prepara TU SElECTIVIDAD

Tamaño: px
Comenzar la demostración a partir de la página:

Download "prepara TU SElECTIVIDAD"

Transcripción

1 prepara TU SElECTIVIDAD Se considera la función f ( ) = ( + a) e a siendo a un parámero real. a) Razone a qué es igual el dominio de f ( ). b) Deermine el valor de a para que la gráfica de f() pase por el puno (0, -). c) Para a = -, deermine los inervalos de crecimieno y de decrecimieno de f ( ). Eisen máimos y mínimos relaivos de f ( )? En caso afirmaivo, decir dónde alcanzan y su valor. (Aragón. Junio 006. Opción B. Cuesión ) a) Dom f = R ya que se raa del produco de una función polinómica y una eponencial. 0 b) f( 0) =- ae = a =- c) f( ) = ( -) e = - f'( ) = e + ( -)(- ) e = = 0 = En (-`, -) (, + `) f' ( ) < 0 f( ) de En (-, ) f' ( ) > 0 f( ) En = - se alcanza un mínimo cuyo valor es f (-) = -e y en = se alcanza un máimo cuyo valor es f () = e -. Esudia y represena la función: f( ) = ( ) (Navarra. Junio 007. Ejercicio. Opción A) Dominio = R - {} Cores con eleje : f( ) = 0 = 0 = 0 ( 0, 0) ( - ) Core con el eje : = 0 y = 0 (0, 0) lim lim ` ( - ) ( - ) = ` Asínoa verical: = = Asínoa horizonal: y = No iene asínoas oblicuas ni ramas parabólicas. y' = - ( - ) = 0 = 0 En (-`, 0) (, + `) y' < 0 Funciónde En (0, ) y' > 0 Función En = 0 se alcanza un mínimo.

2 Represenación de funciones + y" = = 0 =- ( - ) En (- `, 0) y" < 0 Funciónconvea En ( 0, ) (, + `) y" > 0 Función cóncava En = - se alcanza un puno de infleión. y = = La función f()= + represena la concenración de oígeno en un esanque + conaminado por residuos orgánicos en un iempo (medido en semanas). a) Halla los inervalos de crecimieno y decrecimieno de f ( ) para 0 así como los insanes donde la concenración de oígeno es máima y mínima. b) De forma razonada, y conforme a los daos aneriores, represena gráficamene la función para 0, esudiando con odo dealle sus asínoas. (La Rioja. Junio 00. Pare C. Problema ) a) Esudiamos la función para 0. y' = - + = = 0 =- (noválida) En (, + `) f' ( ) > 0 f( ) En ( 0, ) f' ( ) < 0 f( ) de En = se alcanza un mínimo. La concenración de oígeno es máima cuando = 0 y vale, y es mínima si = y vale. b) Asínoas vericales: no iene. lim - + = ` + Asínoa horizonal: y = Posición de la curva respeco de la asínoa: = < 0 f()esá por debajo de la asínoa. ` No iene asínoas oblicuas ni ramas parabólicas cuando +`.

3 una función f ( ), 0 0, en la que el iempo esá epresado en años, represena los beneficios de una empresa (en cienos de miles de euros) enre los años 990 ( = 0) y 000 ( = 0): + si 0 < + 5 si < 6 f() = ( + 0) si 6 0 a) Represenar gráficamene f ( ), esudiando: punos de core, inervalos de crecimieno y decrecimieno. b) En qué años iene la empresa el máimo beneficio? cuál es dicho beneficio? Durane cuáno iempo hubo pérdidas? (Galicia. Sepiembre 005. Bloque. Ejercicio ) a) Dom f = [0, 0] lim + = - lim - + 5= Coninua en = + f ( ) = f ( 6) = lim - + 5= = - 6 Coninua en = 6 lim (- + 0) = (- 6+ 0) = + 6 Así, f ( ) es coninua en [0, 0]. si 0< < - < < f'( )= si 6 - si 6< < 0 En ( 0, ) f' ( ) > 0 f( ) En (0, ) presena un mínimo y en (, ), un máimo. En (, 6): f'( )= 0 = En (, ) f' ( ) < 0 f( ) de En (, 6) f' ( ) > 0 f( ) En los punos (, ) y (6, ) presena dos máimos y en (, -), un mínimo. Cores con el eje : = - + 5= 0 = 5 En ( 60, ) f' ( ) = - < 0 f() de En el puno (6, ) presena un máimo y en (0, 0), un mínimo. b) El máimo beneficio se obiene para = y = 6, es decir en 99 y 996 y vale.000. Hubo pérdidas enre el año 99 y el año 995.

4 Represenación de funciones 5 El rendimieno (epresado en porcenaje) de ciero moor durane 60 minuos de funcionamieno sigue la función: A + B + C f()= si si 0 < 60 Sabiendo que inicialmene el rendimieno es del 0 %, que a los 0 minuos de funcionamieno es de un 75 % y que el 00 % de rendimieno se alcanza a los 0 minuos de funcionamieno: a) Deerminar las consanes A, B y C. Jusificar la respuesa. b) Represenar la función. (Eremadura. Sepiembre 00. Opción B. Problema ) a) f (0) = 0 C = 0 f( 0) = A+ 0B+ C = A+ 0B = 75 f( 0) = 00 A+ 0B = 00 00A+ 0B = 75 A = - 00A+ 0B = 00 B = si b) f()= si 0< 60 En [0, 0]: f'( ) = f() f (0) = 0 f (0) = 75 f (0) = 00 En (0, 60] se raa de una función consane Se sabe que la derivada de la función f ( ) viene dada por f '( ) = + 9. a) Deermina los inervalos de crecimieno y decrecimieno de la función original f ( ). Dónde alcanza la función f ( ) sus máimos y mínimos locales? b) obén la reca angene a f ( ) en el puno = sabiendo que f () = 5. (Casilla y León. Sepiembre 006. Bloque B. Preguna )

5 a) f'( )= = 0 f"( )= 6 - = = f"( ) =- 6< 0 En = se alcanzaunmáimo. f"( ) = 6> 0 En = se alcanzaunmínimo. En (-`, ) (, +`) la función es. En (, ) la función es de. b) f'( ) = =- Ecuación de la reca angene: y - 5=-( - ) y = y =- + 5

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división.

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división. Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas Ejercicio Calcula la siguienes inegrales a) d b) d c) 6 d d) 3 d e) d 9 e a) Haciendo el cambio de variable d d. d d d

Más detalles

( ) m / s en un ( ) m. Después de nadar ( ) m / s. a) Cuáles

( ) m / s en un ( ) m. Después de nadar ( ) m / s. a) Cuáles CINEMÁTICA: MOVIMIENTO TRIDIMENSIONAL, DATOS EN FUNCIÓN DEL TIEMPO. Una cucaracha sobre una mesa se arrasra con una aceleración consane dada por: a (.3ˆ i. ˆ j ) cm / s. Esa sale desde un puno ( 4, ) cm

Más detalles

a) en [0, 2] ; b) en [-1, 1]

a) en [0, 2] ; b) en [-1, 1] UNIVERSIDAD NACIONAL DE LA PATAGONIA SAN JUAN BOSCO FACULTAD DE CIENCIAS NATURALES CATEDRA: Maemáica I CURSO: 04 TRABAJO PRACTICO Nº -Tercera Pare Pare III. Aplicaciones de la derivada TEOREMA DE ROLLE

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD a) Duración: 1 hora y 30 minuos b) Elija una de las dos opciones propuesas y conese los ejercicios de la opción elegida c) En cada ejercicio, pare o aparado se indica la punuación máxima que le corresponde

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento

Más detalles

PROBLEMA 3. a) Determina el valor de a para que la siguiente función sea continua en x = 1:

PROBLEMA 3. a) Determina el valor de a para que la siguiente función sea continua en x = 1: EXAMEN COMPLETO Baremo: Se elegirá el o el EJERCICIO B, del que SOLO se harán TRES de los cuaro problemas. LOS TRES PROBLEMAS PUNTÚAN POR IGUAL. Cada esudiane podrá disponer de una calculadora cienífica

Más detalles

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA Represenación de curvas planas dadas en forma paramérica REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA PLANTEAMIENTO DEL PROBLEMA Sean x e y dos funciones reales de variable real, de dominios

Más detalles

. Podemos afirmar: Dom f. c) f es creciente en un entorno de x 0. = y(t) 9.- Sean las ecuaciones paramétricas de una curva plana.

. Podemos afirmar: Dom f. c) f es creciente en un entorno de x 0. = y(t) 9.- Sean las ecuaciones paramétricas de una curva plana. 1.- Sea una función coninua y = f() al que el dominio de f() =[a,b], enonces: a) El máimo absoluo de f() se alcanza en uno de los valores ales que f ()=0. b) No iene porque ener máimo absoluo. c) El máimo

Más detalles

De las siguientes funciones decir cuál de ellas son funciones, y en ese caso indica el dominio y el recorrido.

De las siguientes funciones decir cuál de ellas son funciones, y en ese caso indica el dominio y el recorrido. EJERCICIOS FUNCIONES 4º OPCIÓN B 1 De las siguienes funciones decir cuál de ellas son funciones, en ese caso indica el dominio el recorrido. a) b) c) Aplicando el es de la línea verical se observa que

Más detalles

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 11 de febrero de 2009

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 11 de febrero de 2009 EXAMEN DE MATEMÁTICAS I (Primer Parcial) de febrero de 9 Sólo una respuesa a cada cuesión es correca. Respuesa correca:. punos. Respuesa incorreca: -. punos Respuesa en blanco: punos.- Sea ABC un riángulo

Más detalles

Unidad 9 Funciones exponenciales, logarítmicas y trigonométricas

Unidad 9 Funciones exponenciales, logarítmicas y trigonométricas Unidad 9 Funciones eponenciales, logarímicas y rigonoméricas PÁGINA 177 SOLUCIONES 1. En cada uno de los res casos: a) Domf = Imf = Esricamene creciene en odo su dominio. No acoada. Simérica respeco al

Más detalles

ANDALUCÍA JUNIO 2004

ANDALUCÍA JUNIO 2004 ANDALUCÍA JUNIO 004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II Insrucciones: a) Duración: 1 hora y 0 minuos. b) Elija una de las dos opciones propuesas y conese los ejercicios de la opción elegida.

Más detalles

Trayectoria es la línea imaginaria que describe un cuerpo en el transcurso del movimiento. Clases de trayectoria:

Trayectoria es la línea imaginaria que describe un cuerpo en el transcurso del movimiento. Clases de trayectoria: Cinemáica 1 Cinemáica 1. SISTEMA DE REFERENCIA. La posición es el lugar que ocupa un cuerpo en el espacio con respeco a un puno que consideramos fijo. Sisema de referencia es el marco con respeco al cual

Más detalles

Funciones exponenciales y logarítmicas

Funciones exponenciales y logarítmicas 89566 _ 0363-00.qd 7/6/08 09:30 Página 363 Funciones eponenciales y logarímicas INTRODUCCIÓN En esa unidad se esudian dos funciones que se aplican a numerosas siuaciones coidianas y, sobre odo, a fenómenos

Más detalles

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA Una curva C se dice definida paraméricamene por medio de un parámero, si las coordenadas afines de sus punos M se expresan en función de ese parámero, cuando varía

Más detalles

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada.

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada. MATEMÁTICAS º BACHILLERATO B 6-3- Análisis OPCIÓN A.- Dada la función + b + c f = Ln( + ) > a) Calcular sus asínoas b) Calcular razonadamn b y c para qu sa drivabl y calcular su función drivada. a) El

Más detalles

El sistema es incompatible. b) El sistema es compatible determinado. Lo resolvemos por la regla de Cramer.

El sistema es incompatible. b) El sistema es compatible determinado. Lo resolvemos por la regla de Cramer. Prueba de Acceso a la Universidad. JUNIO 0. Maemáicas II. El alumno debe responder a una de las dos opciones propuesas, A o B. En cada preguna se señala la punuación máima. OPCIÓN A a y z A. Sean a un

Más detalles

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME INSTITUTO NACIONAL Deparameno de Física Coordinación Segundo Medio 06. GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME NOMBRE: CURSO: Caracerísica general de M.R.U: Si una parícula se mueve en la dirección del

Más detalles

Página 322. 3. Representa: a) y = b) y = c) y = cos 2x + cos x. a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales:

Página 322. 3. Representa: a) y = b) y = c) y = cos 2x + cos x. a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales: Página. Representa: e e a) y = b) y = c) y = cos + cos e a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales: f () = +@ 8 0 f () = +@ 8 0 + Asíntota vertical: = 0 f () = 0. Además, f () > 0

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos I.E.S. CASTELAR BADAJOZ A. Menguiano PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE - 8 (RESUELTOS por Anonio Menguiano) MATEMÁTICAS II Tiempo máimo: horas minuos Se valorará la corrección

Más detalles

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función =

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función = DERIVACIÓN BAJO EL SIGNO INTEGRAL. Hallar el puno del inervalo [,] en el que la función F () d alcanza su valor mínimo. El mínimo de una función se alcanza en los punos donde su primera derivada es nula

Más detalles

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por Represenación gráfica de curvas en forma paramérica x a( sen) 1.- Represenar la curva dada por, siendo a > 0. y a(1 cos).- Emparejar cada curva con su gráfica ì ì x = a) ï x = í b) ï ì í ï c) ï x = - sen

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x Prueba de Acceso a la Universidad. SEPTIEMBRE. Maemáicas II. Insrucciones: Se proponen dos opciones A y B. Debe elegirse una y conesar a sus cuesiones. La punuación de cada cuesión aparece en la misma.

Más detalles

x + x 2 +1 = 1 1 = 0 = lím

x + x 2 +1 = 1 1 = 0 = lím UNIDAD Asíntota horizontal: 8 +@ + + = y = es asíntota horizontal hacia +@ (y > ). + + + + = = = 0 8 @ 8 +@ y = 0 es asíntota horizontal hacia @ (y < 0). CUESTIONES TEÓRICAS 30 Qué podemos decir del grado

Más detalles

REPRESENTACIÓN GRÁFICA DE FUNCIONES

REPRESENTACIÓN GRÁFICA DE FUNCIONES REPRESENTACIÓN GRÁFICA DE FUNCIONES a. Dominio de definición: D = Dom f() = { R eiste f()} b. Puntos de corte con los ejes: Con el eje OX (abscisas): f() = 0 : (,0). Ninguno, uno o más puntos. Con el eje

Más detalles

45 EJERCICIOS de INTEGRAL DEFINIDA 2º BACH. ( )

45 EJERCICIOS de INTEGRAL DEFINIDA 2º BACH. ( ) 5 EJERCICIOS de INTEGRAL DEFINIDA º BACH. Inegral definida:. Enunciar la regla de Barrow. Calcular:. Calcular:. (S) Calcular: d (Soluc: ) a + b a ( ) a + b d Soluc : b d (Soluc: 5/). Calcular: 5. Calcular:

Más detalles

Trabajo Práctico N 0: Curvas planas-ecuaciones paramétricas y Coordenadas polares

Trabajo Práctico N 0: Curvas planas-ecuaciones paramétricas y Coordenadas polares Trabajo Prácico N 0: Curvas planas-ecuaciones paraméricas y Coordenadas polares Curvas planas y ecuaciones paraméricas Hasa ahora hemos represenado una gráfica por medio de una sola ecuación que coniene

Más detalles

EJERCICIOS RESUELTOS DE DERIVADAS DE FUNCIONES REALES DE UNA VARIABLE REAL

EJERCICIOS RESUELTOS DE DERIVADAS DE FUNCIONES REALES DE UNA VARIABLE REAL EJERCICIOS RESUELTOS DE DERIVADAS DE FUNCIONES REALES DE UNA VARIABLE REAL Ejercicio nº 1.- Calcula (), utilizando la definición de derivada, siendo: f () + 5 f ( + ) f () ( + ) + 5( + ) 18 (4 + 4 + )

Más detalles

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013 GEOMETRÍA (Selecividad ) ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN Aragón junio a) Pueden eisir vecores u v ales que u v u v = 8? Jusifica la respuesa b) Deermina odos los posibles vecores u = (a

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios españoles El precio

Más detalles

4. SERIES TEMPORALES Y

4. SERIES TEMPORALES Y 4. SERIES TEMPORALES Y NÚMEROS ÍNDICE Objeivo Esudiar la evolución de una variable en el iempo. Bibliografia recomendada Peña y Romo (1997). Capíulos 11 y 12. Índice 1. Represenación gráfica de una serie

Más detalles

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015 GEOMETRÍA (Selecividad 15) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 15 1 Andalucía, junio 15 Sean los punos A(, 1, 1), B(, 1, ), C( 1,, ) y D(, 1, m) a) [,75 punos]

Más detalles

2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 6.- FUNCIONES. LÍMITES Y CONTINUIDAD PROFESOR: RAFAEL NÚÑEZ

2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 6.- FUNCIONES. LÍMITES Y CONTINUIDAD PROFESOR: RAFAEL NÚÑEZ º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA.- FUNCIONES. LÍMITES CONTINUIDAD PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-

Más detalles

Opción A Ejercicio 1.-

Opción A Ejercicio 1.- Soluciones modelo (Sepiembre de 009) Opción A Ejercicio.- ['5 punos] Se considera la función f: [, + ) R definida por f( ) -+. Deermina la asínoa de la gráfica Evidenemene, la función no iene asínoas vericales,

Más detalles

FUNCIONES VECTORIALES DE UNA VARIABLE REAL

FUNCIONES VECTORIALES DE UNA VARIABLE REAL FUNCIONES VECTORIALES DE UNA VARIABLE REAL [Versión preliminar] Prf. Isabel Arraia Z. Cálcul III - Funcines vecriales de una variable real 1 Una función vecrial es cualquier función que iene n cm imagen

Más detalles

Cálculo Diferencial e Integral - Funciones trascendentales. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Funciones trascendentales. Prof. Farith J. Briceño N. Cálculo Diferencial e Inegral - Funciones rascenenales. Prof. Farih J. Briceño N. Objeivos a cubrir Función logarimo y eponencial. Propieaes. Derivaa e inegración. Cóigo : MAT-CDI.5 Ejercicios resuelos

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo

Más detalles

CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES

CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES RELACIÓN DE PROBLEMAS DE SELECTIVIDAD º DE BACHILLERATO CIENCIAS DEPARTAMENTO DE MATEMÁTICAS COLEGIO MARAVILLAS TERESA GONZÁLEZ GÓMEZ .-Hallar una primitiva

Más detalles

es decir, la tasa de cambio es un cuociente y permite comparar una variable respecto de la otra. Gráficamente: x(t) x Figura 1.

es decir, la tasa de cambio es un cuociente y permite comparar una variable respecto de la otra. Gráficamente: x(t) x Figura 1. CAPITULO I: FUNCIONES SENCILLAS, GRÁFICOS Y PROPIEDADES. 1. FUNCIÓN LINEAL Se llama función lineal a oda reca cuya ecuación en el plano (x, ) es de la forma = m+b, donde m y b son consanes. El valor de

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES Tema 1 ECUACIONES DIFERENCIALES EJERCICIO 1 Comprobar que la función y() = c 2 ++3 es una solución del problema de valor inicial 2 y 2y + 2y = 6, y(0) = 3, y (0) = 1, (1.1) en <

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS

REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS DOMINIO - Polinomio : D = R - Cocientes : D = R {puntos que anulan el denominador} - Raíces de índice par : D = {Lo

Más detalles

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com.

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com. FUNCIONES 1- a) Dada la función:, Definida para 0, 0, encontrar el punto (x,y) que maximiza f sujeto a la restricción x+y=36. b) Calcular: Aragón 2014 Opción A Junio 2- Dada la función: Calcular: a) Dominio

Más detalles

ACTIVIDADES UNIDAD 7: Funciones elementales

ACTIVIDADES UNIDAD 7: Funciones elementales ACTIVIDADES UNIDAD 7: Funciones elemenales 1. La facura del gas de una familia, en sepiembre, fue de 4,8 euros por 1 m 3, y en ocubre, de 43,81 por 4 m 3. a) Escribe la función que da el impore de la facura

Más detalles

Práctica 7. Carga y Descarga de un Condensador

Práctica 7. Carga y Descarga de un Condensador Prácica 7. Carga y Descarga de un Condensador OBJETIVOS Esudiar los procesos de carga y de descarga de un condensador. Medir capacidades de condensador usando la consane de iempo. MATERIAL FUNDAMENTO TEÓRICO

Más detalles

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0,

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0, TEMA: FUNCIONES: ÍNDICE:. Inroducción.. Dominio y recorrido.. Gráficas de funciones elemenales. Funciones definidas a rozos. 4. Coninuidad.. Crecimieno y decrecimieno, máimos y mínimos. 6. Concavidad y

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A 0 1 0 0 1 1 Sean las marices C = 1 0 1 y D = 1 0 1. 0 1 0 1 1 0 a) (1.5 punos) Resuelva la ecuación maricial 2 X C D = ( I 3 + D) C. b) (1 puno) Si las marices C y D son las marices de adyacencia

Más detalles

Propuesta A. 1. Dadas las matrices: C = B = A =

Propuesta A. 1. Dadas las matrices: C = B = A = Pruebas de Acceso a Enseñanzas Univerarias Oiciales de Grado 6 Maeria: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá conesar a una de las dos opciones propuesas A ób. Se podrá uilizar

Más detalles

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II Modelo de eamen Junio MODELO JUNIO MTEMÁTICS PLICDS LS CIENCIS SOCILES II OPCIÓN. (Punuación máima: punos) Se dice que una mari cuadrada es orogonal si T I: Noa: La noación T significa mari ranspuesa de.

Más detalles

( ) [ ab, ] definidas como ( ) ( ) ( ) 1.2. Curvas paramétricas. funciones continuas de R R para un intervalo. Definición.

( ) [ ab, ] definidas como ( ) ( ) ( ) 1.2. Curvas paramétricas. funciones continuas de R R para un intervalo. Definición. 1.. urvas paraméricas. Definición. Sean x 1, x,, xn funciones coninuas de R R para un inervalo [ ab, ] definidas como con [ a, b]. ( ( ( x1 = f1, x = f,, xn = fn El conjuno de punos ( x1, x,, xn = ( f1(,

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Ejercicio nº.- Estudia y representa la siguiente unción: ( ) + 6 Ejercicio nº.- Dibuja la gráica de la unción: ( + ) ( ) Ejercicio nº.- Dada la unción: y sen sen, [0, ] a) Halla

Más detalles

Elección 0 Altivar 71

Elección 0 Altivar 71 Elección de velocidad Alivar 7 Opciones: módulos y resisencias de frenado Deerminación del módulo y de la resisencia de frenado El cálculo de las diferenes poencias de frenado permie deerminar el módulo

Más detalles

Unidad 5 Geometría afín en el espacio

Unidad 5 Geometría afín en el espacio Unidad 5 Geomería afín en el espacio 5 SOLUCIONES. a) Los componenes de los vecores pedidos son: b) Eisen infinias parejas de punos C D que cumplan la condición pedida. Por ejemplo, C(,,) D (,,). c) Sea

Más detalles

ANÁLISIS MATEMÁTICO I TEMA IV : DERIVADA Hoja 1

ANÁLISIS MATEMÁTICO I TEMA IV : DERIVADA Hoja 1 ANÁLISIS MATEMÁTICO I TEMA IV : DERIVADA Hoja 1 A) Hallar la pendiene de la reca secane a la parábola y + 8,cuyas abscisas de los punos de inersección son 1 y 4 f ( ) f ( a) B) Dada la siguiene epresión

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL SEPTIEMBRE Apellidos Nombre. DNI / NIE Centro de examen

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL SEPTIEMBRE Apellidos Nombre. DNI / NIE Centro de examen CALIFICACIÓN: Consejería de Educación, Ciencia y Culura PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL SEPTIEMBRE 011 Resolución de 9 de marzo de 011 (DOCM de 5 de abril)

Más detalles

Opción A Ejercicio 1.-

Opción A Ejercicio 1.- Colegio Lux Mundi (Cajar-Granada) Examen Sepiembre de 009 Javier Cosillo Iciarra Opción A Ejercicio.- ['5 punos] Se considera la función f: [, + ) R definida por f ( x ) x -x+x. Deermina la asínoa de la

Más detalles

EXAMEN DE MATEMÁTICAS I 8 de febrero de 2006

EXAMEN DE MATEMÁTICAS I 8 de febrero de 2006 EXAMEN DE MATEMÁTICAS I 8 de febrero de 006 MATEMÁTICAS I Eamen del º PARCIAL 8 de febrero de 006 Sólo una respuesa a cada cuesión es correca. Respuesa correca: 0. punos. Respuesa incorreca: -0. punos

Más detalles

UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I

UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I INSTRUCTIVO PRÁCTICA Nº 5. MOVIMIENTO RECTILINEO Preparado por. Ing. Ronny J. Chirinos S., MSc prácica

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Acividades del final de la unidad ACTIVIDADES DEL FINAL DE LA UNIDAD. Dibuja las gráficas x- y v- de los movimienos que corresponden a las siguienes ecuaciones: a) x = +. b) x = 8. c) x = +. Calcula la

Más detalles

Solución y criterios de corrección. Examen de mayores de 25 años. 2012. Matemáticas aplicadas a las ciencias sociales.

Solución y criterios de corrección. Examen de mayores de 25 años. 2012. Matemáticas aplicadas a las ciencias sociales. Solución y crierios de corrección. Examen de mayores de años.. Maemáicas aplicadas a las ciencias sociales. BLOQUE A En un cenro de ocio hay salas de cine: A, B y. A una deerminada sesión han acudido personas.

Más detalles

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y ĺıneas de fase. Campos de pendientes

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y ĺıneas de fase. Campos de pendientes Lección 5 Técnicas cualiaivas para las Ecuaciones diferenciales de primer orden: Campos de pendienes y ĺıneas de fase Campos de pendienes () solución de = f (, ) pendiene de la reca angene a la gráfica

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES ES Padre Poveda (Guadi) Maemáicas plicadas a las SS EJEROS UNDDES : MTRES Y DETERMNNTES (-M--) Sean las marices D a) ( punos) Resuelva la ecuación maricial D ( D) b) ( puno) Si las marices D son las marices

Más detalles

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase Lección 5 Técnicas cualiaivas para las Ecuaciones diferenciales de primer orden: Campos de pendienes y líneas de fase 5.. Técnicas Cualiaivas Hasa ahora hemos esudiado écnicas analíicas para calcular,

Más detalles

Como podrás observar, los valores de la última columna no son iguales a qué se debe esto, si para una función lineal sí resultaron iguales?

Como podrás observar, los valores de la última columna no son iguales a qué se debe esto, si para una función lineal sí resultaron iguales? Razón de cambio de una función cuadráica Ejemplo.5 Un puno se desplaza en el plano describiendo el lugar geomérico correspondiene a la función f ( x x 6x 3. Obén la razón promedio de cambio. Considera

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA PRUEBA DE FÍSICA

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA PRUEBA DE FÍSICA ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA PRUEBA DE FÍSICA Curso 016-017 Tes de física 016/17 INSTRUCCIONES GENERALES 1. No escriba en ese cuadernillo las respuesas.. DEBERÁ CONTESTAR CON LÁPIZ EN LA HOJA

Más detalles

1 Las funciones y sus gráficas

1 Las funciones y sus gráficas 1 Las funciones y sus gráficas Página 113 1. Observa la gráfica del helicópero y responde: a) Qué alura lleva cuando va del embalse al incendio? b) A qué alura esaba a los min? A qué alura baja para coger

Más detalles

TEMA 2: CINETICA DE LA TRASLACIÓN

TEMA 2: CINETICA DE LA TRASLACIÓN TEMA 2: CINETICA DE LA TRASLACIÓN 1.1. Inroducción. Para ener caracerizado un movimieno mecánico cualquiera, hay que esablecer primero respeco a que cuerpo (s) se va a considerar dicho movimieno. Ese cuerpo

Más detalles

DERIVADAS. Lim. y Lim. y Lim

DERIVADAS. Lim. y Lim. y Lim DERIVADAS En maemáicas la erivaa e una función es uno e los os concepos cenrales el cálculo. El oro concepo es la anierivaa o inegral; ambos concepos esán relacionaos por el eorema funamenal el cálculo.

Más detalles

. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad 2000-2011

. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad 2000-2011 1. CÁLCULO DE DERIVADAS Ejercicio 1. (001) Calcule las funciones derivadas de las siguientes: Lx a) (1 punto) f ( x) = (Lx indica logaritmo neperiano de x) x 3 b) (1 punto) g( x) = (1 x ) cos x 3 1 c)

Más detalles

Ecuaciones diferenciales, conceptos básicos y aplicaciones

Ecuaciones diferenciales, conceptos básicos y aplicaciones GUIA 1 Ecuaciones diferenciales, concepos básicos y aplicaciones Las ecuaciones diferenciales ordinarias son una herramiena básica en las ciencias y las ingenierías para el esudio de sisemas dinámicos

Más detalles

Gráficas de curvas trigonométricas

Gráficas de curvas trigonométricas Capíulo 4 Gráficas de curvas rigonoméricas La definición de las razones rigonoméricas, como funciones del ángulo, lleva implicado el esudio de las funciones rigonoméricas desde el puno de visa de las funciones

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho IES CASTELAR BADAJOZ Eamen Junio de (General) Anonio Mengiano Corbacho PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (GENERAL) MATEMÁTICAS II Tiempo máimo: horas y minuos Conese de manera clara

Más detalles

ESTUDIO LOCAL DE UNA FUNCIÓN

ESTUDIO LOCAL DE UNA FUNCIÓN DP. - AS - 5119 007 Matemáticas ISSN: 1988-79X ESTUDIO LOCAL DE UNA FUNCIÓN Dada la función y - 9 + 1 -, calcula: (a) Dominio de la función. (b) Intervalos de crecimiento y decrecimiento. 00 (c) Puntos

Más detalles

CAPITULO 2: Movimiento en una dirección [S.Z.F.Y. 2]

CAPITULO 2: Movimiento en una dirección [S.Z.F.Y. 2] UNIVERSIDAD TECNOLÓGICA NACIONAL Faculad Regional Rosario UDB Física Cáedra FÍSICA I CAPITULO : Movimieno en una dirección [S.Z.F.Y. ] Cinemáica: La Cinemáica se ocupa de describir los movimienos de los

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con

Más detalles

FÍSICA Y QUÍMICA 1º BACHILLERATO

FÍSICA Y QUÍMICA 1º BACHILLERATO FÍSICA Y QUÍMICA 1º BACHILLERATO BLOQUE I: MECÁNICA Unidad 1: Cinemáica 1. INTRODUCCIÓN (pp. 8-3) 1.1. Definición de movimieno. Relaividad del movimieno Un cuerpo esá en movimieno cuando cambia de posición

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR BDJOZ PRUEB DE CCESO (LOGSE) UNIVERSIDD DE BLERES JUNIO (GENERL) (RESUELTOS por nonio Menguiano) MTEMÁTICS II Tiempo máimo: horas y minuos Conese de manera clara y razonada una de las dos opciones

Más detalles

5. Planos y rectas en el espacio

5. Planos y rectas en el espacio 5. Planos recas en el espacio ACTIVIDADES INICIALES 5.I Calcula el valor de los siguienes deerminanes a) 5 b) 5 4 c) d) 5.II Esudia la compaibilidad de los siguienes sisemas resuélvelos en los casos en

Más detalles

Unidad 6 Derivadas PÁGINA 135 SOLUCIONES. 1. La solución en cada caso es: = lím. lím. = h. 2. Queda: La recta debe tener una forma: y = x + b 5

Unidad 6 Derivadas PÁGINA 135 SOLUCIONES. 1. La solución en cada caso es: = lím. lím. = h. 2. Queda: La recta debe tener una forma: y = x + b 5 Unidad 6 Derivadas PÁGINA 15 SOLUCIONES 1. La solución en cada caso es: f ( ) f () ( ) 5 17 1 a) lím lím lím lím (1 ) 1 0 0 0 0 b) g ( ) g ( ) ( ) 1 1 lím lím lím 0 ( 1 1) 1. Queda: 1 La reca debe ener

Más detalles

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2)

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2) Tema 0 Aplicaciones de la derivada Matemáticas II º Bachillerato TEMA 0 APLICACIONES DE LA DERIVADA RECTA TANGENTE Escribe e 0 EJERCICIO : la ecuación de la recta tangente a la curva f en 0. Ordenada del

Más detalles

Carga y Descarga de un Condensador Eléctrico

Carga y Descarga de un Condensador Eléctrico ACUMULADORES DE CARGA ELÉCTRICA Acumuladores de Carga Elécrica Carga y Descarga de un Condensador Elécrico 1. OBJETIVOS - Esudiar los procesos de carga y de descarga de un condensador. - Medida de capacidades

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAPÍTULO 3 Aplicaciones e primer oren 3.5 Mezclas Si isolvemos 0 g e azúcar en 20 ` e agua, obenemos una solución ulce con una concenración C D 0 g/` D 25 g/` e azúcar (se lee 25 gramos por liro y significa

Más detalles

ANÁLISIS. d) No, se podrían haber considerado infinitas funciones diferenciadas en una constante.

ANÁLISIS. d) No, se podrían haber considerado infinitas funciones diferenciadas en una constante. Pruebas de Acceso a la Universidad de Zaragoza. ANÁLISIS Junio 99. Sea f: una función cuya primera derivada es f () =. Se pide: a) Determinar los intervalos de crecimiento y decrecimiento, de concavidad

Más detalles

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN Razón de cambio insanánea y la derivada de una función anerior Reomemos nuevamene el problema del proyecil esudiado en la secuencia

Más detalles

FUNCIONES CONTINUAS EN UN INTERVALO. El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales:

FUNCIONES CONTINUAS EN UN INTERVALO. El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales: FUNCIONES CONTINUAS EN UN INTERVALO Teoremas de continuidad y derivabilidad Teorema de Bolzano Sea una función que verifica las siguientes hipótesis:. Es continua en el intervalo cerrado [, ]. Las imágenes

Más detalles

5. [2013] [EXT-A] En una empresa de montajes el número de montajes diarios realizados por un trabajador depende de los días

5. [2013] [EXT-A] En una empresa de montajes el número de montajes diarios realizados por un trabajador depende de los días . [204] [ET-A] Una empresa ha realizado un estudio sobre los beneficios, en miles de euros, que ha obtenido en los últimos 0 años. La función a la que se ajustan dichos beneficios viene dada por B(t) =

Más detalles

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS Hasa ahora conocemos la represenación de una grafica mediane una ecuación con dos variables. En ese

Más detalles

La Cinemática es la parte de la Física que estudia los movimientos sin preocuparse de la causa que los produce.

La Cinemática es la parte de la Física que estudia los movimientos sin preocuparse de la causa que los produce. CINEMÁTICA La Cinemáica es la pare de la Física que esudia los moimienos sin preocuparse de la causa que los produce. SISTEMA DE REFERENCIA, POSICIÓN Y TRAYECTORIA Un cuerpo esá en moimieno cuando su posición

Más detalles

Modelo 2 OPCIÓN A. A y B AB se puede realizar porqueel n decolumnas de Aesigual al n de filas de B AB. t t t

Modelo 2 OPCIÓN A. A y B AB se puede realizar porqueel n decolumnas de Aesigual al n de filas de B AB. t t t Insrucciones: a) Duración: 1 hora y 3 minuos. b) Elija una de las dos opciones propuesas y conese los ejercicios de la opción elegida. c) En cada ejercicio, pare o aparado se indica la punuación máxima

Más detalles

6. Movimiento Rectilíneo Uniforme

6. Movimiento Rectilíneo Uniforme 6. Movimieno Recilíneo Uniforme La velocia e un vehículo es mayor en las recas que en las curvas. Cuano un físico se refiere a la prisa con la que se mueve un cuerpo, aemás e conocer su rapiez, necesia

Más detalles

1 Introducción... 2. 2 Tiempo de vida... 3. 3 Función de fiabilidad... 4. 4 Vida media... 6. 5 Tasa de fallo... 9. 6 Relación entre conceptos...

1 Introducción... 2. 2 Tiempo de vida... 3. 3 Función de fiabilidad... 4. 4 Vida media... 6. 5 Tasa de fallo... 9. 6 Relación entre conceptos... Asignaura: Ingeniería Indusrial Índice de Conenidos 1 Inroducción... 2 2 Tiempo de vida... 3 3 Función de fiabilidad... 4 4 Vida media... 6 5 Tasa de fallo... 9 6 Relación enre concepos... 12 7 Observaciones

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C.

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Maemáicas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables Elena Álvarez Sáiz Dpo. Maemáica Aplicada C. Compuación Universidad de Canabria Ingeniería de Telecomunicación Ejercicios: Func. varias

Más detalles

UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A LABORATORIO DE FÍSICA I/11. PRÁCTICA No. 4 CINEMÁTICA DEL MOVIMIENTO UNIDIMENSIONAL.

UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A LABORATORIO DE FÍSICA I/11. PRÁCTICA No. 4 CINEMÁTICA DEL MOVIMIENTO UNIDIMENSIONAL. Página 1 de 6 NÚCLEO UNIVERSITARIO RAFAEL RANGEL UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A ÁREA DE FÍSICA LABORATORIO DE FÍSICA LABORATORIO DE FÍSICA I/11 PRÁCTICA No. 4 CINEMÁTICA DEL

Más detalles

Representación de funciones

Representación de funciones Representación de unciones Ejercicio nº.- Representa una unciónpolinómica, de la que sabemosque : lim ; lim Suderivadaes en Corta a los ejesen, en,.,,,,,,. Ejercicio nº.- Dibuja la gráica de la unción,

Más detalles

'( t ) 6cos(2 t ) i sec ( t ) j k ; r ( ) 3 2

'( t ) 6cos(2 t ) i sec ( t ) j k ; r ( ) 3 2 INSTITUTO POLITÉNIO NAIONAL ESIME ZAATENO I. E., I.. A., I.S.A. AADEMIA DE MATEMÁTIAS GUIA E.T.S. DE ÁLULO VETOIAL FUNIONES VETOIALES DE UN ESALA () Deermine las ecuaciones paraméricas de la reca angene

Más detalles