TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE"

Transcripción

1 TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE PROBLEMAS RESUELTOS + Dada F() =, escriba la ecuación de la secante a F que une los puntos (, F( )) y 4 (, F()). Eiste un punto c en el intervalo [, ] verificando que la tangente a la gráfica de F en (c, F(c)) es paralela a la secante que ha hallado? En caso afirmativo razone su respuesta y calcule c, en caso negativo razone por qué no eiste. 0 5 F ( ) = = ; F () = 6 = 5 La ecuación de la recta secante que pasa por los puntos, y (, ) es: Punto : (, ) y + = 6y 8 = 0 Vector director : 4, (, ) ( 6, ) 6 Por otra parte, la función F () es continua en el intervalo [, ], puesto que su dominio es Dom F() = {4}. Además es derivable en el intervalo (, ). Por tanto podemos aplicar el teorema del valor medio y afirmar que eiste un punto c (, ) tal que: F() F( ) F () = ( ) es decir, eiste al menos un punto en (, ) tal que la tangente es paralela a la secante. Esto es: m secante= 6 Deben coincidir por ser paralelas. m tangente= F'( c) c 8c + 6 F () = F (c) = = ( 4) 6 ( c 4) 6 Desarrollando la ecuación anterior y simplificando queda: c 8c + 4 = 0 cuyas raíces son: c = 4 ±. Eiste sólo un punto que cumple la condición buscada, c = 4, ya que c = 4 + (, ). Demuestra que la función f () = + e corta al eje OX en el intervalo (, ) y tiene un máimo relativo en ese mismo intervalo. La función es continua en el intervalo de estudio y, además, tiene distinto signo en los etremos del intervalo. Por tanto, por el teorema de Bolzano, cortará al eje OX entre y. En efecto: f ( ) = e < 0 y f () = + e < 0 En consecuencia, eistirá un punto c (, ) tal que f (c) = 0. En ese punto, la corta al eje OX. Para ver que tiene un máimo hallamos las derivadas primera y segunda: f () = e = 0 = Ln 0,69 < f () = e f (Ln ) = e Ln = < 0 Como la derivada segunda es negativa en = Ln, para ese valor se tendrá, efectivamente un máimo.

2 Se considera la función f () = ( a) ( b) ( c), con 0 < a < b < c. Demostrar que la ecuación f () = 0 tiene eactamente tres raíces reales. La función f () = ( a) ( b) ( c) es polinómica. Por tanto, es continua y derivable en todo. Además corta al eje OX eactamente en cuatro puntos: = 0, = a, = b y = c. Un esbozo de su gráfica es: Como puede apreciarse visualmente, la curva tiene un máimo y dos mínimos. En las abscisas de esos puntos la derivada se anula, pues son puntos con tangente horizontal (*). Por tanto, la ecuación f () = 0 tiene eactamente tres raíces reales:, y. (*) Esto es consecuencia del teorema de Rolle, que dice: Si f () es una función continua en el intervalo [a, b] y derivable en el intervalo (a, b) que verifica f (a) = f (b), entonces eiste, al menos, un punto c (a, b) tal que f (c) = 0. Aquí los intervalos son: [0, a], [a, b] y [b, c]. Demostrar que la ecuación + + = 0 tiene una única solución real. Consideramos la función f () = + +, que es continua y derivable por ser un polinomio. Como f (0) = y f () =, por el teorema de Bolzano se deduce que la función corta al eje OX en el intervalo (0, ). Luego la ecuación + + = 0 tiene una raíz entre 0 y. Como f () = + + > 0 para todo, la función será siempre creciente. En consecuencia, sólo corta una vez al eje OX. Luego la ecuación + + = 0 sólo tiene una raíz real. Enunciar el teorema de Rolle. Demostrar que la función f () = + a cumple la hipótesis de este teorema en el intervalo [0, ] cualquiera que sea el valor de a. Encontrar el punto en el cual se cumple la tesis. Teorema de Rolle: Sea f () una función continua en el intervalo [a, b] y derivable en el intervalo (a, b) que verifica f (a) = f (b). Entonces eiste, al menos, un punto c (a, b) tal que f (c) = 0. Por tratarse de un polinomio, la función f () = + a es continua para todo número real; en particular en el intervalo [0, ]. Como además f (0) = a y f () = a, también se verifica la segunda hipótesis. En consecuencia, eiste un punto c (0, ) tal que f (c) = 0. Derivando: f () = = ± El valor buscado es =, que es el que cae dentro del intervalo.

3 sen+ sen( + ) Dada la función f () = en el intervalo 0 < < π, calcula su derivada, cos cos( + ) simplificándola en lo posible. Es constante esta función f ()? Derivando como un cociente se tiene: (cos + cos( + ))(cos cos( + )) (sen+ sen( + ))( sen+ sen( + )) f () = = (cos-cos(+)) = (cos cos ( + )) (sen ( + ) sen ) (cos cos( + )) = (cos + sen (sen ( + ) + cos ( + )) = = (cos cos( + )) (cos cos( + )) Como su derivada vale 0, la función es constante. = 0 Nota: Si utilizamos las fórmulas de sumas de senos y cosenos se tiene que: + sen cos sen+ sen( + ) f () = = = cotg cos cos( + ) + sen sen Esta función es constante, y por tanto, su derivada valdrá 0. Enunciar el Teorema del Valor Medio del cálculo diferencial. Usarlo para demostrar que para cualesquiera números reales < y se verifica que cos y cos = y. El teorema del valor medio dice: Si f () es continua en el intervalo [a, b] y derivable en el intervalo (a, b), entonces eiste un punto c (a, b) tal que: f ( b) f( a) = f (c) b a Consideramos la función f () = cos. Esta función es continua y derivable en todo, y en particular en cualquier intervalo [, y]. Por tanto, aplicando el teorema: f ( y) f( ) = f (c), siendo < c < y y Luego: cos y cos = sen c cos y cos = (y ) ( sen c) y Como sen c para cualquier valor de c, se tendrá que: (y ) ( sen c) y Por tanto, cos y cos y. Demuestra que la función y = sen π tiene un máimo relativo en el intervalo (, 0) y un mínimo relativo en el intervalo (0, ). Menciona los resultados teóricos que utilices. La función dada es continua y derivable (con derivada continua) en todo, y en particular en los intervalos [, 0] y [0, ]. Por tanto cumple el teorema de Rolle, el de Bolzano y todos los relativos a continuidad y derivabilidad. Como y () = 0, y (0) = 0 e y () = 0, por el teorema de Rolle, eistirá un valor c (, 0) en donde y (c) = 0; y por lo mismo, otro punto c (0, ) en el que y (c ) = 0. Lo que no sabemos, de momento, es si esos puntos son máimos o mínimos. Haciendo la derivada se tiene: y = cos π.

4 Como y ( ) = + π > 0 e y (0) = π < 0, la función es creciente en un entorno de = y decreciente en un entorno de = 0. Por tanto, algún valor c (, 0) tal que y (c) = 0 es un máimo. Como y (0) = π < 0 e y () = + π > 0, la función es decreciente en un entorno de = 0 y creciente en un entorno de =. Por tanto, algún valor c (0, ) tal que y (c ) = 0 es un mínimo. Comprobar que se verifican las hipótesis del teorema de Rolle para la función f () = cos, en el intervalo [π/, π/]. Calcular también el valor al que se refiere la tesis del teorema. La función es continua y derivable en todo ; en particular, en el intervalo [π/, π/]. Además: f (π/) = 0 = f (π/) Por tanto cumple las hipótesis del teorema de Rolle. Luego, eiste un punto c (π/, π/) tal que f (c) = 0. Calculémoslo: kπ f () = 6 cos sen = sen = 0 = kπ = con k El punto buscado es c = π, ya que es el punto que pertenece al intervalo [π/, π/]. Puede aplicarse el teorema de Bolzano a la función f () = sen + cos en el intervalo [0, π]? Encontrar, si eiste, un punto de [0, π] en el cual se anule esta función. Teorema de Bolzano. Si una función es continua en un intervalo [a, b] y toma valores de signo opuesto en los etremos (por ejemplo, f (a) > 0 y f (b) < 0), entonces eiste al menos un punto c [a, b] tal que f (c) = 0. La función f () = sen + cos es continua en todo, en particular en [0, π]. Además: f (0) = sen 0 + cos 0 = y f (π) = sen π + cos π = Luego verifica las hipótesis del teorema de Bolzano. Por tanto, eiste un punto tal que f () = sen + cos = 0. A ojo, se ve que una solución de esa ecuación trigonométrica es = π/. Nota: Hacemos un intento de resolución de la ecuación sen + cos = 0: sen + cos = 0 sen cos + cos cos sen sen = 0 sen cos + cos (cos sen ) sen sen cos = 0 cos (cos sen sen ) = 0 = π/ + kπ Aunque hay más soluciones, a nosotros nos vale con encontrar una: = π/, que, como hemos dicho, puede verse a ojo. Se considera la función f () = arctg. Demostrar que eiste algún número real (0, ) tal que f () =. f () = arctg f () = + Consideramos la función F () = f () = + Esta función es continua en [0, ]. Además, F (0) = y F () =. Luego, por el teorema de Bolzano, eiste un punto c (0, ) tal que F (c) = 0. Por tanto: F (c) = 0 F (c) = c = 0 = c f (c) = c + c + c

5 Podemos aplicar el teorema de Rolle a la función f () = en el intervalo es [, ]? Para qué valor α es f (α) = 0? Teorema de Rolle: Si f () es una función continua en el intervalo [a, b] y derivable en el intervalo (a, b) y además f (a) = f (b), entonces eiste, al menos, un punto c (a, b) tal que f (c) = 0. La función f () = e cumple las hipótesis anteriores en el intervalo [, ], ya que es continua y derivable en él y además: f ( ) = e 0 = y f () = e 0 = Por tanto: El valor pedido es α = 0. e f () = e = 0 = 0 Demostrar que, para cualquier valor de m, la ecuación + m = 0 no tiene dos raíces diferentes que pertenecen al intervalo [0, ]. Consideramos la función f () = + m que es continua y derivable en todo. Su derivada, f () =, vale 0 en = y en =. Como f es negativa para todo (, ), la función es decreciente en todo el intervalo. En consecuencia, f () = + m sólo puede cortar una vez, como máimo, al eje OX en el intervalo (, ). Por tanto, la ecuación + m = 0 sólo puede tener una raíz en ese intervalo. Aplicar, si es posible, a la función f () = sen cos en si el intervalo es [0, π], el teorema de Rolle, dando c (0, π) para el cual f (c) = 0. La función f () = sen cos es continua y derivable en toda la recta. En particular en el intervalo [0, π]. Además: f (0) = sen 0 cos 0 = 0 y f (π) = sen π cos π = 0 Por tanto, puede aplicarse el teorema. En consecuencia, eiste un punto c (0, π) tal que f (c) = 0 f () = cos cos sen sen = cos = 0 = π/ = π/4 El valor buscado es c = π/4 Nota: Hay otra solución: c = π/4 Aplicar el teorema de Bolzano para demostrar que la ecuación = cos tiene al menos una solución dentro del intervalo [0, π/]. Consideramos la función f () = cos. Esa función es continua en todo, en particular en [0, π/]. Además: f (0) = 0 cos 0 = < 0 y f (π) = π cos π = π + > 0 Luego verifica las hipótesis del teorema de Bolzano. Por tanto, eiste un punto c (0, π/) tal que f (c) = 0: f (c) = 0 f (c) = c cos c = 0 c = cos c Esto es, la ecuación = cos tiene una solución que es c. Calcula un punto el intervalo [, ] en el que la recta tangente a la curva y = + es paralela a la cuerda que une los puntos A = (, ) y B = (, 8). El teorema del valor medio dice: Si f () es continua en el intervalo [a, b] y derivable en el intervalo (a, b), entonces eiste un punto c (a, b) tal que: f ( b) f( a) f (c) = b a

6 Como la función y = f () = + cumple las condiciones del teorema se tendrá: f () f () = c (ya que f () = f (c) = c ) 8 = = c c = El punto pedido es =. Considera la función: + si 0 f () = si 0 < cos( ) si > a) Estudia si es derivable en = 0 y en =. b) Razona si se puede asegurar que eiste un punto c en el intervalo [, ] en el cual f (c) = 0. a) Veamos primero la continuidad. La función es continua en todo, salvo quizás en los puntos = 0 y =, que es los que se cambia de un trozo a otro. Si 0 f () 0 Si 0 + f () 0 La función es continua en = 0. Si f () Si + f () cos 0 = La función es continua en =. Salvo en = 0 y =, su derivada es: + si < 0 f () = si 0< < sen( ) si > Para = 0: Si 0 f () Si 0 + f () La función es derivable en = 0. Para = : Si f () Si + f () sen 0 = 0 La función no es derivable en =. La derivada es pues: + si 0 f () = si 0< < sen( ) si > b) En el intervalo [, ] la función es continua y derivable; en consecuencia cumple el teorema de Rolle, y eiste un punto c (, ) tal que f (c) = 0. Ese punto es la solución de: + = 0 =

7 Prueba que la función f () = + cos tiene al menos un mínimo relativo en el intervalo (0, π). La función f () = + cos es continua y derivable para todo. Lo mismo le sucede a su derivada, f () = sen. Como: f (0) = < 0 y f (π) = π > 0 por el teorema de Bolzano, eiste algún punto c entre 0 y π tal que f (c) = 0. Este punto c será el punto singular de la función f. La segunda derivada vale f () = cos. Entonces: f (c) = cos c > 0 (por ser cos α, para todo α) Por tanto, c cumple las condiciones de mínimo relativo: f (c) = 0 y f (c) > 0.

FUNCIONES CONTINUAS EN UN INTERVALO. El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales:

FUNCIONES CONTINUAS EN UN INTERVALO. El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales: FUNCIONES CONTINUAS EN UN INTERVALO Teoremas de continuidad y derivabilidad Teorema de Bolzano Sea una función que verifica las siguientes hipótesis:. Es continua en el intervalo cerrado [, ]. Las imágenes

Más detalles

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2)

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2) Tema 0 Aplicaciones de la derivada Matemáticas II º Bachillerato TEMA 0 APLICACIONES DE LA DERIVADA RECTA TANGENTE Escribe e 0 EJERCICIO : la ecuación de la recta tangente a la curva f en 0. Ordenada del

Más detalles

x = 0, la recta tangente a la gráfica de f (x)

x = 0, la recta tangente a la gráfica de f (x) CÁLCULO DIFERENCIAL JUNIO 004 1. Sea la función e y = estúdiese su monotonía, etremos relativos y asíntotas. (Solución: Es derivable en todos los puntos ecepto en =0. Creciente si < 0. No tiene asíntotas

Más detalles

Propiedades de las funciones en un intervalo

Propiedades de las funciones en un intervalo Propiedades de las funciones en un intervalo Teorema de Rolle: si una función es continua y derivable en un intervalo y toma valores iguales en sus etremos, eiste un punto donde la derivada primera se

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios españoles El precio

Más detalles

DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD

DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3)

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento

Más detalles

CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES

CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES RELACIÓN DE PROBLEMAS DE SELECTIVIDAD º DE BACHILLERATO CIENCIAS DEPARTAMENTO DE MATEMÁTICAS COLEGIO MARAVILLAS TERESA GONZÁLEZ GÓMEZ .-Hallar una primitiva

Más detalles

x + x 2 +1 = 1 1 = 0 = lím

x + x 2 +1 = 1 1 = 0 = lím UNIDAD Asíntota horizontal: 8 +@ + + = y = es asíntota horizontal hacia +@ (y > ). + + + + = = = 0 8 @ 8 +@ y = 0 es asíntota horizontal hacia @ (y < 0). CUESTIONES TEÓRICAS 30 Qué podemos decir del grado

Más detalles

a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím

a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím Matemáticas Empresariales I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES si 0. La función f ( ) sen es continua en = 0 si: p si 0 a) p = ½. b) p = 0. Para que sea continua en = 0 debe cumplirse que

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN

DERIVADAS. TÉCNICAS DE DERIVACIÓN DERIVADAS. TÉCNICAS DE DERIVACIÓN Página 5 REFLEXIONA Y RESUELVE Tangentes a una curva y f () 5 5 9 4 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(4). f'() 0; f'(9) ; f'(4) 4 Di otros

Más detalles

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola.

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola. Junio 00 (Prueba Específica) JUNIO 00 Opción A.- Dada la parábola y 3 área máima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola., y la recta y 9, hallar las dimensiones

Más detalles

PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD

PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD Considera la función f(x)= x 3 + px donde p es un número real. Escribir (en función de p) la ecuación de la recta tangente a la grafica f(x) en el punto de abscisa

Más detalles

DERIVABILIDAD. 1+x 2. para x [1, 3]

DERIVABILIDAD. 1+x 2. para x [1, 3] 1 DERIVABILIDAD 1. Definir derivada y derivadas laterales de una función en un punto. Probar que la función f es derivable en =1 y que la derivada lateral por la derecha en =0 es infinito. para [0, 1)

Más detalles

Teoría Tema 3 Teoremas de derivabilidad

Teoría Tema 3 Teoremas de derivabilidad página 1/10 Teoría Tema 3 Teoremas de derivabilidad Índice de contenido Teorema de Rolle...2 Teorema del valor medio de Lagrange (o de los incrementos finitos)...4 Teorema de Cauchy...6 Regla de L'Hôpital...8

Más detalles

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo.

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo. UNIDAD. APLICACIONES DE LAS DERIVADAS.. Información etraída de la primera derivada.. Información etraída de la segunda derivada.. Derivabilidad en intervalos: Teorema de Rolle, del valor medio y Caucy..4

Más detalles

Página 322. 3. Representa: a) y = b) y = c) y = cos 2x + cos x. a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales:

Página 322. 3. Representa: a) y = b) y = c) y = cos 2x + cos x. a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales: Página. Representa: e e a) y = b) y = c) y = cos + cos e a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales: f () = +@ 8 0 f () = +@ 8 0 + Asíntota vertical: = 0 f () = 0. Además, f () > 0

Más detalles

Tema 1. Cálculo diferencial

Tema 1. Cálculo diferencial Tema 1. Cálculo diferencial 1 / 57 Una función es una herramienta mediante la que expresamos la relación entre una causa (variable independiente) y un efecto (variable dependiente). Las funciones nos permiten

Más detalles

CUESTIONES RESUELTAS 2. FUNCIONES REALES DE VARIABLE REAL FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA CURSO

CUESTIONES RESUELTAS 2. FUNCIONES REALES DE VARIABLE REAL FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA CURSO CUESTIONES RESUELTAS. FUNCIONES REALES DE VARIABLE REAL FUNDAMENTOS DE MATEMÁTICAS. º GRADO GESTIÓN AERONAÚTICA CURSO 0-0. CONCEPTOS DE DOMINIO, RECORRIDO Y GRÁFICA e. Sea f() definida por: f ( ) Entonces

Más detalles

1. Calcula la tasa de variación media de la función y = x 2 +x-3 en los intervalos: a) [- 1,0], b) [0,2], c) [2,3]. Sol: a) 0; b) 3; c) 6

1. Calcula la tasa de variación media de la función y = x 2 +x-3 en los intervalos: a) [- 1,0], b) [0,2], c) [2,3]. Sol: a) 0; b) 3; c) 6 ejerciciosyeamenes.com PROBLEMAS DE DERIVADAS 1. Calcula la tasa de variación media de la función +- en los intervalos: a) [- 1,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación media

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN

DERIVADAS. TÉCNICAS DE DERIVACIÓN DERIVADAS. TÉCNICAS DE DERIVACIÓN Página 55 REFLEXIONA Y RESUELVE Tangentes a una curva y f ( 5 5 Halla, mirando la gráfica y las rectas trazadas, f'(, f'( y f'(. f'( 0; f'( ; f'( Di otros tres puntos

Más detalles

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid! CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS 0 APLICACIONES DE LAS DERIVADAS Página 8 REFLEXIONA Y RESUELVE Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0

Más detalles

8. y = Solución: x 4. 9. y = 3 5x. Solución: y' = 5 3 5x L 3. 10. y = Solución: 4 4 (5x) 3. 11. y = Solución: (x 2 + 1) 2. 12.

8. y = Solución: x 4. 9. y = 3 5x. Solución: y' = 5 3 5x L 3. 10. y = Solución: 4 4 (5x) 3. 11. y = Solución: (x 2 + 1) 2. 12. 7 Cálculo de derivadas. Reglas de derivación. Tabla de derivadas Aplica la teoría Deriva en función de :. y = 8. y = 5 3 5 4. y = ( ) 5 0( ) 4 9. y = 3 5 5 3 5 L 3 3. y = 7 + 3 4. y = e e 5. y = 7 7 +

Más detalles

Aplicaciones de la derivada

Aplicaciones de la derivada CAPÍTULO 8 Aplicaciones de la derivada 8. Máimos mínimos locales Si f. 0 / f./ para cada cerca de 0, es decir, en un intervalo abierto que contenga a 0, diremos que f alcanza un máimo local o un máimo

Más detalles

REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS

REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS DOMINIO - Polinomio : D = R - Cocientes : D = R {puntos que anulan el denominador} - Raíces de índice par : D = {Lo

Más detalles

TEMA 2: CONTINUIDAD DE FUNCIONES

TEMA 2: CONTINUIDAD DE FUNCIONES TEMA : CONTINUIDAD DE FUNCIONES 1. Continuidad de una función en un punto Entre las primeras propiedades de las funciones aparece el concepto de continuidad. Durante mucho tiempo fue asumida como una idea

Más detalles

DERIVACIÓN DE FUNCIONES DE UNA VARIABLE

DERIVACIÓN DE FUNCIONES DE UNA VARIABLE DERIVACIÓN DE FUNCIONES DE UNA VARIABLE Derivada de una función en un punto. Función derivada. Sea f () una función de una variable definida en un intervalo abierto (a, b) y sea (a, b). Se dice que f es

Más detalles

REPRESENTACIÓN GRÁFICA DE FUNCIONES

REPRESENTACIÓN GRÁFICA DE FUNCIONES REPRESENTACIÓN GRÁFICA DE FUNCIONES a. Dominio de definición: D = Dom f() = { R eiste f()} b. Puntos de corte con los ejes: Con el eje OX (abscisas): f() = 0 : (,0). Ninguno, uno o más puntos. Con el eje

Más detalles

Ejercicios resueltos. 4 continua en R luego continua en cualquier. , [ 1,1] = 0 que equivale a decir 1,1

Ejercicios resueltos. 4 continua en R luego continua en cualquier. , [ 1,1] = 0 que equivale a decir 1,1 Teoremas de continuidad y derivabilidad Ejercicios resueltos.- Demostrar que la siguiente ecuación tiene una solución en el intervalo, : 4 º. Se considera la función 4 continua en R luego continua en cualquier

Más detalles

Teoría Tema 9 Representación gráfica de funciones

Teoría Tema 9 Representación gráfica de funciones página 1/24 Teoría Tema 9 Representación gráfica de funciones Índice de contenido Gráficas de funciones...2 Gráfica de una parábola...3 Gráfica de un polinomio de grado 3...6 Gráfica de un cociente de

Más detalles

Límites y continuidad

Límites y continuidad Límites y continuidad.. Límites El ite por la izquierda de una función f en un punto 0, denotado como 0 f() es el valor al que se aproima f() cuando se acerca hacia 0 por la izquierda. De igual forma,

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS 7 APLICACIONES DE LAS DERIVADAS Página 67 REFLEXIONA Y RESUELVE Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0

Más detalles

Límites. 1. Calcula los límites de las siguientes funciones en los puntos que se indican: 2 2 2 a) lim b) lim c) lim d) lim

Límites. 1. Calcula los límites de las siguientes funciones en los puntos que se indican: 2 2 2 a) lim b) lim c) lim d) lim Límites CIT_H. Calcula los límites de las siguientes funciones en los puntos que se indican: ( ) + + + a) lim b) lim c) lim d) lim + + + + + e) lim f) lim g) lim h) lim + 0 + + 9 + j) lim k) lim l) lim

Más detalles

CÁLCULO DIFERENCIAL 9. UNIVERSIDAD CARLOS III DE MADRID Departamento de Matemáticas MATEMÁTICAS

CÁLCULO DIFERENCIAL 9. UNIVERSIDAD CARLOS III DE MADRID Departamento de Matemáticas MATEMÁTICAS CÁLCULO DIFERENCIAL 9 UNIVERSIDAD CARLOS III DE MADRID Departamento de Matemáticas MATEMÁTICAS SOLUCIONES DE LA COLECCIÓN DE PROBLEMAS - CAPÍTULO 3 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD

Más detalles

EXAMEN DE MATEMATICAS II 2ª ENSAYO (1) Apellidos: Nombre:

EXAMEN DE MATEMATICAS II 2ª ENSAYO (1) Apellidos: Nombre: EXAMEN DE MATEMATICAS II ª ENSAYO () Apellidos: Nombre: Curso: º Grupo: A Día: CURSO 05 Instrucciones: a) Duración: HORA y 0 MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios de

Más detalles

en un punto determinado. Esto es, qué le pasa a f (x) cuando varía x en los alrededores de un punto a. , su derivada en el punto x = 3 es

en un punto determinado. Esto es, qué le pasa a f (x) cuando varía x en los alrededores de un punto a. , su derivada en el punto x = 3 es UAH Derivadas Tema 4 DERIVADAS Derivada de una función en un punto Una función f ( es derivable en el punto a si f ( a ) eiste el ite: Este ite se denota por f (a), y eiste cuando resulta un número real

Más detalles

Matemáticas Febrero 2013 Modelo A

Matemáticas Febrero 2013 Modelo A Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las

Más detalles

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q).

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q). TEMA 4: DERIVADAS 1. La derivada de una función. Reglas de derivación 1.1. La pendiente de una curva. La pendiente de una curva en un punto P es una medida de la inclinación de la curva en ese punto. Si

Más detalles

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones.

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. 0.. Concepto de derivada. Definición. Sea f : S R R, a (b, c) S. Decimos que f es derivable en a si existe: f(x) f(a)

Más detalles

3.3 Propiedades locales de una función derivable: continuidad, crecimiento y decrecimiento.

3.3 Propiedades locales de una función derivable: continuidad, crecimiento y decrecimiento. DERIVADAS. Función derivable en un punto. laterales. Interpretación geométrica de la derivada. Ecuaciones de las rectas tangente normal a la gráfica de una función en un punto.. Concepto de función derivada.

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E1300, 29-OCTUBRE-1996. (1) 2x 3 > 4.

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E1300, 29-OCTUBRE-1996. (1) 2x 3 > 4. CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E1300, 9-OCTUBRE-199 1) 3 > 4. +1 ) Sea la función 3 si 1 a + b si 1 . Encontrar los valores de a, b, c para que la función

Más detalles

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x)

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x) Matemáticas aplicadas a las CCSS - Derivadas Tabla de Derivadas Función Derivada Función Derivada y k y 0 y y y y y f ) y f ) f ) y n y n n y f ) n y n f ) n f ) y y n y y f ) y n n+ y f ) n y f ) f )

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS:

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL APELLIDOS: NOMBRE: D.N.I. CUESTIONARIO DE RESPUESTA MÚLTIPLE (5%) (Cada respuesta incorrecta resta, puntos)

Más detalles

Aplicaciones de las derivadas

Aplicaciones de las derivadas Aplicaciones de las derivadas. Recta tangente a una curva en un punto La pendiente de la recta tangente a la gráfica de la función f() en el punto ( 0, f( 0 )) viene dada por f ( 0 ) siempre que la función

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

= y. Así pues, el domino lo forman los números x para los cuales existe el valor de f (x)

= y. Así pues, el domino lo forman los números x para los cuales existe el valor de f (x) UAH Actualización de Conocimientos de Matemáticas para Tema 6 Funciones Concepto de función Dados dos conjuntos A y B, una función de A en B es una relación (una ley) que asigna a cada elemento de A uno

Más detalles

(Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de funciones. Extremos

(Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de funciones. Extremos (Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de unciones. Etremos INTRODUCCIÓN En múltiples problemas de ingeniería se requiere optimizar una o varias de las variables que intervienen

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

SELECTIVIDAD APLICACIÓN DE LAS DERIVADAS

SELECTIVIDAD APLICACIÓN DE LAS DERIVADAS SELECTIVIDAD APLICACIÓN DE LAS DERIVADAS Septiembre 008: Calcula los valores del número real a sabiendo que punto) 0 a e a = 8. ( Septiembre 008: Hallar, de entre los puntos de la parábola de ecuación

Más detalles

Las superficies serán: Tapa y superficie lateral S 1 = ( x 2 +4xy ) cm 2 Superficie de la base: S 2 = x 2 cm 2

Las superficies serán: Tapa y superficie lateral S 1 = ( x 2 +4xy ) cm 2 Superficie de la base: S 2 = x 2 cm 2 MATEMÁTICAS II, º BACHILLERATO F.- Se desea construir una caja cerrada de base cuadrada con una capacidad de 8 cm. Para la tapa y la superficie lateral se usa un material que cuesta /cm y para la base

Más detalles

Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA

Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Fuente: PreUniversitario Pedro de Valdivia Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación susceptible de llevar a la forma a + b + c = 0,

Más detalles

Aplicaciones de las Derivadas

Aplicaciones de las Derivadas Tema 4 Aplicaciones de las Derivadas 4.1 Introducción Repasaremos en este Tema algunas de las aplicaciones fundamentales de las derivadas. Muchas de ellas son ya conocidas por tratarse de conceptos explicados

Más detalles

ejerciciosyexamenes.com

ejerciciosyexamenes.com ejerciciosyeamenes.com Eamen de derivadas 1. Razona la verdad o falsedad de las siguientes afirmaciones: a) f() toma todos los valores entre f(a) y f(b), es continua? b) Si f'() > 0 y g'() > 0 en [a,b]

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto

Más detalles

Problemas resueltos de los teoremas de Rolle, valor medio y Cauchy

Problemas resueltos de los teoremas de Rolle, valor medio y Cauchy Problemas resueltos de los teoremas de Rolle, valor medio y Cauchy 1 Es aplicable el teorema de Rolle a la función f(x) = x 1 en el intervalo [0, 2]? 2 Estudiar si la función f(x) = x x 3 satisface las

Más detalles

f (x) (1+[f (x)] 2 ) 3 2 κ(x) =

f (x) (1+[f (x)] 2 ) 3 2 κ(x) = MATEMÁTICAS II - EXAMEN PRIMER PARCIAL - 4/11/11 Grado: Ing. Electrónica Rob. y Mec. Ing. Energía Ing. Organización Ind. Nombre y Apellidos: Ejercicio 1. La curvatura de una función f en un punto x viene

Más detalles

DERIVADAS DE FUNCIONES DE UNA VARIABLE

DERIVADAS DE FUNCIONES DE UNA VARIABLE DERIVADAS DE FUNCIONES DE UNA VARIABLE DERIVADAS DE FUNCIONES DE UNA VARIABLE [4.] Estudiar la derivabilidad de la función los puntos en los que esté definida. 3 f( ) y obtener f ( ) en En primer lugar

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

12.- DERIVADAS 2.- DERIVADA DE UNA FUNCIÓN 3.- REGLAS DE DERIVACIÓN

12.- DERIVADAS 2.- DERIVADA DE UNA FUNCIÓN 3.- REGLAS DE DERIVACIÓN DERIVADAS DERIVADA EN UN PUNTO Calcula la derivada de y = + en o = utilizando la definición Solución: y'() = 8 Calcula la derivada de en o = utilizando la definición Solución: y '() = 6 Calcula la derivada

Más detalles

( ) ( ) ( ) f h f h h h h. h 0 h h 0 h h 0 h h 0. f h f h h h h

( ) ( ) ( ) f h f h h h h. h 0 h h 0 h h 0 h h 0. f h f h h h h Eamen de cálculo diferencial e integral /4/9 Opción A Ejercicio. (Puntuación máima: puntos) Sea la función f ( ) = 4 a. Estudiar su continuidad y derivabilidad. b. Dibujar su gráfica. c. Calcular el área

Más detalles

Profesor: Rafa González Jiménez. Instituto Santa Eulalia ÍNDICE

Profesor: Rafa González Jiménez. Instituto Santa Eulalia ÍNDICE TEMA 5: DERIVADAS. APLICACIONES. ÍNDICE 5..- Derivada de una función en un punto. 5...- Tasa de variación media. Interpretación geométrica. 5..2.- Tasa de variación instantánea. Derivada de una función

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL Septiembre de 00 APELLIDOS: NOMBRE: DNI CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) (Cada respuesta incorrecta

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA C u r s o : Matemática Material N 6 GUÍA TEÓRICO PRÁCTICA Nº UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación de la forma, o que

Más detalles

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS CONTINUIDAD Y DERIVABILIDAD. DERIVADAS. Dada la función f (), (, ), definir f () y f () de forma que f sea continua sen(π ) en todo el intervalo cerrado [, ]. : f () f () π 5 si. Estudiar la continuidad

Más detalles

Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización.

Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. TEMA 1 Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. Límite finito en un punto: Consideremos una función f definida en las proimidades

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

P. A. U. LAS PALMAS 2005

P. A. U. LAS PALMAS 2005 P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2 ) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2 ) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Septiembre de 01 (Modelo ) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Septiembre 01 ['5 puntos] Un alambre de 10 metros de longitud se divide en dos trozos.

Más detalles

ESTUDIO LOCAL DE UNA FUNCIÓN

ESTUDIO LOCAL DE UNA FUNCIÓN DP. - AS - 5119 007 Matemáticas ISSN: 1988-79X ESTUDIO LOCAL DE UNA FUNCIÓN Dada la función y - 9 + 1 -, calcula: (a) Dominio de la función. (b) Intervalos de crecimiento y decrecimiento. 00 (c) Puntos

Más detalles

Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones

Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Abril 009,

Más detalles

en el intervalo - 1-cos(x) 2 si x > 0 sen(x)

en el intervalo - 1-cos(x) 2 si x > 0 sen(x) . [04] [ET-A] Sea la función f() = e -. Determinar sus intervalos de crecimiento y decrecimiento, etremos relativos, intervalos de concavidad y conveidad, puntos de infleión y asíntotas. Esbozar su gráfica..

Más detalles

EJERCICIOS DE ANÁLISIS PRIMERA EVALUACIÓN - MATEMÁTICAS II 2 BACH A Soluciones en Ejercicios resueltos de la PAU

EJERCICIOS DE ANÁLISIS PRIMERA EVALUACIÓN - MATEMÁTICAS II 2 BACH A Soluciones en Ejercicios resueltos de la PAU EJERCICIOS DE ANÁLISIS PRIMERA EVALUACIÓN - MATEMÁTICAS II 2 BACH A Soluciones en Ejercicios resueltos de la PAU Problema 1 (2 puntos) De una función derivable f (x) se conoce que pasa por el punto A(-1,

Más detalles

5.1. Recta tangente, normal e intersección de curvas. Recta tangente

5.1. Recta tangente, normal e intersección de curvas. Recta tangente 5. Aplicaciones de la Derivada 5.1. Recta tangente, normal e intersección de curvas Recta tangente Desde la escuela primaria se sabe que la recta tangente en un punto de una circunferencia es aquella recta

Más detalles

TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos

TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos 64 TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos Crecimiento y decrecimiento. Máimos y mínimos relativos; puntos de infleión. Dada la función

Más detalles

FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN

FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN 1 FUNCIONES FUNCIÓN REAL DE VARIABLE REAL Una función real de variable real es una relación que asocia a cada número real, (variable independiente),

Más detalles

en dicho intervalo y si f ( x 1

en dicho intervalo y si f ( x 1 Tema 7 (III) Teoremas de Rolle y del valor medio Aplicaciones al cálculo de ites: regla de L Hòpital Teorema del máimo Teorema de Rolle Se dice que f () tiene un máimo local (o relativo) en un punto si

Más detalles

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o DERIVADAS Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-, 3] hallar x o El teorema de Lagrange dice que: f(3) - f(-) = f

Más detalles

Aplicaciones de la derivada

Aplicaciones de la derivada Aplicaciones de la derivada º) Calcula los máimos y mínimos de la función f() = Máimo en P( 6, ) ; Mínimo en Q(0, 0) º) Determina el parámetro c para que la función f() = + + c tenga un mínimo igual a

Más detalles

2.1 CONTINUIDAD EN UN PUNTO 2.2 CONTINUIDAD DE FUNCIONES CONOCIDAS 2.3 CONTINUIDAD EN OPERACIONES CON

2.1 CONTINUIDAD EN UN PUNTO 2.2 CONTINUIDAD DE FUNCIONES CONOCIDAS 2.3 CONTINUIDAD EN OPERACIONES CON Cap. Continuidad de funciones.1 CONTINUIDAD EN UN PUNTO. CONTINUIDAD DE FUNCIONES CONOCIDAS.3 CONTINUIDAD EN OPERACIONES CON FUNCIONES.4 CONTINUIDAD EN UN INTERVALO.5 TEOREMA DEL VALOR INTERMEDIO OBJETIVOS:

Más detalles

Como todo máximo o mínimo absoluto es también local (relativo), siempre que hablemos de máximos o mínimos, consideraremos que son locales.

Como todo máximo o mínimo absoluto es también local (relativo), siempre que hablemos de máximos o mínimos, consideraremos que son locales. TEOREMAS BÁSICOS DEL CÁLCULO DIFERENCIAL. Cuando una función es continua en un intervalo cerrado [ a, b ] alcanza su máimo y su mínimo absolutos en puntos c y c, respectivamente, de dico intervalo. Esto

Más detalles

Unidad 10 Continuidad de las funciones

Unidad 10 Continuidad de las funciones Unidad 10 Continuidad de las funciones 4 SOLUCIONES 1. La continuidad queda: a) La continuidad en x = 0. No es continua en ese punto al no coincidir los límites laterales. b) La continuidad en x = 3. 2.

Más detalles

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS Tema 8 Límites de funciones, continuidad y asíntotas Matemáticas II º Bach 1 TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8.1 LÍMITE DE UNA FUNCIÓN 8.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite

Más detalles

Matemática I (BUC) - Cálculo I

Matemática I (BUC) - Cálculo I Matemática I (BUC) - Cálculo I Práctica 5: DERIVADAS Matemática I (BUC) / Cálculo I.. Calcular la derivada en el punto indicado, aplicando la definición: + 5 en ln( + ) en - + 7 en en. Calcular la recta

Más detalles

Veamos sus vectores de posición: que es la ecuación vectorial de la recta:

Veamos sus vectores de posición: que es la ecuación vectorial de la recta: T.5: ECUACIONES DE LA RECTA 5.1 Ecuación vectorial de la recta Una recta queda determinada si se conoce un vector que lleve su dirección (de entre todos los vectores proporcionales), llamado vector director,

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Ejercicio 3 4 5 6 7 8 total Puntos Universidad Carlos III de Madrid Departamento de Economía Eamen final de Matemáticas I 0 de septiembre de 007 APELLIDOS: NOMBRE: DNI: Titulación: Grupo: MODELO : Dada

Más detalles

4.- a) Enunciar el teorema de Rolle. (0,5 puntos) b) Determinar a, b, c para que la función f, definida por:

4.- a) Enunciar el teorema de Rolle. (0,5 puntos) b) Determinar a, b, c para que la función f, definida por: GMR Nombre: Nota Curso: º Bachillerato Eamen IV Fecha: 9 de Noviembre de 015 La mala o nula eplicación de cada ejercicio implica una penalización de hasta el 5% de la nota. 1.- La línea recta que pasa

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.4. APLICACIONES DE LA DERIVABILIDAD

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.4. APLICACIONES DE LA DERIVABILIDAD TEMA. FUNCIONES REALES DE VARIABLE REAL.4. APLICACIONES DE LA DERIVABILIDAD .4. APLICACIONES DE LA DERIVABILIDAD.4.1. Intervalos de crecimiento y decrecimiento.4.. Etremos locales de una función.4.3. Intervalos

Más detalles

Cálculo Diferencial e Integral - Recta tangente y velocidad. Farith J. Briceño N.

Cálculo Diferencial e Integral - Recta tangente y velocidad. Farith J. Briceño N. Cálculo Diferencial e Integral - Recta tangente y velocidad. Farit J. Briceño N. Objetivos a cubrir Código : MAT-CDI.7 Problema: Recta tangente a una curva en un punto 0. Problema: Velocidad promedio y

Más detalles

EXTREMOS Y OPTIMIZACIÓN DE FUNCIONES

EXTREMOS Y OPTIMIZACIÓN DE FUNCIONES Etremos y optimización de funciones EXTREMOS Y OPTIMIZACIÓN DE FUNCIONES CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN. EXTREMOS RELATIVOS En 1º de Bachillerato, basándonos en la interpretación geométrica

Más detalles

xln(x+1). 5. [2013] [EXT-A] a) Hallar lim x+1+1 dx. x+1 b) Calcular

xln(x+1). 5. [2013] [EXT-A] a) Hallar lim x+1+1 dx. x+1 b) Calcular . [0] [ET-A] a) Hallar el punto en el que la recta tangente a la gráfica de la función f() = -+ es paralela a la recta de ecuación y = 5-7. b) Calcular el área delimitada por la parábola de ecuación y

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 7 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

MODELO DE EXAMEN MATEMÁTICAS II PRIMERA EVALUACIÓN CURSO 2017/2018

MODELO DE EXAMEN MATEMÁTICAS II PRIMERA EVALUACIÓN CURSO 2017/2018 MODELO DE EXAMEN MATEMÁTICAS II PRIMERA EVALUACIÓN CURSO 2017/2018 Límites de funciones. Continuidad Derivadas Aplicaciones de las derivadas Primitiva de una función Integral definida EJERCICIO 1. Dada

Más detalles