El problema de la recta tangente. 96 CAPÍTULO 2 Derivación

Tamaño: px
Comenzar la demostración a partir de la página:

Download "El problema de la recta tangente. 96 CAPÍTULO 2 Derivación"

Transcripción

1 96 CAPÍTULO Derivación. La derivada el problema de la recta tangente Hallar la pendiente de la recta tangente a una curva en un punto. Usar la definición de ite para calcular la derivada de una función. Comprobar la relación entre derivabilidad continuidad. Mar Evans Picture Librar ISAAC NEWTON (64-77 Además de sus trabajos relativos al Cálculo, Newton aportó contribuciones a la Física tan revolucionarias como la Le de la Gravitación Universal sus tres lees del movimiento. P El problema de la recta tangente El cálculo se desarrolló a la sombra de cuatro problemas en los que estaban trabajando los matemáticos europeos en el siglo XVII.. El problema de la recta tangente (sección. esta sección. El problema de la velocidad la aceleración (secciones... El problema de los máimos mínimos (sección. 4. El problema del área (secciones. 4. Cada uno de ellos involucra la noción de ite podría servir como introducción al cálculo. En la sección. se hizo una breve introducción al problema de la recta tangente. Aunque Pierre de Fermat (60-665, René Descartes ( , Christian Hugens ( e Isaac Barrow ( habían propuesto soluciones parciales, la primera solución general se suele atribuir a Isaac Newton (64-77 a Gottfried Leibniz ( El trabajo de Newton respecto a este problema procedía de su interés por la refracción de la luz la óptica. Qué quiere decir que una recta es tangente a una curva en un punto? En una circunferencia, la recta tangente en un punto P es la recta perpendicular al radio que pasa por P, como se muestra en la figura.. Sin embargo, en una curva general el problema se complica. Por ejemplo, cómo se podrían definir las rectas tangentes que se observan en la figura.? Afirmando que una recta es tangente a una curva en un punto P si toca a la curva en P sin atravesarla. Tal definición sería correcta para la primera curva de la figura., pero no para la segunda. También se podría decir que una recta es tangente a una curva si la toca o hace intersección en ella eactamente en el punto P, definición que serviría para una circunferencia pero no para curvas más generales, como sugiere la tercera curva de la figura.. Recta tangente a una circunferencia Figura. P f( P f( P = f( Recta tangente a una curva en un punto Figura. E X P L O R A C I Ó N Identificación de una recta tangente Utilizar una herramienta de graficación para representar la función ƒ( 4 5. En la misma pantalla, dibujar la gráfica 5, 5 5. Cuál de estas rectas, si es que ha alguna, parece tangente a la gráfica de ƒ en el punto (0, 5? Eplicar el razonamiento.

2 SECCIÓN. La derivada el problema de la recta tangente 97 (c, f(c f(c f(c = Recta secante que pasa por (c, ƒ(c (c, ƒ(c Figura. En esencia, el problema de encontrar la recta tangente en un punto P se reduce al de calcular su pendiente en ese punto. Se puede aproimar la pendiente de la recta tangente usando la recta secante* que pasa por P por otro punto cercano de la curva, como se muestra en la figura.. Si (c, ƒ(c es el punto de tangencia (c, ƒ(c es el otro punto de la gráfica de ƒ, la pendiente de la recta secante que pasa por ambos puntos se encuentra sustituendo en la fórmula m fc f c m sec c c m sec fc f c. Cambio en. Cambio en Pendiente de la recta secante. El miembro de la derecha en esta ecuación es un cociente de incremento o de diferencias. El denominador es el cambio (o incremento en el numerador ƒ(c ƒ(c es el cambio (o incremento en. La belleza de este procedimiento radica en que se pueden obtener más aproimaciones más precisas de la pendiente de la recta tangente tomando puntos de la gráfica cada vez más próimos al punto P de tangencia, como se muestra en la figura.4. EL PROBLEMA DE LA RECTA TANGENTE En 67 el matemático René Descartes afirmó lo siguiente respecto al problema de la recta tangente: Y no tengo inconveniente en afirmar que éste no es sólo el problema de Geometría más útil general que conozco, sino incluso el que siempre desearía conocer. 0 Tangent Recta tangente line 0 Recta Tangent tangente line Aproimaciones a la recta tangente Figura.4 DEFINICIÓN DE LA RECTA TANGENTE CON PENDIENTE m Si ƒ está definida en un intervalo abierto que contiene a c además eiste el ite 0 f c f c m 0 entonces la recta que pasa por (c, ƒ(c cuenta con una pendiente m es la recta tangente a la gráfica de ƒ en el punto (c, ƒ(c. La pendiente de la recta tangente a la gráfica de ƒ en el punto (c, ƒ(c se llama también pendiente de la gráfica de f en c. * El uso de la palabra secante procede del latín secare, que significa cortar, no es una referencia a la función trigonométrica del mismo nombre.

3 98 CAPÍTULO Derivación f( m = (, La pendiente de ƒ en (, es m Figura.5 EJEMPLO La pendiente de la gráfica de una función lineal Encontrar la pendiente de la gráfica de ƒ( en el punto (,. Solución Para encontrar la pendiente de la gráfica de ƒ cuando c, aplicar la definición de la pendiente de una recta tangente como se muestra a continuación: f f La pendiente de ƒ en (c, ƒ(c (, es m, como se observa en la figura.5. NOTA En el ejemplo, la definición de la pendiente de ƒ por medio de ites concuerda con la definición analizada en la sección P.. La gráfica de una función lineal tiene la misma pendiente en todos sus puntos. Esto no sucede en las funciones no lineales, como se puede observar en el siguiente ejemplo. EJEMPLO Rectas tangentes a la gráfica de una función no lineal Recta tangente en ( 4 f( = Recta tangente en (0, La pendiente de ƒ en un punto cualquiera (c, ƒ(c es m c Figura.6 Calcular las pendientes de las rectas tangentes a la gráfica de ƒ( en los puntos (0, (,, que se ilustran en la figura.6. Solución Sea (c, ƒ(c un punto cualquiera de la gráfica de ƒ. La pendiente de la recta tangente en él se encuentra mediante: 0 f c f c c c 0 c c c 0 c 0 c 0 c. De tal manera, la pendiente en cualquier punto (c, ƒ(c de la gráfica de ƒ es m c. En el punto (0, la pendiente es m (0 0 en (, la pendiente es m (l. NOTA Observar que en el ejemplo, c se mantiene constante en el proceso de ite (cuando 0.

4 SECCIÓN. La derivada el problema de la recta tangente 99 Recta tangente vertical La definición de la recta tangente a una curva no inclue la posibilidad de una recta tangente vertical. Para éstas, se usa la siguiente definición. Si ƒ es continua en c c La gráfica de ƒ tiene recta tangente vertical en (c, ƒ(c Figura.7 f c f c 0 o f c f c 0 la recta vertical, c, que pasa por (c, ƒ(c es una recta tangente vertical a la gráfica de ƒ, por ejemplo, la función que se muestra en la figura.7 tiene tangente vertical en (c, ƒ(c. Si el dominio de ƒ es el intervalo cerrado [a, b], se puede ampliar la definición de recta tangente vertical de manera que inclua los etremos, considerando la continuidad los ites por la derecha (para a por la izquierda (para b. Derivada de una función Se ha llegado a un punto crucial en el estudio del cálculo. El ite utilizado para definir la pendiente de una recta tangente también se utiliza para definir una de las dos operaciones fundamentales del cálculo: la derivación. DEFINICIÓN DE LA DERIVADA DE UNA FUNCIÓN La derivada de ƒ en está dada por f 0 f f siempre que eista ese ite. Para todos los para los que eista este ite, f es una función de. Observar que la derivada de una función de también es una función de. Esta nueva función proporciona la pendiente de la recta tangente a la gráfica de ƒ en el punto (, ƒ(, siempre que la gráfica tenga una recta tangente en dicho punto. El proceso de calcular la derivada de una función se llama derivación. Una función es derivable en si su derivada en eiste, derivable en un intervalo abierto (a, b si es derivable en todos cada uno de los puntos de ese intervalo. Además de ƒ(, que se lee ƒ prima de, se usan otras notaciones para la derivada de ƒ(. Las más comunes son: f, d d,, d d f, D. Notaciones para la derivada. La notación dd se lee derivada de con respecto a o simplemente d, d. Usando notaciones de ites, se puede escribir d d 0 0 f. f f

5 00 CAPÍTULO Derivación EJEMPLO Cálculo de la derivada mediante el proceso de ite Calcular la derivada de ƒ(. Solución AYUDA DE ESTUDIO Cuando se use la definición para encontrar la derivada de una función, la clave consiste en volver a epresar el cociente incremental (o cociente de diferencias, de manera que no aparezca como factor del denominador. f 0 0 f f 0 Definición de derivada Cabe recordar que la derivada de una función ƒ es en sí una función, misma que puede emplearse para encontrar la pendiente de la recta tangente en el punto (, ƒ( de la gráfica de ƒ. EJEMPLO 4 Uso de la derivada para calcular la pendiente en un punto Encontrar ƒ( para ƒ(. Calcular luego la pendiente de la gráfica de ƒ en los puntos (, (4,. Analizar el comportamiento de ƒ en (0, 0. Solución Se racionaliza el numerador, como se eplicó en la sección.. (, (0, 0 m La pendiente de ƒ en (, ƒ(, 0, es m Figura.8 f( = 4 (4, m 4 f , > 0 f f Definición de derivada. En el punto (, la pendiente es ƒ(. En el punto (4, la pendiente es ƒ(4. Ver la figura.8. En el punto (0, 0 la pendiente no está definida. Además, la gráfica de ƒ tiene tangente vertical en (0, 0.

6 SECCIÓN. La derivada el problema de la recta tangente 0 En muchas aplicaciones, resulta conveniente usar una variable independiente distinta de, como se manifiesta en el ejemplo 5. EJEMPLO 5 Cálculo de la derivada de una función Encontrar la derivada de la función t respecto a t. Solución Considerando ƒ(t, se obtiene d dt t0 f t t f t t Definición de derivada. t0 t t t t f t t t t f t t. t0 t t t tt t t Combinar las fracciones del numerador. 4 t t0 t0 t ttt t tt t Cancelar el factor común t. Simplificar. (, t. Evaluar el ite cuando t t 4 En el punto (, la recta t 4 es tangente a la gráfica de t Figura.9 6 TECNOLOGÍA Se puede utilizar una herramienta de graficación para corroborar el resultado del ejemplo 5. Es decir, usando la fórmula ddt t, se sabe que la pendiente de la gráfica de t en el punto (, es m. Esto implica que, usando la forma punto-pendiente, una ecuación de la recta tangente a la gráfica en (, es (t o t 4 como se muestra en la figura.9. Derivabilidad continuidad La siguiente forma alternativa como ite de la derivada es útil al investigar la relación que eiste entre derivabilidad continuidad. La derivada de ƒ en c es (, f( fc c f f c c Fórmula alternativa de la derivada. c f( f(c siempre que dicho ite eista (ver la figura.0. (En el apéndice A se demuestra la equivalencia de ambas fórmulas. Observe que la eistencia del ite en esta forma alternativa requiere que los ites unilaterales c f f c c f f c c c Cuando tiende a c, la recta secante se aproima a la recta tangente Figura.0 c eistan sean iguales. Estos ites laterales se denominan derivada por la izquierda por la derecha, respectivamente. Se dice que ƒ es derivable en un intervalo cerrado [a, b] si es derivable en (a, b eisten además la derivada por la derecha en a la derivada por la izquierda en b.

7 0 CAPÍTULO Derivación f( = [[ ]] La función parte entera no es derivable en 0, a que no es continua en ese punto Figura. Si una función no es continua en c, no puede ser derivable en c. Por ejemplo, la función parte entera o maor entero f no es continua en 0, en consecuencia no es derivable en 0 (ver la figura.. Esto se comprueba con sólo observar que f f f f Derivada por la izquierda. Derivada por la derecha. Aunque es cierto que derivable implica continua (como se muestra en el teorema., el recíproco no es cierto. En otras palabras, puede ocurrir que una función sea continua en c no sea derivable en c. Los ejemplos 6 7 ilustran tal posibilidad. EJEMPLO 6 Una gráfica con un punto angular m f( m La función f que se muestra en la figura. es continua en. Sin embargo, los ites unilaterales f f 0 Derivada por la izquierda. ƒ no es derivable en, porque las derivadas laterales no son iguales Figura. 4 f f 0 Derivada por la derecha. no son iguales. Por consiguiente, ƒ no es derivable en la gráfica de ƒ no tiene una recta tangente en el punto (, 0. f( / EJEMPLO 7 Una gráfica con una recta tangente vertical La función ƒ( es continua en 0, como se observa en la figura.. Sin embargo, como el ite ƒ no es derivable en 0, porque tiene tangente vertical en ese punto Figura. f f es infinito, se puede concluir que la recta tangente en 0 es vertical. Por tanto, ƒ no es derivable en 0. En los ejemplos 6 7 se puede observar que una función no es derivable en un punto donde su gráfica cuenta con un punto angular o una tangente vertical.

8 SECCIÓN. La derivada el problema de la recta tangente 0 TECNOLOGÍA Algunas herramientas de graficación utilizan los programas de cálculo Maple, Mathematica TI89, para realizar una derivación simbólica. Otros la hacen numérica, calculando valores de la derivada mediante la fórmula f f f donde es un número pequeño como Observa algún problema con esta definición? Por ejemplo, usándola cuál sería la derivada de ƒ( en 0? TEOREMA. DERIVABLE IMPLICA CONTINUA Si ƒ es derivable en c, entonces ƒ es continua en c. DEMOSTRACIÓN Para comprobar que ƒ es continua en c bastará con mostrar que ƒ( tiende a ƒ(c cuando c. Para tal fin, usar la derivabilidad de ƒ en c considerando el siguiente ite. Puesto que la diferencia ƒ( ƒ(c tiende a cero cuando c, se puede concluir que f f c. De tal manera, ƒ es continua en c. c f f c c c c f f c c c c 0 fc 0 f f c c c Los siguientes enunciados epresan en forma resumida la relación que eiste entre continuidad derivabilidad:. Si una función es derivable en c, entonces es continua en c. Por tanto, derivable implica continua.. Es posible que una función sea continua en c sin ser derivable. En otras palabras, continua no implica derivable (ver el ejemplo 6.. Ejercicios En los ejercicios, estimar la pendiente de la curva en los puntos (, (,. Con el fin de resolver los ejercicios 4, utilizar la gráfica que se muestra a continuación.. a b (, (, (, (, (4, 5 (, 4 5 f 6. Identificar o trazar en la figura cada una de las cantidades siguientes.. a b a f f 4 b c f 4 f f 4 f 4 f (, (, (, (, 4. Escribir un símbolo de desigualdad ( o entre las cantidades dadas. a b f 4 f f 4 f 4 4 f 4 f 4 f

3.4 Concavidad y el criterio de la segunda derivada

3.4 Concavidad y el criterio de la segunda derivada 90 CAPÍTULO 3 Aplicaciones de la derivada 3.4 Concavidad el criterio de la segunda derivada Determinar intervalos sobre los cuales una función es cóncava o cóncava. Encontrar cualesquiera puntos de infleión

Más detalles

3.3 Funciones crecientes y decrecientes y el criterio de la primera derivada

3.3 Funciones crecientes y decrecientes y el criterio de la primera derivada SECCIÓN. Funciones crecientes decrecientes el criterio de la primera derivada 79. Funciones crecientes decrecientes el criterio de la primera derivada Determinar los intervalos sobre los cuales una función

Más detalles

1.5 Límites infinitos

1.5 Límites infinitos SECCIÓN.5 Límites infinitos 8.5 Límites infinitos Determinar ites infinitos por la izquierda por la derecha. Encontrar dibujar las asíntotas verticales de la gráfica de una función., cuando Límites infinitos

Más detalles

3.6 Análisis de gráficas

3.6 Análisis de gráficas 09 3.6 Análisis de gráficas Analizar trazar la gráfica de una función. Análisis de la gráfica de una función Sería difícil eagerar la importancia de usar gráficas en matemáticas. La introducción de la

Más detalles

Profesor: Rafa González Jiménez. Instituto Santa Eulalia ÍNDICE

Profesor: Rafa González Jiménez. Instituto Santa Eulalia ÍNDICE TEMA 5: DERIVADAS. APLICACIONES. ÍNDICE 5..- Derivada de una función en un punto. 5...- Tasa de variación media. Interpretación geométrica. 5..2.- Tasa de variación instantánea. Derivada de una función

Más detalles

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE PROBLEMAS RESUELTOS + Dada F() =, escriba la ecuación de la secante a F que une los puntos (, F( )) y 4 (, F()). Eiste un punto c en el intervalo [, ]

Más detalles

3.6 Análisis de gráficas

3.6 Análisis de gráficas 209 3.6 Análisis de gráficas Analizar trazar la gráfica de una función. Análisis de la gráfica de una función Sería difícil eagerar la importancia de usar gráficas en matemáticas. La introducción de la

Más detalles

TEMA 2: DERIVADA DE UNA FUNCIÓN

TEMA 2: DERIVADA DE UNA FUNCIÓN TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios españoles El precio

Más detalles

8. y = Solución: x 4. 9. y = 3 5x. Solución: y' = 5 3 5x L 3. 10. y = Solución: 4 4 (5x) 3. 11. y = Solución: (x 2 + 1) 2. 12.

8. y = Solución: x 4. 9. y = 3 5x. Solución: y' = 5 3 5x L 3. 10. y = Solución: 4 4 (5x) 3. 11. y = Solución: (x 2 + 1) 2. 12. 7 Cálculo de derivadas. Reglas de derivación. Tabla de derivadas Aplica la teoría Deriva en función de :. y = 8. y = 5 3 5 4. y = ( ) 5 0( ) 4 9. y = 3 5 5 3 5 L 3 3. y = 7 + 3 4. y = e e 5. y = 7 7 +

Más detalles

FUNCIONES CONTINUAS EN UN INTERVALO. El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales:

FUNCIONES CONTINUAS EN UN INTERVALO. El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales: FUNCIONES CONTINUAS EN UN INTERVALO Teoremas de continuidad y derivabilidad Teorema de Bolzano Sea una función que verifica las siguientes hipótesis:. Es continua en el intervalo cerrado [, ]. Las imágenes

Más detalles

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS Tema 8 Límites de funciones, continuidad y asíntotas Matemáticas II º Bach 1 TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8.1 LÍMITE DE UNA FUNCIÓN 8.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite

Más detalles

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x)

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x) Matemáticas aplicadas a las CCSS - Derivadas Tabla de Derivadas Función Derivada Función Derivada y k y 0 y y y y y f ) y f ) f ) y n y n n y f ) n y n f ) n f ) y y n y y f ) y n n+ y f ) n y f ) f )

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Límites y continuidad

Límites y continuidad Estudio de la continuidad de la función en el punto = : Comprobemos, como primera medida, que la función está definida en =. Para =, tenemos que determinar f() = + = 6 + = 8, luego eiste. Calculamos, entonces

Más detalles

3.1 Extremos en un intervalo

3.1 Extremos en un intervalo 6 CAPÍTULO Aplicaciones de la derivada. Etremos en un intervalo Entender la definición de etremos de una función en un intervalo. Entender la definición de etremos s de una función en un intervalo abierto.

Más detalles

Límites y continuidad

Límites y continuidad Límites y continuidad.. Límites El ite por la izquierda de una función f en un punto 0, denotado como 0 f() es el valor al que se aproima f() cuando se acerca hacia 0 por la izquierda. De igual forma,

Más detalles

TEMA 2: CONTINUIDAD DE FUNCIONES

TEMA 2: CONTINUIDAD DE FUNCIONES TEMA : CONTINUIDAD DE FUNCIONES 1. Continuidad de una función en un punto Entre las primeras propiedades de las funciones aparece el concepto de continuidad. Durante mucho tiempo fue asumida como una idea

Más detalles

(Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de funciones. Extremos

(Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de funciones. Extremos (Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de unciones. Etremos INTRODUCCIÓN En múltiples problemas de ingeniería se requiere optimizar una o varias de las variables que intervienen

Más detalles

CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES

CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES RELACIÓN DE PROBLEMAS DE SELECTIVIDAD º DE BACHILLERATO CIENCIAS DEPARTAMENTO DE MATEMÁTICAS COLEGIO MARAVILLAS TERESA GONZÁLEZ GÓMEZ .-Hallar una primitiva

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN

DERIVADAS. TÉCNICAS DE DERIVACIÓN DERIVADAS. TÉCNICAS DE DERIVACIÓN Página 5 REFLEXIONA Y RESUELVE Tangentes a una curva y f () 5 5 9 4 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(4). f'() 0; f'(9) ; f'(4) 4 Di otros

Más detalles

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid! CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN 1.- Derivada de una función en un punto. El estudio de la derivada de una función en un punto surge con el problema geométrico

Más detalles

Polinomios. 1.- Funciones cuadráticas

Polinomios. 1.- Funciones cuadráticas Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial

Más detalles

DERIVADA DE UNA FUNCIÓN

DERIVADA DE UNA FUNCIÓN www.fisicanet.com www.fisicaweb.com DERIVADA DE UNA FUNCIÓN fisicanet@interlap.com.ar Se abre aquí el estudio de uno de los conceptos fundamentales del cálculo diferencial: la derivada de una función.

Más detalles

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad y Laterales Curso Propedéutico de Cálculo Sesión 2: y Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico y Esquema Laterales 1 Laterales 2 y Esquema Laterales

Más detalles

Cap. 1 Funciones de Varias variables. Moisés Villena Muñoz

Cap. 1 Funciones de Varias variables. Moisés Villena Muñoz Cap. Funciones de Varias variables. Definición de Funciones de dos variables. Dominio. Grafica..4 Curvas de nivel. Derivadas Parciales.6 Funciones Homogéneas.7 Funciones Nomotéticas.8 Diferencial Total.9

Más detalles

Capítulo II Límites y Continuidad

Capítulo II Límites y Continuidad (Apuntes en revisión para orientar el aprendizaje) INTRODUCCIÓN Capítulo II Límites y Continuidad El concepto de límite, después del de función, es el fundamento matemático más importante que ha cimentado

Más detalles

CURSOS CENEVAL TOLUCA

CURSOS CENEVAL TOLUCA Precálculo Propiedades de los números reales Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números

Más detalles

CAPÍTULO. La derivada

CAPÍTULO. La derivada CAÍTULO 5 La derivada 5. La recta tangente Los griegos sabían que una recta en el mismo plano que una cónica (en el caso de la parábola o de la hipérbola, una recta no paralela a alguno de sus ejes) o

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN

DERIVADAS. TÉCNICAS DE DERIVACIÓN DERIVADAS. TÉCNICAS DE DERIVACIÓN Página 55 REFLEXIONA Y RESUELVE Tangentes a una curva y f ( 5 5 Halla, mirando la gráfica y las rectas trazadas, f'(, f'( y f'(. f'( 0; f'( ; f'( Di otros tres puntos

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento

Más detalles

Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA

Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Fuente: PreUniversitario Pedro de Valdivia Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación susceptible de llevar a la forma a + b + c = 0,

Más detalles

5.1. Recta tangente, normal e intersección de curvas. Recta tangente

5.1. Recta tangente, normal e intersección de curvas. Recta tangente 5. Aplicaciones de la Derivada 5.1. Recta tangente, normal e intersección de curvas Recta tangente Desde la escuela primaria se sabe que la recta tangente en un punto de una circunferencia es aquella recta

Más detalles

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}.

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}. SECCIÓN 5. Funciones inversas 5. Funciones inversas Verificar que una función es la inversa de otra. Determinar si una función tiene una función inversa. Encontrar la derivada de una función inversa. f

Más detalles

Definición de Funciones MATE 3171

Definición de Funciones MATE 3171 Definición de Funciones MATE 3171 Función Una función, f, es una regla de correspondencia entre dos conjuntos, que asigna a cada elemento x de D exactamente un elemento de E : x 1 x 2 x 3 y 2 y 1 Terminología

Más detalles

1 LIMITES Y DERIVADAS

1 LIMITES Y DERIVADAS 1 LIMITES Y DERIVADAS 2.1 LA TANGENTE Y PROBLEMAS DE LA VELOCIDAD Problema de la tangente Se dice que la pendiente de la recta tangente a una curva en el punto P es el ite de las rectas secantes PQ a medida

Más detalles

Aplicaciones de la derivada

Aplicaciones de la derivada CAPÍTULO 8 Aplicaciones de la derivada 8. Máimos mínimos locales Si f. 0 / f./ para cada cerca de 0, es decir, en un intervalo abierto que contenga a 0, diremos que f alcanza un máimo local o un máimo

Más detalles

V. 2 DISCUSIÓN DE UNA CURVA

V. 2 DISCUSIÓN DE UNA CURVA DISCUSIÓN DE ECUACIONES ALGEBRAICAS UNIDAD V Eisten dos problemas fundamentales en la Geometría Analítica:. Dada una ecuación hallar el lugar geométrico que representa.. Dado un lugar geométrico definido

Más detalles

x = 0, la recta tangente a la gráfica de f (x)

x = 0, la recta tangente a la gráfica de f (x) CÁLCULO DIFERENCIAL JUNIO 004 1. Sea la función e y = estúdiese su monotonía, etremos relativos y asíntotas. (Solución: Es derivable en todos los puntos ecepto en =0. Creciente si < 0. No tiene asíntotas

Más detalles

LIMITE. Si f(x)= x 2 -x 6 = (x 3) (x + 2) = x + 3 x + 2 x + 2

LIMITE. Si f(x)= x 2 -x 6 = (x 3) (x + 2) = x + 3 x + 2 x + 2 LIMITE Qué se entiende por límite? De ordinario hablamos del precio límite de la velocidad límite del límite de nuestra propia resistencia los límites de la tecnología moderna o de estirar un muelle hasta

Más detalles

Gráficas de las funciones racionales

Gráficas de las funciones racionales Gráficas de las funciones racionales Ahora vamos a estudiar de una manera geométrica las ideas de comportamiento de los valores que toma la función cuando los valores de crecen mucho. Es importante que

Más detalles

Sucesiones (páginas 511 515)

Sucesiones (páginas 511 515) A NMRE FECHA PERÍD Sucesiones (páginas 5 55) Una sucesión es una lista de números en un cierto orden. Cada número se llama término de la sucesión. En una sucesión aritmética, la diferencia entre cualquier

Más detalles

Cálculo diferencial DERIVACIÓN

Cálculo diferencial DERIVACIÓN DERIVACIÓN Definición de límite Entorno Definición. Se le llama entorno o vecindad de un punto a en R, al intervalo abierto (a - δ, a + δ ) = {a a - δ < x < a + δ }, en donde δ es semiamplitud a radio

Más detalles

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2)

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2) Tema 0 Aplicaciones de la derivada Matemáticas II º Bachillerato TEMA 0 APLICACIONES DE LA DERIVADA RECTA TANGENTE Escribe e 0 EJERCICIO : la ecuación de la recta tangente a la curva f en 0. Ordenada del

Más detalles

Aplicaciones de las integrales dobles

Aplicaciones de las integrales dobles Aplicaciones de las integrales dobles Las integrales dobles tienen multiples aplicaciones en física en geometría. A continuación damos una relación de alguna de ellas.. El área de una región plana R en

Más detalles

Unidad 3 Límites y continuidad. Universidad Diego Portales CALCULO I

Unidad 3 Límites y continuidad. Universidad Diego Portales CALCULO I Unidad Límites y continuidad Una vista preinar Qué es el cálculo? Los dos problemas fundamentales El área del conocimiento que llamamos Cálculo gira en torno a dos problemas geométricos fundamentales que

Más detalles

Derivadas laterales. Derivabilidad y continuidad en un punto. Derivabilidad y continuidad en un intervalo

Derivadas laterales. Derivabilidad y continuidad en un punto. Derivabilidad y continuidad en un intervalo Derivadas laterales Se define la derivada por la izquierda de f(x) en el punto x = a : Se define la derivada por la derecha de f(x) en el punto x = a : A ambas derivadas se les llama derivadas laterales.

Más detalles

CAPÍTULO. Conceptos básicos

CAPÍTULO. Conceptos básicos CAPÍTULO 1 Conceptos básicos 1.3 Soluciones de ecuaciones diferenciales 1.3.1 Soluciones de una ecuación Ejemplo 1.3.1 Resolver la ecuación: D 0. H Resolver esta ecuación significa encontrar todos los

Más detalles

Funciones de varias variables

Funciones de varias variables Capítulo Funciones de varias variables Problema Sea f : IR 2 IR definida por: 2 y 2 f, y) = e +y 2 > y, y. i) Estudiar la continuidad de f en IR 2. ii) Definimos g : IR IR como g) = f, ). Analizar la derivabilidad

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones CONCEPTOS ECUACIONES Una ecuación es una igualdad entre dos epresiones en las que aparece una o varias incógnitas. En

Más detalles

x + x 2 +1 = 1 1 = 0 = lím

x + x 2 +1 = 1 1 = 0 = lím UNIDAD Asíntota horizontal: 8 +@ + + = y = es asíntota horizontal hacia +@ (y > ). + + + + = = = 0 8 @ 8 +@ y = 0 es asíntota horizontal hacia @ (y < 0). CUESTIONES TEÓRICAS 30 Qué podemos decir del grado

Más detalles

La regla de la constante. DEMOSTRACIÓN Sea ƒ(x) c. Entonces, por la definición de derivada mediante el proceso de límite, se deduce que.

La regla de la constante. DEMOSTRACIÓN Sea ƒ(x) c. Entonces, por la definición de derivada mediante el proceso de límite, se deduce que. SECCIÓN. Reglas básicas e erivación razón e cambio 07. Reglas básicas e erivación razón e cambio Encontrar la erivaa e una función por la regla e la constante. Encontrar la erivaa e una función por la

Más detalles

Cálculo Diferencial e Integral - Recta tangente y velocidad. Farith J. Briceño N.

Cálculo Diferencial e Integral - Recta tangente y velocidad. Farith J. Briceño N. Cálculo Diferencial e Integral - Recta tangente y velocidad. Farit J. Briceño N. Objetivos a cubrir Código : MAT-CDI.7 Problema: Recta tangente a una curva en un punto 0. Problema: Velocidad promedio y

Más detalles

Tema 1. Cálculo diferencial

Tema 1. Cálculo diferencial Tema 1. Cálculo diferencial 1 / 57 Una función es una herramienta mediante la que expresamos la relación entre una causa (variable independiente) y un efecto (variable dependiente). Las funciones nos permiten

Más detalles

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno:

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno: UNIDAD La derivada Objetivos Al terminar la unidad, el alumno: Calculará la derivada de funciones utilizando el álgebra de derivadas. Determinará la relación entre derivación y continuidad. Aplicará la

Más detalles

2.5 Derivación implícita

2.5 Derivación implícita SECCIÓN.5 Derivación implícita 4.5 Derivación implícita Distinguir entre funciones eplícitas e implícitas. Hallar la erivaa e una función por erivación implícita. E X P L O R A C I Ó N Representación gráfica

Más detalles

Es evidente la continuidad en En el punto, se tiene:

Es evidente la continuidad en En el punto, se tiene: Tema 3 Continuidad Ejercicios Resueltos Ejercicio 1 Estudia la continuidad de la función La función puede expresarse como Para representarla basta considerar dos arcos de parábola: Es evidente la continuidad

Más detalles

1. Aplique el método de inducción matemática para probar las siguientes proposiciones. e) f) es divisible por 6. a) b) c) d) e) f)

1. Aplique el método de inducción matemática para probar las siguientes proposiciones. e) f) es divisible por 6. a) b) c) d) e) f) 1. Aplique el método de inducción matemática para probar las siguientes proposiciones. a) b) c) d) e) f) es divisible por 6. g) 2. Halle la solución de las siguientes desigualdades de primer orden. g)

Más detalles

Las superficies serán: Tapa y superficie lateral S 1 = ( x 2 +4xy ) cm 2 Superficie de la base: S 2 = x 2 cm 2

Las superficies serán: Tapa y superficie lateral S 1 = ( x 2 +4xy ) cm 2 Superficie de la base: S 2 = x 2 cm 2 MATEMÁTICAS II, º BACHILLERATO F.- Se desea construir una caja cerrada de base cuadrada con una capacidad de 8 cm. Para la tapa y la superficie lateral se usa un material que cuesta /cm y para la base

Más detalles

Unidad 1. Las fracciones.

Unidad 1. Las fracciones. Unidad 1. Las fracciones. Ubicación Curricular en España: 4º, 5º y 6º Primaria, 1º, 2º y 3º ESO. Objetos de aprendizaje. 1.1. Concepto de fracción. Identificar los términos de una fracción. Escribir y

Más detalles

Matemáticas Febrero 2013 Modelo A

Matemáticas Febrero 2013 Modelo A Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las

Más detalles

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2 UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD 1.- Límites en el Infinito: lim x + f(x) = L Se dice que el límite de f (x) cuando x tiende a + es L ϵ Ɽ, si podemos hacer que f(x) se aproxime a L tanto como

Más detalles

Teoría Tema 3 Teoremas de derivabilidad

Teoría Tema 3 Teoremas de derivabilidad página 1/10 Teoría Tema 3 Teoremas de derivabilidad Índice de contenido Teorema de Rolle...2 Teorema del valor medio de Lagrange (o de los incrementos finitos)...4 Teorema de Cauchy...6 Regla de L'Hôpital...8

Más detalles

Cálculo Infinitesimal: grupo piloto

Cálculo Infinitesimal: grupo piloto Tema : La derivada. Cálculo Infinitesimal: grupo piloto Curso 6/7 A. Objetivos. Al finalizar el tema, los estudiantes deberán ser capaces de: Calcular la derivada de una función utilizando la definición

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA C u r s o : Matemática Material N 6 GUÍA TEÓRICO PRÁCTICA Nº UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación de la forma, o que

Más detalles

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8)

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8) PROBABILIDAD Y ESTADÍSTICA Sesión 5 (En esta sesión abracamos hasta tema 5.8) 5 DISTRIBUCIONES DE PROBABILIDAD CONTINUAS Y MUESTRALES 5.1 Distribución de probabilidades de una variable aleatoria continua

Más detalles

FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN

FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN 1 FUNCIONES FUNCIÓN REAL DE VARIABLE REAL Una función real de variable real es una relación que asocia a cada número real, (variable independiente),

Más detalles

PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD

PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD Considera la función f(x)= x 3 + px donde p es un número real. Escribir (en función de p) la ecuación de la recta tangente a la grafica f(x) en el punto de abscisa

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Función Derivada Función compuesta Derivada y f x y f x y f g x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Función Derivada Función compuesta Derivada y f x y f x y f g x Tabla de derivadas Función Derivada Función compuesta Derivada k ' 0 ' ' n ' ' ' e ' n n n n ' n ' e a ' ln ln log a a a ' ' e a ln ln a Reglas de derivación log a ' ' ' ' ' ' ' ' ' ln ' ' ' ' e a a '

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.4: La derivada y sus propiedades básicas. La Regla de la cadena. El concepto de derivada aparece en muchas situaciones en la ciencias: en matemáticas

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS

Más detalles

Funciones. Resumen del contenido

Funciones. Resumen del contenido C APÍTULO 7 Funciones Resumen del contenido En el Capítulo 7, los estudiantes aumentan su entendimiento del crecimiento lineal y de las ecuaciones observando en detalle una clase especial de relación llamada

Más detalles

FUNCIONES. Definición de función. Ejemplos.

FUNCIONES. Definición de función. Ejemplos. FUNCIONES. Definición de función. Una función es una relación entre un conjunto de salida llamado dominio y un conjunto de llegada llamado codominio, tal relación debe cumplir que cada elemento del dominio

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del primer eamen parcial del curso Cálculo de una variable Grupos: Uno y Cinco Período: Inicial del año 00 Prof: Rubén D. Nieto C. PUNTO.

Más detalles

f (x) (1+[f (x)] 2 ) 3 2 κ(x) =

f (x) (1+[f (x)] 2 ) 3 2 κ(x) = MATEMÁTICAS II - EXAMEN PRIMER PARCIAL - 4/11/11 Grado: Ing. Electrónica Rob. y Mec. Ing. Energía Ing. Organización Ind. Nombre y Apellidos: Ejercicio 1. La curvatura de una función f en un punto x viene

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.7: Aproximación de funciones. Desarrollo de Taylor. Aproximación lineal. La aproximación lineal de una función y = f(x) en un punto x = a es la

Más detalles

Problemas de 4 o ESO. Isaac Musat Hervás

Problemas de 4 o ESO. Isaac Musat Hervás Problemas de 4 o ESO Isaac Musat Hervás 5 de febrero de 01 Índice general 1. Problemas de Álgebra 7 1.1. Números Reales.......................... 7 1.1.1. Los números....................... 7 1.1.. Intervalos.........................

Más detalles

UNIDAD 4.- INECUACIONES Y SISTEMAS (tema 4 del libro)

UNIDAD 4.- INECUACIONES Y SISTEMAS (tema 4 del libro) UNIDAD 4. INECUACIONES Y SISTEMAS (tema 4 del libro) 1. INECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA Definición: Se llama desigualdad a toda relación entre epresiones numéricas o algebraicas unidas por

Más detalles

CURSO CERO DE MATEMÁTICAS

CURSO CERO DE MATEMÁTICAS CURSO CERO DE MATEMÁTICAS Dr. José A. Reyes - Dra. Mónica Cortés - Dr. Fernando García RESUMEN TEORÍA DE CÁLCULO DIFERENCIAL Derivadas La derivada de una función se puede interpretar geométricamente como

Más detalles

TEMA N 2 RECTAS EN EL PLANO

TEMA N 2 RECTAS EN EL PLANO 2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración

Más detalles

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q).

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q). TEMA 4: DERIVADAS 1. La derivada de una función. Reglas de derivación 1.1. La pendiente de una curva. La pendiente de una curva en un punto P es una medida de la inclinación de la curva en ese punto. Si

Más detalles

en un punto determinado. Esto es, qué le pasa a f (x) cuando varía x en los alrededores de un punto a. , su derivada en el punto x = 3 es

en un punto determinado. Esto es, qué le pasa a f (x) cuando varía x en los alrededores de un punto a. , su derivada en el punto x = 3 es UAH Derivadas Tema 4 DERIVADAS Derivada de una función en un punto Una función f ( es derivable en el punto a si f ( a ) eiste el ite: Este ite se denota por f (a), y eiste cuando resulta un número real

Más detalles

GEOMETRÍA ANALÍTICA EN EL PLANO

GEOMETRÍA ANALÍTICA EN EL PLANO GEOMETRÍA ANALÍTICA EN EL PLANO Coordenadas cartesianas Sistema de ejes Cartesianos: Dicho nombre se debe a Descartes, el cual tuvo la idea de expresar un objeto geométrico como un punto o una recta, mediante

Más detalles

TEMA 5.- DERIVADAS. Tasa de variación. Consideremos una función y = f(x) y consideremos dos puntos próximos

TEMA 5.- DERIVADAS. Tasa de variación. Consideremos una función y = f(x) y consideremos dos puntos próximos TEMA 5.- DERIVADAS Tasa de variación Consideremos una función y = f(x) y consideremos dos puntos próximos sobre el eje de abscisas "a" y "a+h", siendo "h" un número real que corresponde al incremento de

Más detalles

tiene una rama infinita cuando x, f(x) o ambas al mismo tiempo crecen infinitamente. De esta manera el punto ( x, f ( x))

tiene una rama infinita cuando x, f(x) o ambas al mismo tiempo crecen infinitamente. De esta manera el punto ( x, f ( x)) Matemáticas II Curso 03-04 6. Asíntotas Se dice que una función y f ( tiene una rama infinita cuando, f( o ambas al mismo tiempo crecen infinitamente. De esta manera el punto (, f ( ) se aleja infinitamente

Más detalles

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones.

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. 0.. Concepto de derivada. Definición. Sea f : S R R, a (b, c) S. Decimos que f es derivable en a si existe: f(x) f(a)

Más detalles

Colegio Universitario Boston. Funciones

Colegio Universitario Boston. Funciones 70 Concepto de Función Una función es una correspondencia entre dos conjuntos, tal que relaciona, a cada elemento del conjunto A con un único elemento del conjunto Para indicar que se ha establecido una

Más detalles

RESUMEN TEÓRICO DE CLASES

RESUMEN TEÓRICO DE CLASES Página 1 RESUMEN TEÓRICO DE CLASES Página 2 Tema 1. Inecuaciones Las inecuaciones son desigualdades algebraicas en la que sus dos miembros se relacionan por uno de estos signos: >; ;

Más detalles

FECHA OBJETIVO CONTENIDO Semana. Introducir el tema de funciones ( tentativo)

FECHA OBJETIVO CONTENIDO Semana. Introducir el tema de funciones ( tentativo) Página 1 de 11 INA Uruca Bachillerato por madurez Cronograma 2011 de Matemáticas Profesora: Lordys Serrano Ramírez FECHA OBJETIVO CONTENIDO Semana Introducir el tema de funciones ( tentativo) inicio de

Más detalles

FECHA OBJETIVO CONTENIDO 12 DE MARZO. Introducir el tema de funciones

FECHA OBJETIVO CONTENIDO 12 DE MARZO. Introducir el tema de funciones Página 1 de 11 INA Turismo Bachillerato por madurez Cronograma 2011 de Matemáticas Profesora: Lordys Serrano Ramírez FECHA OBJETIVO CONTENIDO 12 DE MARZO Introducir el tema de funciones inicio de clases

Más detalles

Matemática II Clase Nº 14-15

Matemática II Clase Nº 14-15 LA DERIVADA La derivación es una de las operaciones que el Análisis Matemático efectúa con las funciones, permite resolver numerosos problemas de Geometría, Economía, Física otras disciplinas. En matemáticas,

Más detalles

2.1 CONTINUIDAD EN UN PUNTO 2.2 CONTINUIDAD DE FUNCIONES CONOCIDAS 2.3 CONTINUIDAD EN OPERACIONES CON

2.1 CONTINUIDAD EN UN PUNTO 2.2 CONTINUIDAD DE FUNCIONES CONOCIDAS 2.3 CONTINUIDAD EN OPERACIONES CON Cap. Continuidad de funciones.1 CONTINUIDAD EN UN PUNTO. CONTINUIDAD DE FUNCIONES CONOCIDAS.3 CONTINUIDAD EN OPERACIONES CON FUNCIONES.4 CONTINUIDAD EN UN INTERVALO.5 TEOREMA DEL VALOR INTERMEDIO OBJETIVOS:

Más detalles

EXAMEN DE MATEMATICAS II 2ª ENSAYO (1) Apellidos: Nombre:

EXAMEN DE MATEMATICAS II 2ª ENSAYO (1) Apellidos: Nombre: EXAMEN DE MATEMATICAS II ª ENSAYO () Apellidos: Nombre: Curso: º Grupo: A Día: CURSO 05 Instrucciones: a) Duración: HORA y 0 MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios de

Más detalles

3.3 Propiedades locales de una función derivable: continuidad, crecimiento y decrecimiento.

3.3 Propiedades locales de una función derivable: continuidad, crecimiento y decrecimiento. DERIVADAS. Función derivable en un punto. laterales. Interpretación geométrica de la derivada. Ecuaciones de las rectas tangente normal a la gráfica de una función en un punto.. Concepto de función derivada.

Más detalles

14.1 Introducción. 14.2 Caso 1: Area bajo una curva.

14.1 Introducción. 14.2 Caso 1: Area bajo una curva. Temas. Capacidades Calcular áreas de regiones del plano. 14.1 Introducción Area bajo una curva En esta sesión se inicia una revisión de las principales aplicaciones de la integral definida. La primera

Más detalles