MATEMÁTICAS 2º BACH CCyTECN INTEGRACIÓN INDEFINIDA. Profesor: Fernando Ureña Portero

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MATEMÁTICAS 2º BACH CCyTECN INTEGRACIÓN INDEFINIDA. Profesor: Fernando Ureña Portero"

Transcripción

1 1. PRIMITIVA DE UNA FUNCIÓN Definición: Sean F(x) y f(x) dos funciones reales definidas en un mismo dominio D. Se dice, entonces, que F(x) es una primitiva de f(x) si se cumple que F'(x) = f(x), x. Dicho de otro modo las primitivas de f(x) son las funciones derivables F(x). Ejemplo: a) F(x)=sen x es una primitiva de f(x)=cos x en b) F(x)=ln x es una primitiva de f(x)=1/x en (0,+ ). c) F(x)=e x es una primitiva de f(x)=e x en. Proposición 1: Si F(x) es una primitiva de f(x), entonces F(x)+C es también una primitiva de f(x), C. Proposición 2: Si F(x) y G(x) son dos primitivas de f(x), entonces G(x)=F(x)+C. Es decir, dos primitivas de una misma función se diferencian en una constante C. Nota: Según hemos visto en la proposición 2, para hallar todas las primitivas de una función f(x), basta calcular una primitiva concreta F(x), ya que las infinitas primitivas de dicha función serán todas de la forma F(x)+C, con C una constante cualquiera. 2. CONCEPTO DE INTEGRAL. INTEGRAL INDEFINIDA El proceso mediante el cual obtenemos una primitiva de una función f(x) se denomina Integración. Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones F(x) que al ser derivadas conducen a f(x). Definición: Se llama Integral Indefinida de una función f(x) al conjunto de todas las primitivas de f(x). y se representa por ( ) ( ) -Se lee: integral de f(x) diferencial de x. - : es el signo de integración -f(x): es el integrando o función a integrar. -dx (diferencial de x): indica cuál es la variable de la función que se integra. Nota: Para comprobar que la primitiva de una función es correcta basta con derivar. Ejemplo: a) cosxdx=senx +C b) 1/x dx= lnx +C c) e x dx=e x + C F(x)=x 2 +3x DERIVADA INTEGRAL f(x)=2x+3

2 2.1. PROPIEDADES DE LA INTEGRAL INDEFINIDA (LINEALIDAD) 1. La integral de una suma de funciones es igual a la suma de las integrales de esas funciones. [ ( ) ( )] ( ) ( ) 2. La integral del producto de una constante por una función es igual a la constante por la integral de la función. ( ) ( ) Nota: Para evitar errores graves en los cálculos, conviene tener en cuenta que, en general: ) [ ( ) ( )] ( ) ( ) ) ( ) ( ) ( ) ( )

3 3. TABLA DE INTEGRALES a, e, k, y C son constantes u es una función y u' es la derivada de u. Integrales Simples / Inmediatas Si x=u (siendo u función)

4 EJEMPLOS DE INTEGRACIÓN INMEDIATA: a) Integrales Inmediatas Polinómicas:

5 b) Integrales Inmediatas Trigonométricas:

6 c) Integrales logarítmicas y exponenciales:

7 d) Integrales trigonométricas:

8 e) Integrales trigonométricas inversas:

9 : -Vamos a transformar el denominador de modo que podamos aplicar la fórmula de la integral del arco-tangente. Asimismo, transformamos el denominador en un binomio al cuadrado. -Multiplicamos numerador y denominador por 4/3, para obtener uno en el denominador. Dentro del binomio al cuadrado multiplicaremos por su raíz cuadrada de 4/3.

10 4.MÉTODOS DE INTEGRACIÓN 4.1. INTEGRALES POR SUSTITUCIÓ N El método de integración por sustitución o cambio de var iable se basa en la regla de la cadena. ( ) ( ) El método se basa en identificar una parte de lo que se va a integrar con una nueva variable t, de modo que se obtenga una integral más sencilla Pasos para integrar por sustitución : ( ) 1º Se hace el cambio de variable y se diferencia (derivada implícita) en los dos términos: t=u dt= u dx Se despeja u y dx, sustituyendo en la integral: ( ) ( ) 2º Si la integral resultante es más sencilla, procedemos a integrar: ( ) ( ) 3º Se vuelve a la variable inicial : f(t)+c=f(x)+c E j e m p l o s : 1+x=t 2 x=t 2-1dx=2tdt

11 3 x =t 1+e x =t 2 e x =t 2-1

12 I NTEGR ALE S IR RACIONALES CON D ISTINTOS ÍNDICES En las funciones racionales de radicales con distintos índices, de un mismo radicando lineal ax + b, el cambio de variable es t elevado al mínimo común múltiplo de los índices. E j e m p l o s : I) II) Otros cambios de variables usuales: Ejemplos: 1

13 2 3

14 4 5 x + 2 = t 2 x - t 2 t 2 x - x=t x ( t 2-1 ) = t 2 +2 I n t e g r a m o s.

15 S e r e a l i z a l a i n t e g r a l r a c i o n a l. t = 1, 1 = 2 A, A = 1 / 2 t = - 1, 1 = - 2 B, B = - 1 / 2 A p l i c a m o s l a s p r o p i e d a d e s d e l o s l o g a r i t m o s. 6

16 INTEGRALE S R AC I ONALES (SE N X, C O S X) P ARES Si R(sen x, cos x) es par Es decir: R(sen x, cos x)=r( -sen x, - cos x) Se realiza el cambio t = tg x. También se utiliza este cambio para toda función racional de tg x. E j e m p l o s :

17 I NTEGR ALE S R ACIO N ALES (S EN X, COS X) NO PARES Si R(sen x, cos x)no es par Se realiza el cambio t=tg x/2. E j e r c i c i o s

18 E j e r c i c i o s d e i n t e g r a c i ó n p o r s u s t i t u c i ó n I NTEGR AC IÓN POR P ARTES El método de integración por partes se basa en la derivada de un producto y se utiliza para resolver algunas integrales de productos. Sean u y v dos funciones derivables. La derivada del producto u v viene dada por la fórmula: d(u v)=v du+u dv u dv =d(u v)-v du, integramos esta expresión: a) Se eligen como u: las funciones polinómicas, logarítmicas o arcotangente. b) Se eligen como dv: las funciones exponenciales o trigonométricas (tipo seno y coseno). Nota: Tenemos que derivar u e integrar v', por lo que será conveniente que la integral de v' sea inmediata. E j e m p l o s :

19 Proposición 1:Si al integrar por partes tomamos u = x n proceso n veces hay que repetir el E j e m p l o s : Proposición 2: Si tenemos una integral en la que sólo aparece un logaritmo o un "arco", integramos por partes tomando: v' = E j e r c i c i o s

20 Proposición 3: Si al integrar por partes aparece en el segundo miembro la integral que hay que calcular, se resuelve como una ecuación. E j e r c i c i o s Ejercicios de integración por partes

21 4.3.I NTEGR ALES RAC IONALES En la integración de funciones racionales se trata de hallar la integral ( ) ( ) siendo P(x) y Q(x) polinomios. Nota: En primer lugar, supondremos el grado de P(x) es menor que el de Q(x), si no fuera así se dividiría. ( ) ( ) ( ) ( ) ( ) D o n d e C ( x ) e s e l c o c i e n t e y R ( x ) e l r e s t o d e l a d i visión polinómi c a. Una vez que sabemos que el denominador tiene mayor grado que numerador, descomponemos el denominador en factores. Dependiendo de las raíces del denominador nos encontramos con los siguientes casos: Caso 1: El denominador tiene sólo raíces reales simples: Q(x)=(x-a) (x-) (x-c) La fracción ( ) puede escribirse así: ( ), donde A, B y ( ) ( ) ( ) ( ) ( ) C son números que se obtienen efectuando la suma e identificando coeficientes o dando valores a x. Obteniendo, así, una suma de integrales de las fracciones simples que serán inmediatas o casi inmediatas Ejemplo: S e e f e c t ú a l a s u m a : C o m o l a s d o s f r a c c i o n e s t i e n e n e l m i s m o d e n o m i n a d o r, l o s n u m e r a d o r e s h a n d e s e r i g u a l e s : C a l c u l a m o s l o s c o e f i c i e n t e s d e A, B y C d a n d o a l a x l o s v a l o r e s q u e a n u l a n a l d e n o m i n a d o r. S e c a l c u l a n l a s i n t e g r a l e s d e l a s f r a c c i o n e s s i m p l e s :

22 O t r a f o r m a d e h a l l a r l o s c o e f i c i e n t e s e s r e a l i z a n d o l a s o p e r a c i o n e s e i g u a l a n d o c o e f i c i e n t e s. I g u a l a m o s c o e f i c i e n t e s : Caso 2: El denominador tiene sólo raíces reales múltiples: Si Qx)=(x-a) n, la fracción ( ) puede escribirse así: EjemploI ( ) ( ) ( ) ( ) ( ) ( ) P a r a c a l c u l a r A, B y C, s u s t i t u i m o s x p o r 3 : x=- 3, C = 3 8 D e r i v a m o s y v o l v e m o s a s u s t i t u i r p o r m e n o s 3 : 6x- 2 = 2 A ( x + 3 ) + B X = - 3, B = - 20 V o l v e m o s a d e r i v a r : 6 = 2 A, A=3 T a m b i é n p o d e m o s h a l l a r l o s c o e f i c i e n t e s r e a l i z a n d o l a s o p e r a c i o n e s e i g u a l a n d o c o e f i c i e n t e s : Ejemplo II P a r a c a l c u l a r l o s v a l o r e s d e A, B y C, d a m o s a x l o s v a l o r e s q u e a n u l a n a l d e n o m i n a d o r y o t r o m á s. x = - 1, 2 = - 4 B, b = - 1 / 2 x = 3, 1 0 = 1 6 C, C = 5 / 8 x = 0, 1 = - 3ª- 3 B + C, A = 3 / 8

23 Caso 3: El denominador tiene sólo raíces complejas simples : Si Q(x)=ax 2 +bx+c sin raíces reales la fracción ( ) ( ) ( ) ( ) puede escribirse así: Nota: Esta integral s e descompone en una de tipo log arítmico y otra de tipo arco-tangente. E j e m p l o I I g u a l a m o s l o s c o e f i c i e n t e s d e l o s d o s m i e m b r o s. L a p r i m e r a i n t e g r a l e s d e t i p o l o g a r í t m i c o y l a s e g u n d a l a t e n e m o s q u e d e s c o m p o n e r e n d o s, q u e s e r á n d e t i p o l o g a r í t m i c o y t i p o a r c o - t a n g e n t e. M u l t i p l i c a m o s p o r 2 e n l a s e g u n d a i n t e g r a l p a r a i r p r e p a r á n d o l a. E l 2 d e l n u m e r a d o r d e l a 2 ª i n t e g r a l l o t r a n s f o r m a m o s e n : D e s c o m p o n e m o s l a 2ªi n t e g r a l e n o t r a s d o s. L a s d o s p r i m e r a s i n t e g r a l e s s o n d e t i p o l o g a r í t m i c o. La i n t e g r a l q u e n o s q u e d a e s d e t i p o a r c o - t a n g e n t e. V a m o s a t r a n s f o r m a r e l d e n o m i n a d o r d e m o d o q u e p o d a m o s a p l i c a r l a f ó r m u l a d e l a i n t e g r a l d e l a r c o - t a n g e n t e. T r a n s f o r m a m o s e l d e n o m i n a d o r e n u n b i n o m i o a l c u a d r a d o : M u l t i p l i c a m o s n u m e r a d o r y d e n o m i n a d o r p o r 4 / 3, p a r a o b t e n e r u n o e n e l d e n o m i n a d o r. D e n t r o d e l b i n o m i o a l c u a d r a d o m u l t i p l i c a r e m o s p o r s u r a í z c u a d r a d a d e 4 / 3.

24 E j e m p l o I I S u m a m o s y r e s t a m o s 3 e n e l n u m e r a d o r, d e s c o m p o n e m o s e n d o s f r a c c i o n e s y e n l a p r i m e r a s a c a m o s f a c t o r c o m ú n 3. M u l t i p l i c a m o s y d i v i d i m o s e n l a p r i m e r a f r a c c i ó n p o r 2. V a m o s a t r a n s f o r m a r e l d e n o m i n a d o r d e m o d o q u e p o d a m o s a p l i c a r l a f ó r m u l a d e l a i n t e g r a l d e l a r c o - t a n g e n t e. A s í, t r a n s f o r m a m o s e l d e n o m i n a d o r e n u n b i n o m i o a l c u a d r a d o. R e a l i z a m o s u n c a m b i o d e v a r i a b l e : Ejercicios integrales racionales

INTEGRACIÓN INDEFINIDA

INTEGRACIÓN INDEFINIDA 1. PRIMITIVA DE UNA FUNCIÓN Definición: Sean F(x) y f(x) dos funciones reales definidas en un mismo dominio D. Se dice, entonces, que F(x) es una primitiva de f(x) si se cumple quef'(x) = f(x), x. Dicho

Más detalles

Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función.

Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función. Integral indefinida 1. Integración Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones F(x) que al ser derivadas conducen a f(x). Se dice, entonces,

Más detalles

Métodos de integración

Métodos de integración Integración por partes Métodos de integración De la derivada del producto de dos funciones obtenemos la fórmula de la derivación por partes. (uu. vv) = uu vv + uu vv que se puede escribir dd(uu. vv) =

Más detalles

Cálculo de Derivadas

Cálculo de Derivadas Cálculo de Derivadas Sean a, b y k constantes (números reales) y consideremos a: u y v como funciones. Derivada de una constante Derivada de x Derivada de la función lineal Derivada de una potencia Derivada

Más detalles

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante.

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante. Unidad II Integral indefinida y métodos de integración. 2.1 Definición de integral indefinida. Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones

Más detalles

UNIDAD III Artificios de Integración

UNIDAD III Artificios de Integración UNIDAD III Artificios de Integración 8 UNIDAD III ARTIFICIOS DE INTEGRACIÓN La integración depende, en última instancia, del empleo adecuado de las formas básicas de integración. Cuando en un caso no sucede

Más detalles

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a) Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:

Más detalles

3.2 DIVIDIR UN POLINOMIO POR x a. REGLA DE RUFFINI

3.2 DIVIDIR UN POLINOMIO POR x a. REGLA DE RUFFINI TEMA 3 ÁLGEBRA MATEMÁTICAS CCSSI 1º BACH 1 TEMA 3 ÁLGEBRA 3.1 DIVISIÓN DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio por otro monomio de grado inferior es un nuevo monomio cuyo grado es

Más detalles

RESUMEN DE INTEGRALES. Concepto de Función primitiva: La función F es una función primitiva de f, si la derivada de F es f, es decir: = x 2

RESUMEN DE INTEGRALES. Concepto de Función primitiva: La función F es una función primitiva de f, si la derivada de F es f, es decir: = x 2 RESUMEN DE INTEGRALES Concepto de Función primitiva: La función F es una función primitiva de f, si la derivada de F es f, es decir: F(x) es una función primitiva de f(x) F (x)=f(x) Ejemplo: f(x)=x 2 F(x)=

Más detalles

TEMA: FUNCIONES REALES DE VARIABLE REAL. TIPOS DE FUNCIONES.

TEMA: FUNCIONES REALES DE VARIABLE REAL. TIPOS DE FUNCIONES. TEMA: FUNCIONES REALES DE VARIABLE REAL. TIPOS DE FUNCIONES. Definición: Una función es una relación entre dos variables x e y de manera que a cada valor de la variable x le corresponde un único valor

Más detalles

Ecuaciones Diferenciales, Fracciones Parciales y Fórmulas de Heaviside

Ecuaciones Diferenciales, Fracciones Parciales y Fórmulas de Heaviside Ecuaciones Diferenciales, Fracciones Parciales y Fórmulas de Heaviside Dr. Julián Gpe. Tapia Aguilar E S F M Instituto Politécnico Nacional julianpe@yahoo.com.mx Agosto de 2008 Índice 1. Introducción 1

Más detalles

Tema 3. Cálculo de primitivas Conceptos generales.

Tema 3. Cálculo de primitivas Conceptos generales. Tema Cálculo de primitivas... Conceptos generales. Una primitiva de una función es otra función que la tiene como derivada y la operación que permite obtener esta primitiva a partir de la función original

Más detalles

3. POLINOMIOS, ECUACIONES E INECUACIONES

3. POLINOMIOS, ECUACIONES E INECUACIONES 3. POLINOMIOS, ECUACIONES E INECUACIONES 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.1.- POLINOMIOS FACTORIZACIÓN. REGLA DE RUFFINI Un polinomio con indeterminada x es una expresión de la forma: Los números

Más detalles

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,

Más detalles

UNIVERSIDAD DE SEVILLA CALCULO DE PRIMITIVAS. PRIMER CURSO

UNIVERSIDAD DE SEVILLA CALCULO DE PRIMITIVAS. PRIMER CURSO UNIVERSIDD DE SEVILL DEPRTMENTO DE ECONOMÍ PLICD I CLCULO DE PRIMITIVS. PRIMER CURSO CLCULO DE PRIMITIVS Conceptos generales. Definición. Dada f : D IR IR decimos que F : D IR IR es una primitiva de f

Más detalles

1. PRIMITIVA DE UNA FUNCIÓN 2. PROPIEDADES DE LA INTEGRAL INDEFINIDA 3. INTEGRALES INMEDIATAS Ejemplos de integrales inmediatas tipo potencia

1. PRIMITIVA DE UNA FUNCIÓN 2. PROPIEDADES DE LA INTEGRAL INDEFINIDA 3. INTEGRALES INMEDIATAS Ejemplos de integrales inmediatas tipo potencia Cálculo de primitivas MATEMÁTICAS II. PRIMITIVA DE UNA FUNCIÓN. PROPIEDADES DE LA INTEGRAL INDEFINIDA. INTEGRALES INMEDIATAS.. Ejemplos de integrales inmediatas tipo potencia.. Ejemplos de integrales inmediatas

Más detalles

CÁLCULO DE PRIMITIVAS

CÁLCULO DE PRIMITIVAS 2 CÁLCULO DE PRIMITIVAS REFLEXIONA Y RESUELVE Concepto de primitiva NÚMEROS Y POTENCIAS SENCILLAS a) b) 2 c) 2 a) 2x b) x c) 3x 3 a) 7x b) c) x 4 a) 3x2 b) x2 c) 2x2 5 a) 6x 5 b) x5 c) 3x5 x 3 2 2 POTENCIAS

Más detalles

Tema 1. Cálculo diferencial

Tema 1. Cálculo diferencial Tema 1. Cálculo diferencial 1 / 57 Una función es una herramienta mediante la que expresamos la relación entre una causa (variable independiente) y un efecto (variable dependiente). Las funciones nos permiten

Más detalles

Tema 3. Cálculo de primitivas Conceptos generales.

Tema 3. Cálculo de primitivas Conceptos generales. Tema Cálculo de primitivas... Conceptos generales. Una primitiva de una función es otra función que la tiene como derivada y la operación que permite obtener esta primitiva a partir de la función original

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

ene 5 12:59 Está basado en la regla de la cadena. Si F(x) y g(x) son funciones derivables, la regla de la cadena nos dice que:

ene 5 12:59 Está basado en la regla de la cadena. Si F(x) y g(x) son funciones derivables, la regla de la cadena nos dice que: Métodos de integración: 1) Método de descomposición Para calcular una integral indefinida, usamos las propiedades de las integrales y las igualdades que conozcamos para descomponer la integral en otras

Más detalles

4 Ecuaciones diferenciales de orden superior

4 Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4. educción de orden allar un método para encontrar soluciones que formen un conjunto fundamental de la ED será nuestro trabajo en las siguientes secciones.

Más detalles

operaciones inversas Para unificar ambas operaciones, se define la potencia de exponente fraccionario:

operaciones inversas Para unificar ambas operaciones, se define la potencia de exponente fraccionario: Potencias y raíces Potencias y raíces Potencia operaciones inversas Raíz exponente índice 7 = 7 7 7 = 4 4 = 7 base base Para unificar ambas operaciones, se define la potencia de exponente fraccionario:

Más detalles

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad y Laterales Curso Propedéutico de Cálculo Sesión 2: y Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico y Esquema Laterales 1 Laterales 2 y Esquema Laterales

Más detalles

TIPOS DE FUNCIONES. Ing. Caribay Godoy Rangel

TIPOS DE FUNCIONES. Ing. Caribay Godoy Rangel TIPOS DE FUNCIONES Repasar los conceptos de dominio, rango, gráfica, elementos esenciales y transformaciones de las funciones: lineal, cuadrática, racional, trigonométrica, exponencial y logarítmica. FUNCIONES

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Una expresión algebraica es una combinación de letras y números relacionadas por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las

Más detalles

Matemáticas Febrero 2013 Modelo A

Matemáticas Febrero 2013 Modelo A Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las

Más detalles

Polinomios. 1.- Funciones cuadráticas

Polinomios. 1.- Funciones cuadráticas Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial

Más detalles

1. Algunas primitivas inmediatas (o casi inmediatas).

1. Algunas primitivas inmediatas (o casi inmediatas). Cálculo I. o Matemáticas. Curso 00/0. Cálculo de Primitivas. Algunas primitivas inmediatas (o casi inmediatas). (5x 6) = 5 (5x 6) 5 = 5 (5x 6) + C. Nota: Si f(x) = 5x 6 su derivada es 5. En la primera

Más detalles

Tema 9: Cálculo integral

Tema 9: Cálculo integral Tema 9: Cálculo integral. Introducción El matemático inglés Isaac Barrow (60-677) fue el precursor del cálculo de integrales definidas, enunciando la regla que lleva su nombre y que conecta la integral

Más detalles

Tema 10: Cálculo integral

Tema 10: Cálculo integral Tema 10: Cálculo integral 1. Introducción El matemático inglés Isaac Barrow (1630-1677) fue el precursor del cálculo de integrales definidas, enunciando la regla que lleva su nombre y que conecta la integral

Más detalles

Tema 10: Integral indenida

Tema 10: Integral indenida Tema 0: Integral indenida May 9, 07 Primitiva de una función Como hemos estudiado, la derivación nos permite encontrar la derivada de una función dada. Por ejemplo, si tenemos la función F () =, su derivada

Más detalles

Guía de Ejercicios: Métodos de Integración

Guía de Ejercicios: Métodos de Integración Guía de Ejercicios: Métodos de Integración Área Matemática Resultados de aprendizaje Resolver integrales usando diferentes métodos de integración Contenidos 1. Método de sustitución simple 2. Método de

Más detalles

La antiderivada Una forma de ver la operación inversa de la derivación, clásicamente, se realiza de la siguiente forma:

La antiderivada Una forma de ver la operación inversa de la derivación, clásicamente, se realiza de la siguiente forma: La antiderivada Una forma de ver la operación inversa de la derivación, clásicamente, se realiza de la siguiente forma: Encontrar la función f(x) de la cual derivada es conocida. Dada la diferencial de

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones CONCEPTOS ECUACIONES Una ecuación es una igualdad entre dos epresiones en las que aparece una o varias incógnitas. En

Más detalles

Tema 10: Cálculo integral

Tema 10: Cálculo integral Tema 0: Cálculo integral. Introducción El matemático inglés Isaac Barrow (60-677) fue el precursor del cálculo de integrales definidas, enunciando la regla que lleva su nombre y que conecta la integral

Más detalles

Tema 10: Cálculo Integral

Tema 10: Cálculo Integral . Introducción Tema 0: Cálculo Integral El matemático inglés Isaac Barrow (60-677) fue el precursor del cálculo de integrales definidas, enunciando la regla que lleva su nombre y que conecta la integral

Más detalles

, se denomina primitiva de esta función a otra F(x)

, se denomina primitiva de esta función a otra F(x) 1. CONCEPTO DE INTEGRAL INDEFINIDA Definición: Dada una función f (x), se denomina primitiva de esta función a otra F(x) tal que F '( x) = f ( x) Esta definición indica que el cálculo de primitivas constituye

Más detalles

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales Ámbito Científico y Tecnológico. Repaso de números enteros y racionales 1 Prioridad de las operaciones Si en una operación aparecen sumas, o restas y multiplicaciones o divisiones, el resultado varía según

Más detalles

Integrales indefinidas. Teoremas 2º Bachillerato. Editorial SM

Integrales indefinidas. Teoremas 2º Bachillerato. Editorial SM Integrales indefinidas. Teoremas º Bachillerato Editorial SM Esquema Primitiva de una función La función G(x) es una primitiva de la función f(x) en un intervalo I si G'(x) = f(x) para todo x del intervalo

Más detalles

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714)

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 1 (FUNCIONES) Profesora: Yulimar Matute Octubre 2011 Función Constante: Se

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS 5 TRAYECTORIAS DE UN HAZ DE CURVAS: Se dice que una familia de curvas T(,, k) 0 (k una constante arbitraria)

Más detalles

5.1. Primitiva de una función. Reglas básicas

5.1. Primitiva de una función. Reglas básicas Tema 5 Integración Indefinida 5.1. Primitiva de una función. Reglas básicas En este tema estudiaremos lo que podríamos llamar el problema inverso de la derivación, es decir, dada una función f hallar otra

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.4: La derivada y sus propiedades básicas. La Regla de la cadena. El concepto de derivada aparece en muchas situaciones en la ciencias: en matemáticas

Más detalles

Anexo C. Introducción a las series de potencias. Series de potencias

Anexo C. Introducción a las series de potencias. Series de potencias Anexo C Introducción a las series de potencias Este apéndice tiene como objetivo repasar los conceptos relativos a las series de potencias y al desarrollo de una función ne serie de potencias en torno

Más detalles

Contenidos de los preliminares

Contenidos de los preliminares Preliminares del tema Contenidos de los preliminares Propiedades de los logaritmos Un par de primitivas elementales Algunas ideas sobre la función arcotangente Funciones hiperbólicas Descomposición en

Más detalles

Llamamos a F una antiderivada de f en el intervalo I si D x F(x) = f (x) en I; esto es, si F (x) = f (x) para toda x en I.

Llamamos a F una antiderivada de f en el intervalo I si D x F(x) = f (x) en I; esto es, si F (x) = f (x) para toda x en I. Sección 3.8 Antiderivadas 197 C Después de derivar y hacer el resultado igual a cero, muchos problemas prácticos de máximos y mínimos conducen a una ecuación que no puede resolverse de manera exacta. Para

Más detalles

Recordar las principales operaciones con expresiones algebraicas.

Recordar las principales operaciones con expresiones algebraicas. Capítulo 1 Álgebra Objetivos Recordar las principales operaciones con expresiones algebraicas. 1.1. Números Los números naturales se denotarán por N y están constituidos por 0, 1, 2, 3... Con estos números

Más detalles

FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN

FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN 1 FUNCIONES FUNCIÓN REAL DE VARIABLE REAL Una función real de variable real es una relación que asocia a cada número real, (variable independiente),

Más detalles

Concepto de función. Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B

Concepto de función. Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función

Más detalles

Proposición Si F es una primitiva de f en I, entonces todas las primitivas de f en I son de la forma F (x) + C con C R

Proposición Si F es una primitiva de f en I, entonces todas las primitivas de f en I son de la forma F (x) + C con C R Tema 8 Cálculo de Primitivas. 8.. Definición y propiedades Definición 8... Sea f : I R R. Una primitiva de f en I es una función F : I R R derivable en I y tal que F (x) = f(x) para todo x I. Proposición

Más detalles

EJERCICIOS RESUELTOS DE ECUACIONES

EJERCICIOS RESUELTOS DE ECUACIONES Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones EJERCICIOS RESUELTOS DE ECUACIONES 1. Determinar si cada una de las siguientes igualdades es una ecuación o una identidad:

Más detalles

1. Función primitiva e integral indefinida

1. Función primitiva e integral indefinida Entrenamiento Matemático Sesión 0 (4 -Octubre-00) Cálculo elemental de Primitivas GRUPO:. Función primitiva e integral indefinida Dada una función f: R-->R, se dice que una función derivable F es primitiva

Más detalles

Complejos, C. Reales, R. Fraccionarios

Complejos, C. Reales, R. Fraccionarios NÚMEROS COMPLEJOS Como ya sabemos, conocemos distintos cuerpos numéricos en matemáticas como por ejemplo el cuerpo de los números racionales, irracionales, enteros, negativos,... Sin embargo, para completar

Más detalles

3. Resolver triángulos rectángulos utilizando las definiciones de las razones trigonométricas.

3. Resolver triángulos rectángulos utilizando las definiciones de las razones trigonométricas. Contenidos mínimos MI. 1. Contenidos. Bloque I: Aritmética y Álgebra. 1. Conocer las clases de números, los conjuntos numéricos: naturales, enteros, racionales, reales y complejos y las propiedades que

Más detalles

Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra.

Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Clasificar distintos tipos de números: naturales, enteros, racionales y reales. 2. Operar con números reales y aplicar las propiedades

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio opción A, modelo 3 Septiembre 03 específico x Sea f la función definida por f(x) = para x > 0, x (donde ln denota el logaritmo neperiano) ln(x) [ 5 puntos] Estudia y determina las asíntotas

Más detalles

Integrales indenidas

Integrales indenidas Integrales indenidas Adriana G. Duarte 7 de agosto de 04 Resumen Antiderivación. Integrales indenidas, propiedades. Técnicas de integración: inmediatas,por sustitución, por partes. Ejemplos y ejercicios.

Más detalles

Límite de una función

Límite de una función Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es decir el valor al que tienden

Más detalles

RELACIÓN ENTRE LA GRÁFICA DE UNA FUNCIÓN f y LA DE SU INVERSA f -1

RELACIÓN ENTRE LA GRÁFICA DE UNA FUNCIÓN f y LA DE SU INVERSA f -1 RELACIÓN ENTRE LA GRÁFICA DE UNA FUNCIÓN f y LA DE SU INVERSA f -1 Sabemos que la función inversa 1 Si f a b, entonces f b a 1 f (o recíproca) de f cumple la siguiente condición: Por lo tanto: 1 f f 1

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Definición de monomio. Expresión algebraica formada por el producto de un número finito de constantes y variables con exponente natural. Al producto de las constantes

Más detalles

CÁLCULO DE PRIMITIVAS

CÁLCULO DE PRIMITIVAS CÁLCULO DE PRIMITIVAS David Ariza-Ruiz Departamento de Análisis Matemático Seminario I 7 de noviembre de 202 (Universidad de Sevilla) David Ariza Ruiz 7 de noviembre de 202 / 42 Definición y propiedades

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 8. Introducción a la integración INTEGRAL INDEFINIDA

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 8. Introducción a la integración INTEGRAL INDEFINIDA INTEGRAL INDEFINIDA CONCEPTOS BÁSICOS: PRIMITIVA E INTEGRAL INDEFINIDA El cálculo de integrales indefinidas de una función es un proceso inverso del cálculo de derivadas ya que se trata de encontrar una

Más detalles

INTEGRACIÓN INDEFINIDA, MÉTODOS DE INTEGRACIÓN

INTEGRACIÓN INDEFINIDA, MÉTODOS DE INTEGRACIÓN INTEGRACIÓN INDEFINIDA, MÉTODOS DE INTEGRACIÓN Función primitiva: Una función F(x) se dice que es primitiva de otra función f(x) cuando F'(x) = f(x), (si la derivada de F es ƒ). Por ejemplo F(x) = x es

Más detalles

TEMA 1: Funciones elementales

TEMA 1: Funciones elementales MATEMATICAS TEMA 1 CURSO 014/15 TEMA 1: Funciones elementales 8.1 CONCEPTO DE FUNCIÓN: Una función es una ley que asigna a cada elemento de un conjunto un único elemento de otro. Con esto una función hace

Más detalles

1. Conocimientos previos. 1 Funciones exponenciales y logarítmicas.

1. Conocimientos previos. 1 Funciones exponenciales y logarítmicas. . Conocimientos previos. Funciones exponenciales y logarítmicas.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas.

Más detalles

Cálculo de Primitivas

Cálculo de Primitivas . Primitivas de una función Sea I un intervalo y f : I IR. Se dice que f tiene tiene una primitiva en I si existe una función G : I IR, continua en I, derivable en el interior de I y verificando que G

Más detalles

RESUMEN DE ANÁLISIS MATEMÁTICAS II

RESUMEN DE ANÁLISIS MATEMÁTICAS II RESUMEN DE ANÁLISIS MATEMÁTICAS II 1. DOMINIO DE DEFINICIÓN Y CONTINUIDAD 1.1. FUNCIONES ELEMENTALES (No tienen puntos angulosos) Tipo de función f (x) Dom (f) Continuidad Polinómicas P(x) R Racional P(x)/Q(x)

Más detalles

MODULO DE LOGARITMO. 1 log 2 4 16. log N x b N N se llama antilogaritmo, b > 0 y b 1. Definición de Logaritmo. Liceo n 1 Javiera Carrera 2011

MODULO DE LOGARITMO. 1 log 2 4 16. log N x b N N se llama antilogaritmo, b > 0 y b 1. Definición de Logaritmo. Liceo n 1 Javiera Carrera 2011 MODULO DE LOGARITMO Nombre:.. Curso : Medio Los aritmos están creados para facilitar los cálculos numéricos. Por aritmo podemos convertir los productos en sumas, los cocientes en restas, las potencias

Más detalles

Métodos de solución de ED de primer orden

Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de E de primer orden. Ecuaciones diferenciales de variables separables El primer tipo de E que presentamos es el de variables separables, porque con frecuencia se intenta separar

Más detalles

ECUACIONES E INECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES E INECUACIONES DE PRIMER Y SEGUNDO GRADO ECUACIONES ECUACIONES E INECUACIONES DE PRIMER Y SEGUNDO GRADO 1.- IGUALDADES Y ECUACIONES Las expresiones compuestas de dos miembros enlazados por el signo = se llaman igualdades, y ponen de manifiesto

Más detalles

Ecuaciones diferenciales lineales con coeficientes constantes

Ecuaciones diferenciales lineales con coeficientes constantes Tema 4 Ecuaciones diferenciales lineales con coeficientes constantes Una ecuación diferencial lineal de orden n tiene la forma a 0 (x)y (n) + a 1 (x)y (n 1) + + a n 1 (x)y + a n (x)y = b(x) (41) Vamos

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

Matemáticas Empresariales I. Cálculo de Primitivas

Matemáticas Empresariales I. Cálculo de Primitivas Matemáticas Empresariales I Lección 7 Cálculo de Primitivas Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales I 1 / 45 Concepto de Integral Indefinida Definición

Más detalles

x= 1± 1 24 = 1±5 = 6 0 = 6 18 18 = 1 3 x= 7± 49 60 = 7± 11 10

x= 1± 1 24 = 1±5 = 6 0 = 6 18 18 = 1 3 x= 7± 49 60 = 7± 11 10 1.- Ecuaciones de segundo grado. Resolver las siguientes ecuaciones. a) 5x 2 45 = 0, despejando x 2 = 9, y despejando x (3 y 3 son los únicos números que al elevarlo al cuadrado dan 9) obtengo que x1 =

Más detalles

5.1 Primitiva de una función. Reglas básicas

5.1 Primitiva de una función. Reglas básicas Tema 5 Integración Indefinida 5.1 Primitiva de una función. Reglas básicas En este tema estudiaremos lo que podríamos llamar el problema inverso de la derivación, es decir, dada una función f hallar otra

Más detalles

Tipos de funciones. Clasificación de funciones. Funciones algebraicas

Tipos de funciones. Clasificación de funciones. Funciones algebraicas Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,

Más detalles

INTEGRALES INDEFINIDAS

INTEGRALES INDEFINIDAS INTEGRALES INDEFINIDAS Índice: 1. Primitiva de una función--------------------------------------------------------------------------- 2 2. Interpretación geométrica. Propiedades de la integral indefinida--------------------------

Más detalles

INTEGRACIÓN POR PARTES Y POR DESCOMPOSICIÓN EN FRACCIONES SIMPLES

INTEGRACIÓN POR PARTES Y POR DESCOMPOSICIÓN EN FRACCIONES SIMPLES INTEGRACIÓN POR PARTES Y POR DESCOMPOSICIÓN EN FRACCIONES SIMPLES INTEGRACIÓN POR PARTES Este método permite resolver un gran número de integrales no inmediatas. 1. Sean u y v dos funciones dependientes

Más detalles

Ecuaciones. 3º de ESO

Ecuaciones. 3º de ESO Ecuaciones 3º de ESO El signo igual El signo igual se utiliza en: Igualdades numéricas: 2 + 3 = 5 Identidades algebraicas: (x + 4) x = x 2 + 4 4x Fórmulas: El área, A,, de un círculo de radio r es: A =

Más detalles

SESIÓN 13 DERIVACIÓN DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS (2ª PARTE)

SESIÓN 13 DERIVACIÓN DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS (2ª PARTE) SESIÓN 13 DERIVACIÓN DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS (2ª PARTE) I. CONTENIDOS: 1. Ejercicios resueltos aplicando exponentes y logaritmos (2ª. Parte) 2. Derivación de funciones exponenciales y

Más detalles

PRODUCTOS NOTABLES. Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son:

PRODUCTOS NOTABLES. Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son: PRODUCTOS NOTABLES Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son: Cuadrado de la suma de dos cantidades Cuadrado de la diferencia de dos cantidades

Más detalles

du = ln u + NOTA: En las integrales 11, 12, 17 y 18 α significa la raíz cuadrada positiva de α 2. Escribimos

du = ln u + NOTA: En las integrales 11, 12, 17 y 18 α significa la raíz cuadrada positiva de α 2. Escribimos CÁLCULO I CÁLCULO DE PRIMITIVAS: Integrales Inmediatas 3 5 7 9 3 5 7 u m du = um+ + C, m m + du = ln u + C u u du = u + C 4 a u du = au + C, a > 0, a ln a sen u du = cos u + C 6 cos u du = sen u + C cos

Más detalles

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77 MATE 3031 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 77 P. Vásquez (UPRM) Conferencia 2 / 77 Qué es una función? MATE 3171 En esta parte se recordará la idea de función y su definición formal.

Más detalles

1. Algunas primitivas inmediatas (o casi inmediatas)

1. Algunas primitivas inmediatas (o casi inmediatas) Cálculo o del grado de Matemáticas y doble grado MAT-IngINF. Curso /. Apuntes sobre integración y cálculo de primitivas. Algunas primitivas inmediatas (o casi inmediatas) (5 6) d 5 (5 6) 5 d 5 (5 6) Nota:

Más detalles

Gráficamente: una función es continua en un punto si en dicho punto su gráfica no se rompe. Función continua en x = 0 Función no continua en x = 0

Gráficamente: una función es continua en un punto si en dicho punto su gráfica no se rompe. Función continua en x = 0 Función no continua en x = 0 Funciones continuas Funciones continuas Continuidad de una función Si x 0 es un número, la función f(x) es continua en este punto si el límite de la función en ese punto coincide con el valor de la función

Más detalles

N = {1, 2, 3, 4, 5,...}

N = {1, 2, 3, 4, 5,...} Números y Funciones.. Números Los principales tipos de números son:. Los números naturales son aquellos que sirven para contar. N = {,,, 4, 5,...}. Los números enteros incluyen a los naturales y a sus

Más detalles

Funciones Exponenciales y Logarítmicas

Funciones Exponenciales y Logarítmicas Funciones Exponenciales y Logarítmicas 0.1 Funciones exponenciales Comencemos por analizar la función f definida por f(x) = x. Enumerando coordenadas de varios puntos racionales, esto es de la forma m,

Más detalles

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2 UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD 1.- Límites en el Infinito: lim x + f(x) = L Se dice que el límite de f (x) cuando x tiende a + es L ϵ Ɽ, si podemos hacer que f(x) se aproxime a L tanto como

Más detalles

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1 Cálculo I. o Matemáticas. Curso /. Cálculo de Primitivas Repaso (5 6) d = 5 (5 6) 5 d = 5 (5 6) + C. Nota: Si f() = 5 6 su derivada es 5. En la primera igualdad multiplicamos y dividimos por 5. Así tenemos

Más detalles

Repaso de Álgebra. Los subconjuntos de los reales de relevancia para nuestra discusión serán denotados según indicamos a continuación:

Repaso de Álgebra. Los subconjuntos de los reales de relevancia para nuestra discusión serán denotados según indicamos a continuación: Repaso de Álgebra Preliminares: En esta sección trabajaremos con los siguientes temas: I Los números reales: racionales e irracionales II Valor absoluto: nociones básicas III Expresiones algebraicas: evaluación,

Más detalles

Ecuaciones de segundo grado

Ecuaciones de segundo grado Ecuaciones de segundo grado 11 de noviembre 009 Ecuaciones de segundo grado con una incógnita método de solución, formula general e incompletas Algebra Ecuaciones de segundo grado con una incógnita Las

Más detalles

ANÁLISIS MATEMÁTICO IES A SANGRIÑA 2016/2017

ANÁLISIS MATEMÁTICO IES A SANGRIÑA 2016/2017 ANÁLISIS MATEMÁTICO 4. INTEGRACIÓN INDEFINIDA UN POCO DE HISTORIA El símbolo de integración fue introducido por el matemático alemán Gottfried Leibniz en 1675, basándose en la palabra latina summa, suma,

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidad 1: Números reales. 1 Unidad 1: Números reales. 1.- Números racionales e irracionales Números racionales: Son aquellos que se pueden escribir como una fracción. 1. Números enteros 2. Números decimales

Más detalles

LA INTEGRAL COMO ANTIDERIVADA

LA INTEGRAL COMO ANTIDERIVADA UNIDAD II La integral como antiderivada LA INTEGRAL COMO ANTIDERIVADA La integración tiene dos interpretaciones distintas ) como procedimiento inverso de la diferenciación, y ) como método para determinar

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

Para saber si tiene asíntotas horizontales hacemos los límites en los infinitos.

Para saber si tiene asíntotas horizontales hacemos los límites en los infinitos. 1.- Considerad las funciones: f(x) = x + 2 2x x + 2 g(x) = 2 x + 2 a) Determinar el dominio de la función f(x) y calcular sus asíntotas (horizontales, verticales y oblicuas) en caso de que existan. b)

Más detalles

Sistemas no lineales

Sistemas no lineales Tema 4 Sistemas no lineales Dpto. Matemática Aplicada I E.T.S. de Arquitectura Universidad de Sevilla Curso 2005 2006 Tema 4. Sistemas no lineales 1. Sistemas no lineales de ecuaciones diferenciales. Integrales

Más detalles