,
RELACIÓN ENTRE LA GRÁFICA DE UNA FUNCIÓN f y LA DE SU INVERSA f -1
RELACIÓN ENTRE LA GRÁFICA DE UNA FUNCIÓN f y LA DE SU INVERSA f -1 Sabemos que la función inversa 1 Si f a b, entonces f b a 1 f (o recíproca) de f cumple la siguiente condición: Por lo tanto: 1 f f 1
( ) ( ( ) ( ) ) ( ( ) ( x) ( 2) ( ) ( ) ( )
Modelo. Problema B.- Caliicación máima: puntos) La igura representa la gráica de una unción : [ 6; 5] R. Contéstese razonadamente a las preguntas planteadas.? a) Para qué valores de es > b) En qué puntos
Curvas en paramétricas y polares
Capítulo 10 Curvas en paramétricas y polares Introducción Después del estudio detallado de funciones reales de variable real expresadas en forma explícita y con coordenadas cartesianas, que se ha hecho