Gráficamente: una función es continua en un punto si en dicho punto su gráfica no se rompe. Función continua en x = 0 Función no continua en x = 0

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Gráficamente: una función es continua en un punto si en dicho punto su gráfica no se rompe. Función continua en x = 0 Función no continua en x = 0"

Transcripción

1 Funciones continuas

2 Funciones continuas Continuidad de una función Si x 0 es un número, la función f(x) es continua en este punto si el límite de la función en ese punto coincide con el valor de la función en dicho punto: lim f ( x) f( x ) x x0 0 Gráficamente: una función es continua en un punto si en dicho punto su gráfica no se rompe Función continua en x 0 Función no continua en x 0 Una función se dice que es continua si lo es en cualquier punto. Así pues, la gráfica de una función continua ha de poder dibujarse de un solo trazo. Discontinuidades Si una función no es continua en un punto, también se dice que dicha función tiene una discontinuidad en dicho punto. Los tipos básicos de discontinuidades son: Evitables: la función f tiene una discontinuidad evitable en el punto x 0 si existe el límite de la función en el punto x 0 pero no coincide con el valor de la función en ese punto, o bien éste no existe, es decir, lim f ( x) a f( x ) x x0 + x x0 x x0 0 Inevitables: discontinuidades en las que los límites laterales no coinciden. Es decir, f(x) tiene una discontinuidad inevitable en x 0 si: lim f ( x) lim f( x) Son de dos tipos: o de primera especie o de salto finito, cuando ambos límites laterales son números reales. o asintótica, cuando los límites laterales son infinitos. Discontinuidad evitable Discontinuidad inevitable de 1.ª especie o de salto finito Discontinuidad asintótica

3 Asíntotas oblicuas La función tiene una asíntota oblicua en la recta y ax + b cuando la x tiende a + o a, y alguno de los siguientes límites son 0: lim f( x) ax b 0 o bien, lim f( x) ax+ b 0 ( + ) ( ) x Asíntota vertical Asíntota horizontal Asíntota oblicua Cuándo una función es continua en un punto? Una función es continua en un punto si el límite de la función en ese punto coincide con el valor de la función en dicho punto. Una función se dice que es continua cuando es continua en cualquier punto. Gráficamente puede observarse que una función es continua si su trazado no presenta cortes. A partir del concepto de límite en un punto puede definirse el concepto de función continua en un punto: una función es continua en un punto cuando el límite de la función en este punto es igual al valor de la función en el punto. Es decir, si x 0 es un número, la función f es continua en este punto si lim f ( x) f( x ) x x0 0 Además, una función se dice que es continua si lo es en cualquier punto. Esto puede observarse en la gráfica de la función: una función es continua cuando su trazado no contiene cortes. En el siguiente ejemplo se puede observar una función continua y otra que no lo es (derecha). Veamos, por ejemplo, que la función f(x) 3x x + 1 es una función continua; es fácil comprobar que el límite de la función en el punto x 0 es 17. Falta, pues, calcular el valor de la función en ese punto, f( ) 17. Por lo tanto, en este caso se cumple que: lim f( x) f( ) x Por lo tanto, la función f(x) 3x x + 1 es continua en el punto x 0. Para demostrar que toda la función f es continua se debería comprobar este hecho para todo punto x 0 ; normalmente, esto no es necesario hacerlo; esto es así porque la idea

4 de continuidad en un punto podemos asociarla, como se ha dicho, al hecho de que el trazo de la gráfica alrededor de ese punto debe hacerse sin separar el lápiz del papel (porque cuando nos acercamos al punto, el trazo del lápiz se acerca al valor de la función en ese punto). Así pues, contemplar la gráfica de la función es la forma más útil (aunque no rigurosa) de saber si la función es continua: siempre que se pueda dibujar con un solo trazo, sin separar el lápiz del papel, la función será continua. En el caso del ejemplo, f(x) 3x x + 1, podemos obtener fácilmente su representación, una parábola: Esta función es continua porque puede dibujarse con un solo trazo sin levantar el lápiz del papel. De hecho, todas la funciones polinómicas son continuas por el mismo motivo. También las funciones exponenciales, logarítmicas, la función seno y la función coseno son continuas; sólo es necesario recordar sus gráficas, que pueden dibujarse con un solo trazo. En cambio, la función tangente, cotangente, secante y cosecante no son funciones continuas. Tampoco son continuas las funciones que tienen en su expresión un cociente: cuando el denominador es 0, la función no es continua, entre otras cosas porque en ese punto la función no existe. Qué es una discontinuidad y cuáles son sus tipos? Si una función no es continua en un punto, también se dice que dicha función tiene una discontinuidad en dicho punto. Básicamente, existen dos tipos de discontinuidades: las evitables, cuando existe el límite de la función en el punto de discontinuidad; y las inevitables, en las que los límites laterales en dichos puntos son diferentes. En este último caso, si los límites son números, la discontinuidad es de primera especie o de salto finito, mientras que si alguno de los límites es infinito, la discontinuidad es de segunda especie o de salto infinito. La función tangente, en el punto p/, no es continua porque ni existe la función en ese punto, ni sus límites laterales coinciden. De hecho, la gráfica de esta función muestra claramente los puntos en los que no es continua (llamados puntos de discontinuidad o, sencillamente, discontinuidades), es decir, puntos en los que la gráfica "se rompe", de manera que no podría dibujarse de un solo trazo sin levantar el lápiz; estos puntos son, en este caso, los puntos que no pertenecen al dominio de la función, como muestra la gráfica de la función tangente:

5 Otras funciones tienen discontinuidades de diferente tipo: por ejemplo, la función: 4 3 4x 4x 3x + 4x 1 gx ( ) x 1 no es continua cuando en x 0 1, ya que el valor de esta función no existe, pues el denominador de la función da 0 en ese valor de x (y no puede dividirse nunca entre 0). Ahora bien, en este caso, puede comprobarse que el valor del límite en ese punto (haciendo una tabla, por ejemplo) es. Además, la gráfica quedaría así: Es decir, la gráfica sólo se interrumpe en ese punto; de hecho, podríamos modificar ligeramente la función para que fuese continua añadiendo este único punto que falta. De esta manera, la gráfica se dibujaría con un solo trazo sin levantar el lápiz del papel. Este tipo de discontinuidades se denominan evitables, ya que es muy fácil subsanarlas añadiendo un solo punto; en el caso anterior (de la función tangente) se denominan discontinuidades de salto infinito por razones evidentes: las ramas por la izquierda y por la derecha del punto de discontinuidad se alejan de manera incesante. Así pues, existen dos tipos básicos de discontinuidades: Evitables: La función f tiene una discontinuidad evitable en el punto x 0 si existe el límite de la función en el punto x 0 pero no coincide con el valor de la función en ese punto, o bien éste no existe, es decir, lim f ( x) a f( x ) x x0 0 El caso de la función 4 3 4x 4x 3x + 4x 1 gx ( ) x 1 corresponde a este tipo de discontinuidades: en el punto x 1, la función no existe, pero el límite en ese punto es. Para conseguir que la función sea continua, sólo es necesario otorgar el valor del límite a la función en ese punto. Es decir, si se define la función 4 3 4x 4x 3x + 4x 1 si x 1 gx ( ) x 1 si x 1 sólo se ha modificado la función anterior en un punto, y con este cambio ya se evita la discontinuidad. 3

6 Inevitables: Son inevitables las discontinuidades en las que los límites laterales no coinciden. Es decir, f(x) tiene una discontinuidad inevitable en x 0 si: lim f( x) lim f( x) + x x0 x x0 y son de dos tipos: o De primera especie o de salto finito, cuando ambos límites laterales son números reales. Por ejemplo, la siguiente función tiene una discontinuidad de salto finito en x 0 1: o ya que el límite por la izquierda es 3, mientras que el límite por la derecha es. Asintóticas, cuando los límites laterales son infinitos. Por ejemplo, la función tangente tiene discontinuidades de salto infinito en todos los puntos que no son de su dominio, como puede comprobarse fácilmente en su gráfica. Qué es una asíntota y cuántos tipos de asíntotas existen? Una asíntota a una función es una recta que al tender la x a un número, a +, o a, se acerca a la función de manera constante hasta hacerse, para decirlo de alguna forma, tangente en el infinito. Según su inclinación, las asíntotas pueden ser verticales, horizontales y oblicuas. Una asíntota a una función f(x) es una recta que al tender la x a un número, a +, o a se acerca a la función de manera constante hasta hacerse, para decirlo de alguna manera, tangente en el infinito. En estas gráficas pueden verse distintos tipos de asíntotas: En la gráfica de la izquierda puede verse cómo cuando la x tiende al punto por el que la recta corta al eje X, la función, por ambos lados, tiende a la recta vertical; en la gráfica del centro, cuando la x tiende a +, la función tiende a la asíntota. Finalmente, en la gráfica de la izquierda puede observarse que cuando x tiende a, la recta y la función tienden a acercarse. Estas gráficas presentan los tres tipos básicos de asíntotas: Asíntotas verticales 4

7 La función tiene una asíntota vertical cuando la x tiende a un valor, y la función tiende a + o, es decir: lim f( x) o bien lim f( x) x a + x a En este caso, la recta x a es una asíntota vertical. Por ejemplo, en el caso de la función f(x) tg x, sabemos que en x p/ el límite de la función es + por la izquierda y por la derecha. Por lo tanto, la recta x p/ es doblemente asíntota vertical. p/ x Asíntotas horizontales La función tiene una asíntota horizontal cuando la x tiende a + o a, y la función tiende a un valor concreto, es decir: lim f( x) a o bien lim f( x) a x En este caso, la recta y a es una asíntota horizontal. Por ejemplo, la función f(x) 1/x 1 lim 0 x Por lo tanto, la recta y 0 es una asíntota horizontal, tal como puede verse en la gráfica adjunta. Asíntotas oblicuas La función tiene una asíntota oblicua en la recta y ax + b cuando la x tiende a + o a, y alguno de los siguientes límites son 0: lim f( x) ax b 0 lim f( x) ax+ b 0 ( + ) o bien ( ) x x+ x Por ejemplo, la función f ( x) tiene una asíntota oblicua en y x 3, ya x + 1 que x x+ lim ( x 3) 0 x + 1 La gráfica de la función y la asíntota pueden ilustrar este hecho: 5

8 Ejercicios 1. Encuentra el dominio y los puntos de corte con los ejes (si existen), de las siguientes funciones: a. f(x) x - x + 1 b. g(x) 1/x c. h(x) 3 x 1 d. ax ( ) x + e. b(x) x + 1 f. c(x) x 1 g. d( x) x 4 x + 5. Indica los puntos en los que estas funciones no son continuas. Razona tus respuestas. a. f ( x) x 4 b. x + 3 f ( x) x c. 1 si x 0 f ( x) x 1 si x 0 d. f(x) ln (ln (sin x)) (difícil) 3 x x + x Considera la función f( x). Qué valor debe asignarse a x x f(0) para que la función f sea continua en x 0? Explicalo. 4. Considera la siguiente función: x 4x+ 3 f( x) 3 x + 3x 4 Encuentra el límite de la función cuando x tiende a estos valores: 0, 1, -, +, -. Estudia la continuidad de esta función, diciendo si presenta discontinuidades, y de qué tipo. 6

9 Soluciones 1. a. f(x) x - x + 1 El dominio es toda la recta real ya que es un polinomio. Eje Y: Si x 0, f(x) 1, por lo tanto, (0,1) Eje X: f(x) 0 --> x 1, por lo tanto, (1,0) b. g(x) 1/x El dominio es toda la recta real excepto los números que anulan el denominador, es a decir, menos 0. Así R\{0} Eje Y: Ya que x no puede ser 0, no existen. Eje X: Si g(x) 0 --> no existe ningún x que lo cumpla. Por lo tanto, no hay puntos de corte. c. h(x) 3 El dominio es toda la recta real, porque cualquier número tiene la imagen igual a 3. Eje Y: si x 0 --> h(x) 3, por lo tanto (0,3) Eje X: h(x) no puede ser nunca 0. x 1 d. ax ( ) x + El dominio es toda la recta real, excepto aquellos números que anulan el denominador. Por lo tanto, el dominio es R\{-} Eje Y: si x 0 --> a(0) -1/, por lo tanto, (0,-1/) Eje X: si a(x) 0 --> x > x 1, o bien, x -1. Por lo tanto, (1,0), (-1,0) e. b(x) x + 1 La base de la raíz ha de ser positiva, por lo tanto, x + 1 0, es decir, x -1. Así, el dominio es [-1,+ ) Eje Y: Si x 0 --> b(0) 1, por lo tanto, (0,1) Eje X: Si b(x) 0 --> x+10 --> x -1, por lo tanto, (-1,0) f. c(x) x 1 Como en el caso anterior, x -1 0, por lo tanto, el dominio es (-,-1]»[1,+ ) Eje Y: si x 0 --> c(0) no existe, por lo tanto, no hay puntos de corte. Eje X: si c(x) 0 --> x 1 ó x -1, Por lo tanto, (-1,0) (1,0). x 4 g. d( x ) x + 5 En este caso se ha de cumplir: x -4 0, es decir, x pertenece a (-, -]»[, ). además, x+5 no puede ser 0, por lo que x no puede ser -5. En definitiva, el dominio es: (-, -5)»(-5,-]»[, ) Eje Y: si x 0 --> no es posible. Eje X: d(x) 0 --> x - ó x. Por lo tanto, (,0), (-,0) 7

10 . a. f ( x) x 4 Esta función no es continua (más concretamente, no existe) en los puntos en los que la raíz es negativa, que corresponden a los puntos del intervalo (-,). x + 3 b. f ( x) x La función puede no ser continua en los puntos en los que el denominador es 0, es decir, cuando x 0. En este caso, el límite es igual a infinito, por la derecha y por la izquierda y tampoco existe la función en este punto. 1 si x 0 c. f ( x) x 1 si x 0 En este caso, los límite por la izquierda y por la derecha de la función cuando x tiende a 0, es igual a +, si la x es positiva, y - si la x es negativa; en cambio, el valor de la función en este punto es 1. Por lo tanto la función no es continua. d. f(x) ln (ln (sen x)) La única dificultad de este ejercicio es comprobar que el dominio de la misma es vacio, por lo tanto, no puede hablarse propiamente de continuidad de la función cuando esta no tiene gráfica. Veámoslo. ln (ln (sin x))): el ln solo puede aplicarse a números estrictamente positivos, por lo tanto, ln (sen x) > 0. Para que se cumpla, la función debe evaluarse en puntos que sean mayores que 1. Por lo tanto, sen x > 1. Pero no es posible que el seno sea mayo que 1. En definitiva, el dominio de esta función es el conjunto vacio. 3. El límite en el 0 debe ser igual al valor de la función; por lo tanto, si existe, debe ser el propio límite: 3 x x + x x x+ 1 1 lim f( x) lim lim x 0 x x + 3x x 8x Por lo tanto, f(0) 1/ lim f ( x) lim f ( x ) x 0 4 x 1 9 lim f( x) + lim f( x) + x lim x f( x) 0 lim f( x ) 0 x Es continua en todos los reales, excepto en x 1, x, porque se trata de una función racional. Discontinuidad evitable en x 1 Discontinuidad asintótica en x - 8

11 9

Límites y continuidad

Límites y continuidad Estudio de la continuidad de la función en el punto = : Comprobemos, como primera medida, que la función está definida en =. Para =, tenemos que determinar f() = + = 6 + = 8, luego eiste. Calculamos, entonces

Más detalles

x + x 2 +1 = 1 1 = 0 = lím

x + x 2 +1 = 1 1 = 0 = lím UNIDAD Asíntota horizontal: 8 +@ + + = y = es asíntota horizontal hacia +@ (y > ). + + + + = = = 0 8 @ 8 +@ y = 0 es asíntota horizontal hacia @ (y < 0). CUESTIONES TEÓRICAS 30 Qué podemos decir del grado

Más detalles

En las figuras anteriores vemos algunos casos (no todos) que pueden presentarse al pasar por un punto x 0. (en este caso, para x 0 =2)

En las figuras anteriores vemos algunos casos (no todos) que pueden presentarse al pasar por un punto x 0. (en este caso, para x 0 =2) UNIVERSIDAD DEL VALLE PROFESOR CARLOS IVAN RESTREPO CONTINUIDAD. 1.- Continuidad en un punto. Continuidad lateral..- Continuidad en un intervalo. 3.- Operaciones con funciones continuas 4.- Discontinuidades.

Más detalles

Matemáticas Febrero 2013 Modelo A

Matemáticas Febrero 2013 Modelo A Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las

Más detalles

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2 UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD 1.- Límites en el Infinito: lim x + f(x) = L Se dice que el límite de f (x) cuando x tiende a + es L ϵ Ɽ, si podemos hacer que f(x) se aproxime a L tanto como

Más detalles

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2 UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD 1.- Límites en el Infinito: lim x + f(x) = L Se dice que el límite de f (x) cuando x tiende a + es L ϵ Ɽ, si podemos hacer que f(x) se aproxime a L tanto como

Más detalles

TEMA 2: CONTINUIDAD DE FUNCIONES

TEMA 2: CONTINUIDAD DE FUNCIONES TEMA : CONTINUIDAD DE FUNCIONES 1. Continuidad de una función en un punto Entre las primeras propiedades de las funciones aparece el concepto de continuidad. Durante mucho tiempo fue asumida como una idea

Más detalles

Tema 1. Cálculo diferencial

Tema 1. Cálculo diferencial Tema 1. Cálculo diferencial 1 / 57 Una función es una herramienta mediante la que expresamos la relación entre una causa (variable independiente) y un efecto (variable dependiente). Las funciones nos permiten

Más detalles

TIPOS DE FUNCIONES. Ing. Caribay Godoy Rangel

TIPOS DE FUNCIONES. Ing. Caribay Godoy Rangel TIPOS DE FUNCIONES Repasar los conceptos de dominio, rango, gráfica, elementos esenciales y transformaciones de las funciones: lineal, cuadrática, racional, trigonométrica, exponencial y logarítmica. FUNCIONES

Más detalles

Procedimiento para determinar las asíntotas verticales de una función

Procedimiento para determinar las asíntotas verticales de una función DETERMINACIÓN DE ASÍNTOTAS EN UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

Límites y continuidad

Límites y continuidad Límites y continuidad.. Límites El ite por la izquierda de una función f en un punto 0, denotado como 0 f() es el valor al que se aproima f() cuando se acerca hacia 0 por la izquierda. De igual forma,

Más detalles

Tipos de funciones. Clasificación de funciones. Funciones algebraicas

Tipos de funciones. Clasificación de funciones. Funciones algebraicas Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios españoles El precio

Más detalles

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x)

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x) Matemáticas aplicadas a las CCSS - Derivadas Tabla de Derivadas Función Derivada Función Derivada y k y 0 y y y y y f ) y f ) f ) y n y n n y f ) n y n f ) n f ) y y n y y f ) y n n+ y f ) n y f ) f )

Más detalles

TEMA 1: Funciones elementales

TEMA 1: Funciones elementales MATEMATICAS TEMA 1 CURSO 014/15 TEMA 1: Funciones elementales 8.1 CONCEPTO DE FUNCIÓN: Una función es una ley que asigna a cada elemento de un conjunto un único elemento de otro. Con esto una función hace

Más detalles

RELACIÓN ENTRE LA GRÁFICA DE UNA FUNCIÓN f y LA DE SU INVERSA f -1

RELACIÓN ENTRE LA GRÁFICA DE UNA FUNCIÓN f y LA DE SU INVERSA f -1 RELACIÓN ENTRE LA GRÁFICA DE UNA FUNCIÓN f y LA DE SU INVERSA f -1 Sabemos que la función inversa 1 Si f a b, entonces f b a 1 f (o recíproca) de f cumple la siguiente condición: Por lo tanto: 1 f f 1

Más detalles

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad y Laterales Curso Propedéutico de Cálculo Sesión 2: y Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico y Esquema Laterales 1 Laterales 2 y Esquema Laterales

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo

Más detalles

FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN

FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN 1 FUNCIONES FUNCIÓN REAL DE VARIABLE REAL Una función real de variable real es una relación que asocia a cada número real, (variable independiente),

Más detalles

Límites. Continuidad.

Límites. Continuidad. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Límite finito cuando x tiende a infinito (1) Límite finito cuando x tiende a infinito (2) Se dice que el límite de la función f(x) cuando

Más detalles

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid! CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,

Más detalles

PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD

PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD Considera la función f(x)= x 3 + px donde p es un número real. Escribir (en función de p) la ecuación de la recta tangente a la grafica f(x) en el punto de abscisa

Más detalles

2.1. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable x)

2.1. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable x) Bloque : Cálculo Diferencial Tema : Límite y Continuidad de una función.. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable ) La forma de comportarse una función para valores muy grandes

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II 2º BACHILLERATO

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II 2º BACHILLERATO LÍMITES: OPERACIONES CON INFINITOS LÍMITES: RESOLUCIÓN DE INDETERMINACIONES DEL TIPO 1 Estas indeterminaciones están relacionadas con el número e se calculan de la siguiente forma: 1 DOMINIO E IMAGEN DE

Más detalles

Aplicaciones de las Derivadas

Aplicaciones de las Derivadas Tema 4 Aplicaciones de las Derivadas 4.1 Introducción Repasaremos en este Tema algunas de las aplicaciones fundamentales de las derivadas. Muchas de ellas son ya conocidas por tratarse de conceptos explicados

Más detalles

Teoría Tema 1 Propiedades de funciones elementales. Ejemplos exponencial y logaritmo

Teoría Tema 1 Propiedades de funciones elementales. Ejemplos exponencial y logaritmo página 1/9 Teoría Tema 1 Propiedades de funciones elementales. Ejemplos exponencial y logaritmo Índice de contenido Dominio de una función...2 Rango o recorrido de una función...3 Simetría...4 Periodicidad...5

Más detalles

ANDREA CALVO GARCÍA Nº 6 2º C

ANDREA CALVO GARCÍA Nº 6 2º C FUNCIONES ANDREA CALVO GARCÍA Nº 6 2º C Bach. INDICE FUNCIONES... 3 1. Funciones reales de variable real.... 4 2. Clasificación de funciones.... 6 3. Puntos de corte con los ejes.... 9 4. Signo de una

Más detalles

= y. Así pues, el domino lo forman los números x para los cuales existe el valor de f (x)

= y. Así pues, el domino lo forman los números x para los cuales existe el valor de f (x) UAH Actualización de Conocimientos de Matemáticas para Tema 6 Funciones Concepto de función Dados dos conjuntos A y B, una función de A en B es una relación (una ley) que asigna a cada elemento de A uno

Más detalles

CONTINUIDAD Y DERIVADA ESTUDIO DE LA CONTINUIDAD DE UNA FUNCIÓN

CONTINUIDAD Y DERIVADA ESTUDIO DE LA CONTINUIDAD DE UNA FUNCIÓN Índice Presentación... 3 Continuidad en un punto... 4 Estudio de la continuidad en un punto a partir de un ejemplo... 5 Discontinuidades... 7 Continuidad de las funciones definidas a trozos... 9 Propiedades

Más detalles

REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS

REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS DOMINIO - Polinomio : D = R - Cocientes : D = R {puntos que anulan el denominador} - Raíces de índice par : D = {Lo

Más detalles

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS Tema 8 Límites de funciones, continuidad y asíntotas Matemáticas II º Bach 1 TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8.1 LÍMITE DE UNA FUNCIÓN 8.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite

Más detalles

Página 322. 3. Representa: a) y = b) y = c) y = cos 2x + cos x. a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales:

Página 322. 3. Representa: a) y = b) y = c) y = cos 2x + cos x. a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales: Página. Representa: e e a) y = b) y = c) y = cos + cos e a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales: f () = +@ 8 0 f () = +@ 8 0 + Asíntota vertical: = 0 f () = 0. Además, f () > 0

Más detalles

Teoría Tema 8 Ejemplos y más ejemplos de límites

Teoría Tema 8 Ejemplos y más ejemplos de límites página 1/10 Teoría Tema 8 Ejemplos y más ejemplos de límites Índice de contenido Practicar y practicar...2 página 2/10 Practicar y practicar Como existen infinitas funciones distintas... existen infinitos

Más detalles

Límites e indeterminaciones

Límites e indeterminaciones Límites e indeterminaciones La idea de límite de una función no es en sí complicada, pero hubo que esperar hasta el siglo XVII a que los matemáticos Newton 1 y Leibniz 2 le dieran forma y la convirtiesen

Más detalles

CONTINUIDAD DE FUNCIONES

CONTINUIDAD DE FUNCIONES CONTINUIDAD CONTINUIDAD DE FUNCIONES CONTINUIDAD DE UNA FUNCIÓN EN UN PUNTO Una función f es continua en a si y sólo si se cumplen las tres condiciones siguientes: 1) Existe f(a), es decir, a Dom f. 2)

Más detalles

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE PROBLEMAS RESUELTOS + Dada F() =, escriba la ecuación de la secante a F que une los puntos (, F( )) y 4 (, F()). Eiste un punto c en el intervalo [, ]

Más detalles

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Análisis y programación lineal

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Análisis y programación lineal Análisis y programación lineal Problema 1: La gráfica de la función derivada de una función f es la parábola de vértice (0, 2) que corta al eje de abscisas en los puntos ( 3, 0) y (3, 0). A partir de dicha

Más detalles

Teoría Tema 9 Representación gráfica de funciones

Teoría Tema 9 Representación gráfica de funciones página 1/24 Teoría Tema 9 Representación gráfica de funciones Índice de contenido Gráficas de funciones...2 Gráfica de una parábola...3 Gráfica de un polinomio de grado 3...6 Gráfica de un cociente de

Más detalles

FUNCIONES CONTINUAS EN UN INTERVALO. El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales:

FUNCIONES CONTINUAS EN UN INTERVALO. El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales: FUNCIONES CONTINUAS EN UN INTERVALO Teoremas de continuidad y derivabilidad Teorema de Bolzano Sea una función que verifica las siguientes hipótesis:. Es continua en el intervalo cerrado [, ]. Las imágenes

Más detalles

N = {1, 2, 3, 4, 5,...}

N = {1, 2, 3, 4, 5,...} Números y Funciones.. Números Los principales tipos de números son:. Los números naturales son aquellos que sirven para contar. N = {,,, 4, 5,...}. Los números enteros incluyen a los naturales y a sus

Más detalles

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77 MATE 3031 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 77 P. Vásquez (UPRM) Conferencia 2 / 77 Qué es una función? MATE 3171 En esta parte se recordará la idea de función y su definición formal.

Más detalles

2.1 CONTINUIDAD EN UN PUNTO 2.2 CONTINUIDAD DE FUNCIONES CONOCIDAS 2.3 CONTINUIDAD EN OPERACIONES CON

2.1 CONTINUIDAD EN UN PUNTO 2.2 CONTINUIDAD DE FUNCIONES CONOCIDAS 2.3 CONTINUIDAD EN OPERACIONES CON Cap. Continuidad de funciones.1 CONTINUIDAD EN UN PUNTO. CONTINUIDAD DE FUNCIONES CONOCIDAS.3 CONTINUIDAD EN OPERACIONES CON FUNCIONES.4 CONTINUIDAD EN UN INTERVALO.5 TEOREMA DEL VALOR INTERMEDIO OBJETIVOS:

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN

DERIVADAS. TÉCNICAS DE DERIVACIÓN DERIVADAS. TÉCNICAS DE DERIVACIÓN Página 5 REFLEXIONA Y RESUELVE Tangentes a una curva y f () 5 5 9 4 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(4). f'() 0; f'(9) ; f'(4) 4 Di otros

Más detalles

EXAMEN I RESUELTO PRIMERA EVALUACIÓN MATEMÁTICAS II 08/11/2017 OPCIÓN A

EXAMEN I RESUELTO PRIMERA EVALUACIÓN MATEMÁTICAS II 08/11/2017 OPCIÓN A Ejercicio 1. (2,5 puntos) EXAMEN I RESUELTO PRIMERA EVALUACIÓN MATEMÁTICAS II 08/11/2017 OPCIÓN A Dada la función f (x)= 3 x 2 +3 x a) (1,25 puntos) Indicar el dominio de definición de la función f y hallar

Más detalles

Veamos ahora el comportamiento de la función parte entera (f(x) = E(x)). Si x se aproxima a 2, a qué valor tiende f(x)?

Veamos ahora el comportamiento de la función parte entera (f(x) = E(x)). Si x se aproxima a 2, a qué valor tiende f(x)? LÍMITES Y CONTINUIDAD DE FUNCIONES. C O N C E P T O D E L Í M I T E D E U N A F U N C I Ó N E N U N P U N T O Consideremos la función f(x)x², cuya gráfica es una parábola. Si x se aproxima a, a qué valor

Más detalles

UNIDAD 3: ANALICEMOS LA FUNCION EXPONENCIAL Y LOGARITMICA.

UNIDAD 3: ANALICEMOS LA FUNCION EXPONENCIAL Y LOGARITMICA. UNIDAD 3: ANALICEMOS LA FUNCION EXPONENCIAL Y LOGARITMICA Históricamente, los exponentes fueron introducidos en matemáticas para dar un método corto que indicara el producto de varios factores semejantes,

Más detalles

Considermos la función

Considermos la función Considermos la función f x = x2 9 x 3 Qué sucede si reemplazamos a x por 3? f x = x2 9 x 3 = 32 9 3 3 = 0 0 Tenemos lo que se denomina UNA INDETERMINACIÓN En matemática hay 7 indeterminaciones básicas

Más detalles

RESUMEN DE ANÁLISIS MATEMÁTICAS II

RESUMEN DE ANÁLISIS MATEMÁTICAS II RESUMEN DE ANÁLISIS MATEMÁTICAS II 1. DOMINIO DE DEFINICIÓN Y CONTINUIDAD 1.1. FUNCIONES ELEMENTALES (No tienen puntos angulosos) Tipo de función f (x) Dom (f) Continuidad Polinómicas P(x) R Racional P(x)/Q(x)

Más detalles

EJERCICIOS DE CONTINUIDAD Y APLICACIONES DE LA DERIVADA

EJERCICIOS DE CONTINUIDAD Y APLICACIONES DE LA DERIVADA EJERCICIOS DE CONTINUIDAD Y APLICACIONES DE LA DERIVADA 1º) Estudia la continuidad de la siguiente función: x+3 si x < 2 fx = x +1 si x 2 La función está definida para todos los reales: D(f)=R Tanto a

Más detalles

4.2. Continuidad de una función en un punto. (A) Una función f es continua en un punto x=a, cuando se cumplen las siguientes condiciones:

4.2. Continuidad de una función en un punto. (A) Una función f es continua en un punto x=a, cuando se cumplen las siguientes condiciones: 4. CONTINUIDAD DE UNA FUNCIÓN. 4.. Noción intuitiva de continuidad de una unción en un punto. La mayor parte de las unciones que manejamos a nivel elemental, presentan en sus gráicas una propiedad característica

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD

DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3)

Más detalles

Concepto de función. Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B

Concepto de función. Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

FUNCIONES REALES DE VARIABLE REAL

FUNCIONES REALES DE VARIABLE REAL FUNCIONES REALES DE VARIABLE REAL Función: Es toda aplicación definida entre conjuntos numéricos. Cuando el conjunto inicial y final son los números Reales, se llaman funciones reales de variable real.

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 4 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Apuntes de Continuidad de funciones

Apuntes de Continuidad de funciones Apuntes de Continuidad de funciones En el tema anterior estudiamos el concepto de función real de variable real y el concepto de límite. Ahora vamos a estudiar la aplicación de los límites en el estudio

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento

Más detalles

5.3 Dominios de funciones: Polinómicas: Dom f(x): R La X puede tomar cualquier valor entre (, + )

5.3 Dominios de funciones: Polinómicas: Dom f(x): R La X puede tomar cualquier valor entre (, + ) Tema 5: Funciones. Dominio, Límites, Asíntotas y Continuidad de Funciones 5.1 Concepto de Dominio de una función Función: es una regla que asigna a cada número real X un único número real Y. X Dom R Dom

Más detalles

Profesor: Rafa González Jiménez. Instituto Santa Eulalia ÍNDICE

Profesor: Rafa González Jiménez. Instituto Santa Eulalia ÍNDICE TEMA 5: DERIVADAS. APLICACIONES. ÍNDICE 5..- Derivada de una función en un punto. 5...- Tasa de variación media. Interpretación geométrica. 5..2.- Tasa de variación instantánea. Derivada de una función

Más detalles

Unidad 10 Continuidad de las funciones

Unidad 10 Continuidad de las funciones Unidad 10 Continuidad de las funciones 4 SOLUCIONES 1. La continuidad queda: a) La continuidad en x = 0. No es continua en ese punto al no coincidir los límites laterales. b) La continuidad en x = 3. 2.

Más detalles

CONCEPTOS QUE DEBES DOMINAR

CONCEPTOS QUE DEBES DOMINAR INTERVALOS CONCEPTOS QUE DEBES DOMINAR Un intervalo es un conjunto infinito de números reales comprendidos entre dos extremos, que pueden estar incluidos en él o no. 1. Intervalo abierto (a, b): Comprende

Más detalles

Anexo C. Introducción a las series de potencias. Series de potencias

Anexo C. Introducción a las series de potencias. Series de potencias Anexo C Introducción a las series de potencias Este apéndice tiene como objetivo repasar los conceptos relativos a las series de potencias y al desarrollo de una función ne serie de potencias en torno

Más detalles

TEMA 5 LÍMITE DE FUNCIONES. CONTINUIDAD

TEMA 5 LÍMITE DE FUNCIONES. CONTINUIDAD TEMA 5 LÍMITE DE FUNCIONES. CONTINUIDAD 5.1. VISIÓN INTUITIVA DE LA CONTINUIDAD. TIPOS DE DISCONTINUIDADES. La idea de función continua es la que puede ser construida con un solo trazo. DISCONTINUIDADES

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio opción A, modelo 3 Septiembre 03 específico x Sea f la función definida por f(x) = para x > 0, x (donde ln denota el logaritmo neperiano) ln(x) [ 5 puntos] Estudia y determina las asíntotas

Más detalles

TEMA: FUNCIONES REALES DE VARIABLE REAL. TIPOS DE FUNCIONES.

TEMA: FUNCIONES REALES DE VARIABLE REAL. TIPOS DE FUNCIONES. TEMA: FUNCIONES REALES DE VARIABLE REAL. TIPOS DE FUNCIONES. Definición: Una función es una relación entre dos variables x e y de manera que a cada valor de la variable x le corresponde un único valor

Más detalles

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714)

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 1 (FUNCIONES) Profesora: Yulimar Matute Octubre 2011 Función Constante: Se

Más detalles

Límites de una función

Límites de una función Límites de una función Introducción Comenzaremos a analizar la definición del límite finito de tendencia finita a través de un ejemplo. Consideremos la función f. Observemos su regla de asignación y su

Más detalles

Tipos de Funciones. 40 Ejercicios para practicar con soluciones. 1 Representa en los mismos ejes las siguientes funciones: 1 x

Tipos de Funciones. 40 Ejercicios para practicar con soluciones. 1 Representa en los mismos ejes las siguientes funciones: 1 x Tipos de Funciones. 40 Ejercicios para practicar con soluciones Representa en los mismos ejes las siguientes funciones: a) y = ; b) y = ; c) y = y= y= y= Representa las siguientes funciones: a) y = b)

Más detalles

TEMA 2: DERIVADA DE UNA FUNCIÓN

TEMA 2: DERIVADA DE UNA FUNCIÓN TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto

Más detalles

1.5 Límites infinitos

1.5 Límites infinitos SECCIÓN.5 Límites infinitos 8.5 Límites infinitos Determinar ites infinitos por la izquierda por la derecha. Encontrar dibujar las asíntotas verticales de la gráfica de una función., cuando Límites infinitos

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 239 a 257

SOLUCIONES DE LAS ACTIVIDADES Págs. 239 a 257 TEMA. LÍMITES Y CONTINUIDAD SOLUCIONES DE LAS ACTIVIDADES Págs. 9 a 7 Página 9 Página. a) f() 0. a) f() 0, 0,0 0,00 0,000 f(),,9,99,999,9,99,999,9999 f() 00 0.000 0 6 0 8 b) f() 0 0, 0,0 0,00 0,000 f(),,0,00,000

Más detalles

Polinomios. 1.- Funciones cuadráticas

Polinomios. 1.- Funciones cuadráticas Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial

Más detalles

2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 6.- FUNCIONES. LÍMITES Y CONTINUIDAD PROFESOR: RAFAEL NÚÑEZ

2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 6.- FUNCIONES. LÍMITES Y CONTINUIDAD PROFESOR: RAFAEL NÚÑEZ º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA.- FUNCIONES. LÍMITES CONTINUIDAD PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-

Más detalles

Derivadas 6 ACTIVIDADES. 1. Página 140. Función f(x) x 2 1: Función g(x) x 3 7: 2. Página Página Página

Derivadas 6 ACTIVIDADES. 1. Página 140. Función f(x) x 2 1: Función g(x) x 3 7: 2. Página Página Página Derivadas 6 ACTIVIDADES 1. Página 140 Función f(x) x 2 1: Función g(x) x 3 7: 2. Página 140 3. Página 141 4. Página 141 5. Página 142 211 Derivadas 6. Página 142 Las derivadas laterales no existen, por

Más detalles

Curvas en paramétricas y polares

Curvas en paramétricas y polares Capítulo 10 Curvas en paramétricas y polares Introducción Después del estudio detallado de funciones reales de variable real expresadas en forma explícita y con coordenadas cartesianas, que se ha hecho

Más detalles

LÍMITES, CONTINUIDAD, ASÍNTOTAS LÍMITE DE UNA FUNCIÓN. Límite de una función en un punto

LÍMITES, CONTINUIDAD, ASÍNTOTAS LÍMITE DE UNA FUNCIÓN. Límite de una función en un punto LÍMITES, CONTINUIDAD, ASÍNTOTAS LÍMITE DE UNA FUNCIÓN Límite de una función en un punto xc Se lee: El límite cuando x tiende a c de f(x) es l Notas: - Que x se aproxima a c significa que toma valores muy

Más detalles

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones.

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. 0.. Concepto de derivada. Definición. Sea f : S R R, a (b, c) S. Decimos que f es derivable en a si existe: f(x) f(a)

Más detalles

CLASE 2. Sergio Stive Solano Sabié. Agosto de 2011. Catálogo de funciones básicas Transformaciones de funciones Combinaciones de funciones

CLASE 2. Sergio Stive Solano Sabié. Agosto de 2011. Catálogo de funciones básicas Transformaciones de funciones Combinaciones de funciones CLASE 2 Sergio Stive Solano Sabié Agosto de 2011 CLASE 2 Sergio Stive Solano Sabié Agosto de 2011 Función lineal Definición 1.1 Decimos que y es una función lineal de x, si la gráfica de y es una recta.

Más detalles

Función lineal. Definición: f: R > R / f(x) = m.x+b donde m y b son números reales, es una función lineal.

Función lineal. Definición: f: R > R / f(x) = m.x+b donde m y b son números reales, es una función lineal. Función lineal Introducción: Recordemos que una función es una correspondencia entre los elementos de un conjunto de partida, llamado Dominio, y los elementos de un conjunto de llegada, llamado Codominio,

Más detalles

RESUMEN TEÓRICO DE CLASES

RESUMEN TEÓRICO DE CLASES Página 1 RESUMEN TEÓRICO DE CLASES Página 2 Tema 1. Inecuaciones Las inecuaciones son desigualdades algebraicas en la que sus dos miembros se relacionan por uno de estos signos: >; ;

Más detalles

Tema II: Análisis Límites

Tema II: Análisis Límites Tema II: Análisis Límites En matemáticas, se usa el concepto del límite para describir la tendencia de una sucesión o una función. La idea es que en una sucesión o una función, decimos que existe el límite

Más detalles

LÍMITES DE FUNCIONES 1.- CONCEPTO INTUITIVO Y DEFINICIÓN DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES. Otros ejemplos:

LÍMITES DE FUNCIONES 1.- CONCEPTO INTUITIVO Y DEFINICIÓN DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES. Otros ejemplos: LÍMITES DE FUNCIONES 1.- CONCEPTO INTUITIVO Y DEFINICIÓN DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES. Otros ejemplos: lim f(x) = L ε > 0 δ > 0 / x a < δ f(x) L < ε x a Nótese que la idea de

Más detalles

UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.

UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD. IES Padre Poveda (Guadi) UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.. Límite de una función en un punto... Límites laterales... Límite de una función en un punto.. Límites en el infinito... Comportamiento

Más detalles

Gráficas de las funciones racionales

Gráficas de las funciones racionales Gráficas de las funciones racionales Ahora vamos a estudiar de una manera geométrica las ideas de comportamiento de los valores que toma la función cuando los valores de crecen mucho. Es importante que

Más detalles

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 3.- FUNCIONES ELEMENTALES

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 3.- FUNCIONES ELEMENTALES 1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 3.- FUNCIONES ELEMENTALES 1 1.- FUNCIONES. CARACTERÍSTICAS Concepto de función. Una función es una forma de hacerle corresponder a un valor x un único

Más detalles

Límites de Funciones

Límites de Funciones . Introducción y notación Límites de Funciones Hasta ahora, se han visto muchos conceptos sobre las funciones desde un enfoque muy intuitivo. Cosas como la continuidad, el crecimiento o los máximos y los

Más detalles

Las funciones polinómicas

Las funciones polinómicas Las funciones polinómicas 1 Las funciones polinómicas Una función polinómica es aquella que tiene por expresión un polinomio. En general, suelen estudiarse según el grado del polinomio: Las funciones afines

Más detalles

a) Estudiad, en todos los puntos del dominio, la continuidad y la derivabilidad de la función:

a) Estudiad, en todos los puntos del dominio, la continuidad y la derivabilidad de la función: 1.- Resolved: a) Estudiad, en todos los puntos del dominio, la continuidad y la derivabilidad de la función: 2x 1 para x 2 f(x) x + 15x 16 para x > 2 b) Calculad el área de la región deitada per el eje

Más detalles

APUNTES DE FUNCIONES PARA 4º ESO

APUNTES DE FUNCIONES PARA 4º ESO APUNTES DE FUNCIONES PARA 4º ESO - DEFINICIÓN: Una función es una relación entre dos magnitudes, X e Y, de forma que a cada valor de la magnitud X corresponde un único valor y de la magnitud Y. : variable

Más detalles

DERIVADA DE UNA FUNCIÓN

DERIVADA DE UNA FUNCIÓN www.fisicanet.com www.fisicaweb.com DERIVADA DE UNA FUNCIÓN fisicanet@interlap.com.ar Se abre aquí el estudio de uno de los conceptos fundamentales del cálculo diferencial: la derivada de una función.

Más detalles

P. A. U. LAS PALMAS 2005

P. A. U. LAS PALMAS 2005 P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica

Más detalles

Determina las asíntotas de las siguientes funciones e interpreta gráficamente los resultados:

Determina las asíntotas de las siguientes funciones e interpreta gráficamente los resultados: Tema. Límites y continuidad. HOJA ASÍNTOTAS º Bachillerato de CCSS Determina las asíntotas de las siguientes funciones e interpreta gráficamente los resultados: ) f ( ) 4 f ( ) es una función polinómica

Más detalles

Funciones de una variable

Funciones de una variable Funciones de una variable Dpto. Matemática Aplicada Universidad de Málaga Motivación Conceptos matemáticos Funciones Mundo real Continuidad Derivada Integral Definición de función R A: Dominio R B: Imagen

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN

DERIVADAS. TÉCNICAS DE DERIVACIÓN DERIVADAS. TÉCNICAS DE DERIVACIÓN Página 55 REFLEXIONA Y RESUELVE Tangentes a una curva y f ( 5 5 Halla, mirando la gráfica y las rectas trazadas, f'(, f'( y f'(. f'( 0; f'( ; f'( Di otros tres puntos

Más detalles

x = 0, la recta tangente a la gráfica de f (x)

x = 0, la recta tangente a la gráfica de f (x) CÁLCULO DIFERENCIAL JUNIO 004 1. Sea la función e y = estúdiese su monotonía, etremos relativos y asíntotas. (Solución: Es derivable en todos los puntos ecepto en =0. Creciente si < 0. No tiene asíntotas

Más detalles