LEY DE NEWTON DE LA VISCOSIDAD

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LEY DE NEWTON DE LA VISCOSIDAD"

Transcripción

1 LEY DE NEWTON DE LA VISCOSIDAD Supongamos un fluido contenido entre dos grandes láminas planas y paralelas de área A separadas entre sí por una pequeña distancia Y. Fig. 1 Fluido contenido entre los láminas Al tiempo t<0 el sistema está en reposo, para t=0 a la lámina inferior se le imprime un movimiento de dirección x con una velocidad constante V x -Las capas de fluido en contacto con la placa inferior adquieren un movimiento de dirección x y lo propagan a las capas superiores en la dirección y. -A mayores t el perfil de velocidad se va modificando hasta alcanzar el estado estacionario (no existen más variaciones con el tiempo). -En estas condiciones la fuerza F x necesaria para mover la placa inferior con velocidad constante V x será, de acuerdo con el modelo de Newton: -La constante de proporcionalidad μ se denomina viscosidad del fluido. -Esta ecuación es válida para flujo laminar y no todos los fluidos la cumplen. Aquellos que si la cumplen reciben el nombre de fluidos newtonianos.

2 La Ley de Newton de la viscosidad es en realidad una relación de comportamiento de un conjunto muy grande y muy importante de fluidos que la cumplen. Pero hay fluidos que se comportan de otra manera, es decir, fluidos que no presentan una relación lineal (con ordenada al origen nula) entre los esfuerzos viscosos τ yx y el gradiente de velocidad (dv x /dy). Notación de τ yx La dirección de la velocidad del fluido coincide con la dirección de la fuerza aplicada, en este caso, la del eje coordenado x. La dirección de una superficie se puede determinar por su vector normal. La dirección del eje coordenado y es normal al plano y = y0, que es aquel donde se aplica el esfuerzo τyx. El movimiento del fluido se propaga desde la placa inferior hacia arriba, es decir, en la dirección del eje coordenado y. Este movimiento tiene, sin embargo, la dirección x. Entonces, considerando a τ yx como una fuerza aplicada: τ ik Primer índice: dirección de la superficie Segundo índice: dirección de la fuerza Considerando a τ yx como un flujo de cantidad de movimiento: τ ik Primer índice: dirección de la propagación de momentum Segundo índice: dirección del momentum

3 Transporte molecular y convectivo de momentum El transporte molecular de momentum, que resulta como consecuencia de la transferencia de movimiento entre las moléculas. También existe un flujo de momentum debido al movimiento de bulto o movimiento convectivo del fluido. Esta transferencia de movimiento tiene que ver con el flux másico ρ v, que atraviesa un plano dado del fluido. El flux másico atraviesa un plano dado, debido a su componente de velocidad normal a dicho plano, así en el plano xy tenemos: El flux convectivo de momentum es el producto del flux másico por la velocidad, es decir ρ vv. Entonces, el flux convectivo de momentum atravesando el plano x =x0 es ρv x v Cada uno de estos fluxes es un vector, tiene tres componentes, que corresponden a las direcciones de las componentes de la velocidad. El flux combinado de momentum es la suma del flux molecular de momentum, que corresponde a los esfuerzos totales más el flux convectivo de momentum. Balances de momentum en envolturas y condiciones a la frontera. La envoltura es el sistema, se elige una rebanada delgada del espacio, al interior del flujo, que conserva las características geométricas del sistema global, con sus caras paralelas o perpendiculares a la dirección del flujo (las componentes de la velocidad).

4 Se aplica un balance de momentum a esta envoltura, considerando los términos importantes en cada una de sus superficies (o caras). El balance de momentum es una relación vectorial, consiste por lo tanto de tres relaciones escalares, una para cada una de las direcciones de un sistema coordenado ortogonal. Aplicaremos el balance de momentum a sistemas que tienen solamente una componente de velocidad, por lo que el balance se aplicará solamente en la dirección de dicha componente. Procedimiento para la aplicación, solución y uso de los balances de envoltura 1. Considerando el flujo en la escala global, elige el sistema coordenado que se adapte a la geometría del flujo (coordenadas cartesianas, cilíndricas o esféricas), localiza el origen y determina la dirección de los ejes coordenados. 2.Identifica la componente de la velocidad que no se anula y la dirección (o las direcciones) en la(s) que cambia dicha componente [la velocidad depende de la(s) coordenada(s) correspondiente(s) a dichas direcciones]. 3. Determina el lugar de la envoltura, que debe estar inmersa en la región de flujo que te interesa analizar. La envoltura debe ser delgada en la(s) dirección(es) en la(s) que cambia la velocidad y amplia en la(s) que no cambia. Dibuja un diagrama de dicha envoltura. 4. Identifica las componentes del flux combinado de momentum en la dirección del flujo y anótalos en el diagrama, entrando a la envoltura por la cara correspondiente más cercana al eje coordenado y saliendo por la más lejana. Agrega la contribución de la fuerza gravitacional, cuando corresponda. 5. Aplica el balance de momentum en la dirección del flujo. 6. Divide el balance entre el volumen de la envoltura y toma el límite cuando el (los) espesor(es) de la(s) cara(s) delgada(s) de la envoltura tiende(n) a cero, para hacer uso de la definición de la derivada como el cociente incremental de una función y obtener así la ecuación diferencial correspondiente.

5 7. Sustituye las componentes del flux combinado de momentum por los términos que correspondan, de acuerdo con su definición [Ecuación (1.14)] y con las especificaciones para cada término [como en el ejemplo de la Ecuación (1.15)]. 8. Simplifica la ecuación resultante, considerando la dependencia espacial de la velocidad ( de qué coordenadas es función la velocidad?) y de la presión (los cambios de la presión se producen en la dirección del flujo). El resultado es el balance diferencial de momentum en la dirección seleccionada. 9. Determina las condiciones a la frontera. Necesitas establecer una condición a la frontera para cada variable derivada. A veces no se tiene una condición para los esfuerzos viscosos y su determinación se deja para una etapa posterior (el paso 12 de esta secuencia). En tal caso se requiere una condición de frontera adicional para la velocidad. 10. Integra esta ecuación para obtener la distribución del flux de momentum (en la dirección elegida) y aplica las condiciones a la frontera si es procedente. 11. Sustituye la ley de Newton de la viscosidad (o la relación de comportamiento que corresponda al fluido), considerando nuevamente la dependencia espacial de la velocidad para simplificar los términos. Resulta una ecuación diferencial para la velocidad. 12. Integra esta ecuación y aplica las condiciones a la frontera, para obtener la distribución de velocidad (el perfil de velocidad). 13. Utiliza la distribución de velocidad para obtener otras cantidades importantes como la velocidad máxima, el flujo volumétrico o gasto, la fuerza del fluido sobre una superficie sólida que lo limite o la disipación viscosa.

MECÁNICA DE FLUIDOS. Curso del Trimestre 07-I

MECÁNICA DE FLUIDOS. Curso del Trimestre 07-I MECÁNICA DE FLUIDOS Curso del Trimestre 07-I Notas complementarias al libro de teto: Fenómenos de Transporte por Bird, Stewart, Lightfoot (Reverte, 1982), para actualizar el contenido de acuerdo a la nueva

Más detalles

MECÁNICA DE FLUIDOS. Curso del Trimestre 07-I

MECÁNICA DE FLUIDOS. Curso del Trimestre 07-I MECÁNICA DE FLUIDOS Curso del Trimestre 07-I Notas complementarias al libro de teto: Fenómenos de Transporte por Bird, Stewart, Lightfoot (Reverte, 1982), para actualizar el contenido de acuerdo a la nueva

Más detalles

CURSO FÍSICA II 2012 CLASE VIII

CURSO FÍSICA II 2012 CLASE VIII UNIVERSIDAD NACIONAL DEL NORDESTE FACULTAD DE INGENIERÍA DEPARTAMENTO DE FÍSICA Y QUÍMICA CURSO FÍSICA II 2012 CLASE VIII MECÁNICA DE FLUIDOS PROPIEDADES DE FLUIDOS ESTÁTICA DE LOS FLUIDOS CINÉMATICA DE

Más detalles

LEY DE NEWTON DE LA VISCOSIDAD. FLUIDOS NEWTONIANOS Y NO-NEWTONIANOS

LEY DE NEWTON DE LA VISCOSIDAD. FLUIDOS NEWTONIANOS Y NO-NEWTONIANOS Fenómenos de Transporte.Licenciatura en Ciencia Tecnología de Alimentos Licenciatura en Ciencia Tecnología Ambiental Licenciatura en Biotecnología Biología Molecular LEY DE NEWTON DE LA VISCOSIDAD. FLUIDOS

Más detalles

Figura 1.3.1. Sobre la definición de flujo ΔΦ.

Figura 1.3.1. Sobre la definición de flujo ΔΦ. 1.3. Teorema de Gauss Clases de Electromagnetismo. Ariel Becerra La ley de Coulomb y el principio de superposición permiten de una manera completa describir el campo electrostático de un sistema dado de

Más detalles

Leyes del movimiento de Newton

Leyes del movimiento de Newton Leyes del movimiento de Newton Leyes del movimiento de Newton Estudiaremos las leyes del movimiento de Newton. Estas son principios fundamentales de la física Qué es una fuerza Intuitivamente, consideramos

Más detalles

Matemáticas 4 Enero 2016

Matemáticas 4 Enero 2016 Laboratorio #1 Vectores I.- Calcule el producto escalar de los dos vectores y el coseno del ángulo entre ellos. 1) u = 3i + 2j 4k; v = i + 5j 3k 2) u = i + 2j 3k; v = 1i 2j + 3k 3) u = 1 2 i + 1 3 j +

Más detalles

DINÁMICA DE FLUIDOS 1

DINÁMICA DE FLUIDOS 1 DINÁMICA DE FLUIDOS CONCEPTO GENERAL DE FLUJO Una magnitud física... Carácter vectorial... A Una superficie... S Flujo de A a través de la superficie S θ A Φ A r S r Φ A S cosθ CANTIDAD ESCALAR CONCEPTO

Más detalles

FUERZAS DE UN FLUIDO EN REPOSO SOBRE SUPERFICIES PLANAS

FUERZAS DE UN FLUIDO EN REPOSO SOBRE SUPERFICIES PLANAS FUERZAS DE UN FLUIDO EN REPOSO SOBRE SUPERFICIES PLANAS En esta sección consideramos los efectos de la presión de un fluido, que actúa sobre superficies planas (lisas), en aplicaciones como las ilustradas.

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGÍA DEPARTAMENTO DE ENERGÉTICA UNIDAD CURRICULAR: TRANSFERENCIA DE CALOR

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGÍA DEPARTAMENTO DE ENERGÉTICA UNIDAD CURRICULAR: TRANSFERENCIA DE CALOR UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGÍA DEPARTAMENTO DE ENERGÉTICA UNIDAD CURRICULAR: TRANSFERENCIA DE CALOR Convección Profesor: Ing. Isaac Hernández Isaachernandez89@gmail.com

Más detalles

5. INTEGRALES MULTIPLES

5. INTEGRALES MULTIPLES 5. INTEGRALES MULTIPLES INDICE 5 5.. Integrales iteradas. 5.. Definición de integral doble: áreas y volúmenes..3 5.3. Integral doble en coordenadas polares 5 5.4. Aplicaciones de la integral doble (geométricas

Más detalles

Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL.

Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL. UNIDAD IV: VECTORES EN R2 Y R3 VECTOR Se puede considerar un vector como un segmento de recta con una flecha en uno de sus extremos. De esta forma lo podemos distinguir por cuatro partes fundamentales:

Más detalles

Momento de un vector deslizante respecto a un punto. Momento de un vector deslizante respecto a un eje

Momento de un vector deslizante respecto a un punto. Momento de un vector deslizante respecto a un eje Magnitudes escalares y vectoriales Tipos de vectores Operaciones con vectores libres Momento de un vector deslizante respecto a un punto Momento de un vector deslizante respecto a un eje Magnitudes escalares

Más detalles

Cálculo vectorial en el plano.

Cálculo vectorial en el plano. Cálculo vectorial en el plano. Cuaderno de ejercicios MATEMÁTICAS JRM SOLUCIONES Índice de contenidos. 1. Puntos y vectores. Coordenadas y componentes. Puntos en el plano cartesiano. Coordenadas. Vectores

Más detalles

Viscosidad - Fluidos No Newtonianos

Viscosidad - Fluidos No Newtonianos Viscosidad - Fluidos No Newtonianos Fenómenos de Transporte ILQ 230 (II 2011) Prof. Alonso Jaques Ley de newton de la Viscosidad y Y t < 0 t = 0 V v x y, t V v x y x V t pequeño t grande Fluido inicialmente

Más detalles

El sonido dejará de ser audible cuando su intensidad sea menor o igual a la intensidad umbral:

El sonido dejará de ser audible cuando su intensidad sea menor o igual a la intensidad umbral: P.A.U. MADRID JUNIO 2005 Cuestión 1.- El nivel de intensidad sonora de la sirena de un barco es de 60 db a 10 m de distancia. Suponiendo que la sirena es un foco emisor puntual, calcule: a) El nivel de

Más detalles

TRANSFERENCIA DE MOMENTUM. MI31A-Fenómenos de Transporte en Metalurgia Extractiva Prof. Tanai Marín 16 Abril 2007 Clase #9

TRANSFERENCIA DE MOMENTUM. MI31A-Fenómenos de Transporte en Metalurgia Extractiva Prof. Tanai Marín 16 Abril 2007 Clase #9 TRANSFERENCIA DE MOMENTUM MI31A-Fenómenos de Transporte en Metalurgia Extractiva Prof. Tanai Marín 16 Abril 2007 Clase #9 Flujo de Fluidos Viscosos Para fluidos con bajo peso molecular, la propiedad física

Más detalles

2. Conservación de la masa

2. Conservación de la masa 2. Conservación de la masa La ecuación de conservación de la masa representa una previsión de la adición y sustracción de masa de una región concreta de un fluido. Pensemos en un volumen fijo e indeformable

Más detalles

MECÁNICA DE FLUIDOS DEFINICIONES Y PROPIEDADES

MECÁNICA DE FLUIDOS DEFINICIONES Y PROPIEDADES José Agüera Soriano 2011 1 MECÁNICA DE FLUIDOS DEFINICIONES Y PROPIEDADES José Agüera Soriano 2011 2 DEFINICIONES Y CONCEPTOS PRELIMINARES SISTEMA FLUJO PROPIEDADES DE UN FLUIDO VISCOSIDAD DE TURBULENCIA

Más detalles

Bloque 2. Geometría. 2. Vectores. 1. El plano como conjunto de puntos. Ejes de coordenadas

Bloque 2. Geometría. 2. Vectores. 1. El plano como conjunto de puntos. Ejes de coordenadas Bloque 2. Geometría 2. Vectores 1. El plano como conjunto de puntos. Ejes de coordenadas Para representar puntos en un plano (superficie de dos dimensiones) utilizamos dos rectas graduadas y perpendiculares,

Más detalles

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano.

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano. Plano cartesiano El plano cartesiano se forma con dos rectas perpendiculares, cuyo punto de intersección se denomina origen. La recta horizontal recibe el nombre de eje X o eje de las abscisas y la recta

Más detalles

Mecánica Vectorial Cap. 3. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D.

Mecánica Vectorial Cap. 3. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Mecánica Vectorial Cap. 3 Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Cómo tener éxito en Matemáticas? Paso 1: El trabajo duro triunfa sobre el talento natural. Paso 2: Mantenga una mente abierta.

Más detalles

Estática. Equilibrio de una Partícula

Estática. Equilibrio de una Partícula Estática 3 Equilibrio de una Partícula Objetivos Concepto de diagrama de cuerpo libre para una partícula. Solución de problemas de equilibrio de una partícula usando las ecuaciones de equilibrio. Índice

Más detalles

Curso 2013-1er. semestre. Fluidos más reales

Curso 2013-1er. semestre. Fluidos más reales Fluidos más reales Ismael Núñez 1. Viscosidad El modelo de los fluidos en los que se puede despreciar el rozamiento interno entre sus partes y con las paredes que lo contienen, es útil pero en muchos casos

Más detalles

MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares.

MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares. ESTUDIO ANALÍTICO DE LA LÍNEA RECTA Y APLICACIONES SEMESTRE II VERSIÓN 03 FECHA: Septiembre 29 de 2011 MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA LOGROS: 1. Hallar la dirección, la

Más detalles

Campo Eléctrico. Fig. 1. Problema número 1.

Campo Eléctrico. Fig. 1. Problema número 1. Campo Eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica

Más detalles

Ix ʹ = 8 mb 2, I. c) El momento de inercia respecto de un eje perpendicular al plano de la figura y que pase por una de las masas (eje z ʹ ) será:

Ix ʹ = 8 mb 2, I. c) El momento de inercia respecto de un eje perpendicular al plano de la figura y que pase por una de las masas (eje z ʹ ) será: CALCULO DE MOMENTOS DE INECIA Se unen cuatro partículas de masa m mediante varillas sin masa, formando un rectángulo de lados a b. El sistema gira alrededor de un eje en el plano de la figura que pasa

Más detalles

Prueba 1: Cuestiones sobre campos gravitatorio, eléctrico y electromagnetismo

Prueba 1: Cuestiones sobre campos gravitatorio, eléctrico y electromagnetismo Prueba 1: Cuestiones sobre campos gravitatorio, eléctrico y electromagnetismo 1. El módulo de la intensidad del campo gravitatorio en la superficie de un planeta de masa M y de radio R es g. Cuál será

Más detalles

Principios de hidrodinámica

Principios de hidrodinámica Introducción Principios de hidrodinámica Adaptación: Prof. Hugo Chamorro HIDRODINÁMICA Mecánica y Fluidos Hidrodinámica Estudia los fluidos en movimientos, es decir, el flujo de los fluidos. Este estudio

Más detalles

Funciones de varias variables.

Funciones de varias variables. Funciones de varias variables. Definición. Hasta ahora se han estudiado funciones de la forma y = f (x), f :D Estas funciones recibían el nombre de funciones reales de variable real ya que su valor y dependía

Más detalles

GEOMETRÍA EN EL ESPACIO.

GEOMETRÍA EN EL ESPACIO. GEOMETRÍA EN EL ESPACIO. Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas real de con Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura real de con Índice real de con real de con.

Más detalles

Aplicaciones de las integrales dobles

Aplicaciones de las integrales dobles Aplicaciones de las integrales dobles Las integrales dobles tienen multiples aplicaciones en física en geometría. A continuación damos una relación de alguna de ellas.. El área de una región plana R en

Más detalles

SESIÓN 4: ESPACIOS VECTORIALES

SESIÓN 4: ESPACIOS VECTORIALES SESIÓN 4: ESPACIOS VECTORIALES Un espacio vectorial sobre un campo (como el cuerpo de los números reales o los números complejos) es un conjunto no vacío, dotado de dos operaciones para las cuales será

Más detalles

RESISTENTE AL ESFUERZO CORTANTE DE LOS SUELOS. Ing. MSc. Luz Marina Torrado Gómez Ing. MSc. José Alberto Rondón

RESISTENTE AL ESFUERZO CORTANTE DE LOS SUELOS. Ing. MSc. Luz Marina Torrado Gómez Ing. MSc. José Alberto Rondón RESISTENTE AL ESFUERZO CORTANTE DE LOS SUELOS Ing. MSc. Luz Marina Torrado Gómez RESISTENTE AL ESFUERZO CORTANTE DE LOS SUELOS SOLICITACIONES INTERNAS QUE SE GENERAN EN UN SUELO Tensiones normales, : Pueden

Más detalles

Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas II.- Factorización y Operaciones con las Fracciones III.- Funciones y Relaciones

Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas II.- Factorización y Operaciones con las Fracciones III.- Funciones y Relaciones Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas 1.- Adición y sustracción 2.- Multiplicación 3.- División 4.- Productos especiales 5.- Triángulo de Pascal II.- Factorización y Operaciones

Más detalles

PRÁCTICA No. 5 Estados del flujo en un canal

PRÁCTICA No. 5 Estados del flujo en un canal PRÁCTICA No. 5 Estados del flujo en un canal Laboratorio de Hidráulica I OBJETIVO: Observar la generación y el comportamiento de diversos estados del flujo en un canal. INTRODUCCIÓN Para poder comprender

Más detalles

1. DIFERENCIABILIDAD EN VARIAS VARIABLES

1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1 1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1.1. DERIVADAS DIRECCIONALES Y PARCIALES Definición 1.1. Sea f : R n R, ā R n y v R n. Se define la derivada direccional de f en ā y en la dirección de v como:

Más detalles

Unidad 9. Fuerza magnética y Campo Magnético

Unidad 9. Fuerza magnética y Campo Magnético Unidad 9. Fuerza magnética y Campo Magnético Física 2 Basado en Bauer/Westfall 2011, Resnick 1995 y Ohanian/Markert, 2009 El alambre recto conduce una corriente I grande, y hace que las pequeñas partículas

Más detalles

UNIDAD I PROPIEDADES LOS FLUIDOS. Identificar los conceptos y propiedades de los fluidos en general.

UNIDAD I PROPIEDADES LOS FLUIDOS. Identificar los conceptos y propiedades de los fluidos en general. UNIDAD I PROPIEDADES LOS FLUIDOS Objetivos de aprendizaje Identificar los conceptos y propiedades de los fluidos en general. Antecedentes históricos. Arquímides (287-221 a.c) Leyes de la flotación. Leonardo

Más detalles

IV UNIDAD TRANSFERENCIA DE MASA

IV UNIDAD TRANSFERENCIA DE MASA IV UNIDAD TRANSFERENCIA DE MASA La transferencia de masa es la tendencia de uno o más componentes de una mezcla a transportarse desde una zona de alta concentración del o de los componentes a otra zona

Más detalles

TEMA 2: DERIVADA DE UNA FUNCIÓN

TEMA 2: DERIVADA DE UNA FUNCIÓN TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media

Más detalles

Con la ayuda de el dinamómetro implementamos el segundo método de aplicación y medición de fuerzas.

Con la ayuda de el dinamómetro implementamos el segundo método de aplicación y medición de fuerzas. EXPERIMENTO # 1: LEY DE HOOKE MEDICIÓN DE FUERZAS Objetivo: Estudios de las propiedades de un dinamómetro mediante la aplicación de fuerza conocidas. Fundamento Teórico: El concepto de fuerza es definido

Más detalles

APUNTES DE MATEMÁTICAS 1º BACHILLERATO TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS

APUNTES DE MATEMÁTICAS 1º BACHILLERATO TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS APUNTES DE MATEMÁTICAS TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS º BACHILLERATO ÍNDICE. ECUACIONES DE LA RECTA EN EL PLANO.... 4.. SISTEMAS DE REFERENCIA... 4.. COORDENADAS DE UN PUNTO... 4.3. COORDENADAS

Más detalles

TEMA 6: CINÉTICA HETEROGÉNEA FLUIDO - FLUIDO CQA-6/1

TEMA 6: CINÉTICA HETEROGÉNEA FLUIDO - FLUIDO CQA-6/1 TEMA 6: CINÉTICA HETEROGÉNEA FLUIDO - FLUIDO CQA-6/1 PLANTEAMIENTO DEL MODELO CINÉTICO Objetivos de las reacciones heterogéneas fluido-fluido:! Obtener productos valiosos mediante reacciones gas-líquido!

Más detalles

SEMINARIO 1: ELEMENTOS DIFERENCIALES DE LÍNEA, SUPERFICIE Y VOLUMEN

SEMINARIO 1: ELEMENTOS DIFERENCIALES DE LÍNEA, SUPERFICIE Y VOLUMEN SEMINARIO 1: ELEMENTOS DIFERENCIALES DE LÍNEA, SUPERFICIE Y VOLUMEN Sistemas de coordenadas 3D Transformaciones entre sistemas Integrales de línea y superficie SISTEMA COORDENADO CARTESIANO O RECTANGULAR

Más detalles

GEOMETRÍA ANALÍTICA DEL PLANO

GEOMETRÍA ANALÍTICA DEL PLANO GEOMETRÍA ANALÍTICA DEL PLANO 1 UNIDAD DIDÁCTICA 5: Geometría analítica del plano 1. ÍNDICE 1. Sistemas de referencia y coordenadas puntuales 2. Distancia entre dos puntos del plano 3. Coordenadas del

Más detalles

4. Mecánica Rotacional

4. Mecánica Rotacional 4. Mecánica Rotacional Cinemática Rotacional: (Conceptos básicos) Radián Velocidad angular Aceleración angular Frecuencia y período Velocidad tangencial Aceleración tangencial Aceleración centrípeta Torca

Más detalles

Tema 1: ELECTROSTÁTICA EN EL VACÍO. 2.- Ley de Coulomb. Campo de una carga puntual.

Tema 1: ELECTROSTÁTICA EN EL VACÍO. 2.- Ley de Coulomb. Campo de una carga puntual. 1.- Carga eléctrica. Propiedades. 2.- Ley de Coulomb. Campo de una carga puntual. 3.- Principio de superposición. 4.- Distribuciones continuas de carga. 5.- Ley de Gauss. Aplicaciones. 6.- Potencial electrostático.

Más detalles

Campos Electromagnéticos Estáticos

Campos Electromagnéticos Estáticos Capítulo 3: Campos Electromagnéticos Estáticos Flujo de un campo vectorial Superficie cerrada Ley de Gauss Karl Friedrich Gauss (1777-1855) Flujo de E generado por una carga puntual Superficie arbitraria

Más detalles

Expresiones de velocidad y aceleración en distintas coordenadas

Expresiones de velocidad y aceleración en distintas coordenadas Apéndice B Expresiones de velocidad y aceleración en distintas coordenadas Índice B.1. Coordenadas cartesianas............... B.1 B.2. Coordenadas cilíndricas y polares......... B.2 B.3. Coordenadas esféricas................

Más detalles

Tema 5: Sistemas de Ecuaciones Lineales

Tema 5: Sistemas de Ecuaciones Lineales Tema 5: Sistemas de Ecuaciones Lineales Eva Ascarza-Mondragón Helio Catalán-Mogorrón Manuel Vega-Gordillo Índice 1 Definición 3 2 Solución de un sistema de ecuaciones lineales 4 21 Tipos de sistemas ecuaciones

Más detalles

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250)

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico Departamento de Matemática Aplicada ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Semestre 1-2011 Mayo 2011 Álgebra Lineal y Geometría

Más detalles

Boletín de Geometría Analítica

Boletín de Geometría Analítica Boletín de Geometría Analítica 1) Si las coordenadas de los vectores a y b son (3,5) y (-2,1) respectivamente, obtén las coordenadas de: a) -2 a + 1/2 b b) 1/2 ( a +b ) - 2/3 ( a -b ) 2) Halla el vector

Más detalles

[a] Se sabe que la velocidad está relacionada con la longitud de onda y con la frecuencia mediante: v = f, de donde se deduce que = v f.

[a] Se sabe que la velocidad está relacionada con la longitud de onda y con la frecuencia mediante: v = f, de donde se deduce que = v f. Actividad 1 Sobre el extremo izquierdo de una cuerda tensa y horizontal se aplica un movimiento vibratorio armónico simple, perpendicular a la cuerda, que tiene una elongación máxima de 0,01 m y una frecuencia

Más detalles

P. A. U. LAS PALMAS 2005

P. A. U. LAS PALMAS 2005 P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica

Más detalles

Fluidos y Sistemas de Bombeo Contenido

Fluidos y Sistemas de Bombeo Contenido Fluidos y Sistemas de Bombeo Contenido 1. Conceptos Fundamentales. Propiedades de sustancias puras Agua. Ecuaciones de Conservación 4. Bombas Jairo Andrés s Sandoval León, M.Sc. 1. CONCEPTOS FUNDAMENTALES.

Más detalles

MECÁNICA DE FLUIDOS. CALSE 1: Introducción y propiedades de los fluidos. Julián David Rojo Hdz. I.C. Msc. Recursos Hidráulicos

MECÁNICA DE FLUIDOS. CALSE 1: Introducción y propiedades de los fluidos. Julián David Rojo Hdz. I.C. Msc. Recursos Hidráulicos MECÁNICA DE FLUIDOS CALSE 1: Introducción y propiedades de los fluidos Julián David Rojo Hdz. I.C. Msc. Recursos Hidráulicos CONTENIDO 1.1: Definición de fluidos 1.2:Mecánica de fluidos 1.3:Propiedades

Más detalles

3. 2. Pendiente de una recta. Definición 3. 3.

3. 2. Pendiente de una recta. Definición 3. 3. 3.. Pendiente de una recta. Definición 3. 3. Se llama Angulo de Inclinación α de una recta L, al que se forma entre el eje en su dirección positiva y la recta L, cuando esta se considera dirigida hacia

Más detalles

3. Resolver triángulos rectángulos utilizando las definiciones de las razones trigonométricas.

3. Resolver triángulos rectángulos utilizando las definiciones de las razones trigonométricas. Contenidos mínimos MI. 1. Contenidos. Bloque I: Aritmética y Álgebra. 1. Conocer las clases de números, los conjuntos numéricos: naturales, enteros, racionales, reales y complejos y las propiedades que

Más detalles

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIDAD III. HIDROCINEMÁTICA Introducción. La hidrocinemática o cinemática de los líquidos se ocupa del estudio de las partículas que integran

Más detalles

UNIDAD DIDÁCTICA 5: Geometría analítica del plano

UNIDAD DIDÁCTICA 5: Geometría analítica del plano UNIDAD DIDÁCTICA 5: Geometría analítica del plano 1. ÍNDICE 1. Sistemas de referencia y coordenadas puntuales 2. Distancia entre dos puntos del plano 3. Coordenadas del punto medio de un segmento 4. La

Más detalles

DIFERENCIA ENTRE FLUIDOS Y SÓLIDOS

DIFERENCIA ENTRE FLUIDOS Y SÓLIDOS DIFERENCIA ENTRE FLUIDOS Y SÓLIDOS Se le llama fluido a toda aquella sustancia continua que puede fluir. Los fluidos pueden ser gaseosos y líquidos. Esta es la diferencia fundamental entre un sólido, cuya

Más detalles

Introducción. Condensadores

Introducción. Condensadores . Introducción Un condensador es un dispositivo que sirve para almacenar carga y energía. Está constituido por dos conductores aislados uno de otro, que poseen cargas iguales y opuestas. Los condensadores

Más detalles

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones. Producto escalar de vectores. Aplicaciones Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento

Más detalles

Coordenadas polares en el plano. Coordenadas ciĺındricas y esféricas en el espacio. Coordenadas... Coordenadas... Coordenadas...

Coordenadas polares en el plano. Coordenadas ciĺındricas y esféricas en el espacio. Coordenadas... Coordenadas... Coordenadas... En el estudio de los conjuntos y las funciones es fundamental el sistema que se utilize para representar los puntos. Estamos acostumbrados a utilizar la estructura de afín o de vectorial de R n, utilizando

Más detalles

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas.

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Introducción y ecuaciones que rigen la propagación del oleaje. La propagación de oleaje en un fluido es un proceso no lineal. Podemos tratar

Más detalles

Módulo 3: Fluidos reales

Módulo 3: Fluidos reales Módulo 3: Fluidos reales 1 Fluidos reales Según la ecuación de Bernouilli, si un fluido fluye estacionariamente (velocidad constante) por una tubería horizontal estrecha y de sección transversal constante,

Más detalles

Fundamentos de Hidrodinámica

Fundamentos de Hidrodinámica Fundamentos de Hidrodinámica Biofísica del Sistema Cardiovascular Matías Puello Chamorro http://matiaspuello.wordpress.com/ 20 de enero de 2015 Índice 1. Introducción 3 2. Dinámica de Fluidos 4 2.1. Definición

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO Página 133 REFLEXIONA Y RESUELVE Relaciones trigonométricas en el triángulo Halla el área de este paralelogramo en función del ángulo a: cm a cm Área = sen a = 40 sen a cm Halla

Más detalles

PROPIEDADES DE LOS FLUIDOS

PROPIEDADES DE LOS FLUIDOS PROPIEDADES DE LOS FLUIDOS CRUDO Objetivo: Determinar las propiedades importantes del Crudo, tales como la Densidad, Gravedad API, Viscosidad Cinemática y Viscosidad Dinámica; utilizando diferentes métodos.

Más detalles

Valores y Vectores Propios

Valores y Vectores Propios Valores y Vectores Propios Departamento de Matemáticas, CSI/ITESM de abril de 9 Índice 9.. Definiciones............................................... 9.. Determinación de los valores propios.................................

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

Derivadas Parciales y Derivadas Direccionales

Derivadas Parciales y Derivadas Direccionales Tema 3 Derivadas Parciales y Derivadas Direccionales En este tema y en el siguiente presentaremos los conceptos fundamentales del Cálculo Diferencial para funciones de varias variables. Comenzaremos con

Más detalles

Mecánica de Fluidos. Análisis Diferencial

Mecánica de Fluidos. Análisis Diferencial Mecánica de Fluidos Análisis Diferencial Análisis Diferencial: Descripción y caracterización del flujo en función de la descripción de una partícula genérica del flujo. 1. Introducción 2. Movimiento de

Más detalles

Curvas en paramétricas y polares

Curvas en paramétricas y polares Capítulo 10 Curvas en paramétricas y polares Introducción Después del estudio detallado de funciones reales de variable real expresadas en forma explícita y con coordenadas cartesianas, que se ha hecho

Más detalles

Función lineal y afín

Función lineal y afín Función lineal y afín Objetivos 1. Comprender el concepto de ejes de coordenadas 2. Comprender el concepto de función 3. Obtener información a partir de la gráfica de una función 4. Manejar la función

Más detalles

Preguntas definitivas Capítulo 1 ESTRUCTURA Y GEOMETRÍA CRISTALINA

Preguntas definitivas Capítulo 1 ESTRUCTURA Y GEOMETRÍA CRISTALINA Ciencia de Materiales. Estructura y Geometría Cristalina. 1.1 Preguntas definitivas Capítulo 1 ESTRUCTURA Y GEOMETRÍA CRISTALINA Ciencia de Materiales. Estructura y Geometría Cristalina. 1.2 PREGUNTA 1.1

Más detalles

Física General I. Curso 2014 - Primer semestre Turno Tarde. Contenidos de las clases dictadas

Física General I. Curso 2014 - Primer semestre Turno Tarde. Contenidos de las clases dictadas Física General I Curso 2014 - Primer semestre Turno Tarde Contenidos de las clases dictadas 14/3 - Introducción: qué es la Física, áreas de la Física y ubicación de la Mecánica Newtoniana en este contexto,

Más detalles

Objetivo: Aplicar la ecuación Hagen- Poiseuille en el viscosímetro de de OSTWALD-FENSKE para líquidos transparentes, el flujo es por gravedad.

Objetivo: Aplicar la ecuación Hagen- Poiseuille en el viscosímetro de de OSTWALD-FENSKE para líquidos transparentes, el flujo es por gravedad. Objetivo: Aplicar la ecuación Hagen- Poiseuille en el viscosímetro de de OSTWALD-FENSKE para líquidos transparentes, el flujo es por gravedad.. La Ecuación de Hagen- Poiseuille describe la relación entre

Más detalles

Figura 3.-(a) Movimiento curvilíneo. (b) Concepto de radio de curvatura

Figura 3.-(a) Movimiento curvilíneo. (b) Concepto de radio de curvatura Componentes intrínsecas de la aceleración: Componentes tangencial y normal Alfonso Calera Departamento de Física Aplicada. ETSIA. Albacete. UCLM En muchas ocasiones el análisis del movimiento es más sencillo

Más detalles

FÍSICA. 3- Un electrón y un protón están separados 10 cm cuál es la magnitud y la dirección de la fuerza sobre el electrón?

FÍSICA. 3- Un electrón y un protón están separados 10 cm cuál es la magnitud y la dirección de la fuerza sobre el electrón? ANEXO 1. FÍSICA. 1- Compara la fuerza eléctrica y la fuerza gravitacional entre: a- Dos electrones. b- Un protón y un electrón. Carga del electrón: e = 1,6x10-19 C Masa del protón: 1,67x10-27 Kg Masa del

Más detalles

VOLUMENES DE SÓLIDOS DE REVOLUCION

VOLUMENES DE SÓLIDOS DE REVOLUCION OLUMENES DE SÓLIDOS DE REOLUCION Los sólidos de revolución son sólidos que se generan al girar una región plana alrededor de un eje. Por ejemplo: el cono es un sólido que resulta al girar un triángulo

Más detalles

Anexo C. Introducción a las series de potencias. Series de potencias

Anexo C. Introducción a las series de potencias. Series de potencias Anexo C Introducción a las series de potencias Este apéndice tiene como objetivo repasar los conceptos relativos a las series de potencias y al desarrollo de una función ne serie de potencias en torno

Más detalles

Momento angular o cinético

Momento angular o cinético Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x

Más detalles

La separación de las especies minerales se produce mediante la aplicación selectiva de fuerzas.

La separación de las especies minerales se produce mediante la aplicación selectiva de fuerzas. MINERALURGIA: Es la rama de la ciencia de los materiales, que se encarga de estudiar los principios físicos y los procesos a través de los cuales se realiza la separación y/o el beneficio de las diferentes

Más detalles

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección convección El modo de transferencia de calor por convección se compone de dos mecanismos de transporte, que son, la transferencia de energía debido al movimiento aleatorio de las moléculas (difusión térmica)

Más detalles

z zz xy yx Figura 7.1: Esfuerzos sobre un elemento de fluido.

z zz xy yx Figura 7.1: Esfuerzos sobre un elemento de fluido. 87 Capítulo 7 Flujo Viscoso Se analiará en este capítulo las ecuaciones diferenciales de movimiento que gobiernan el movimiento de un fluido viscoso µ 0. Se considerarán en el desarrollo de estas ecuaciones

Más detalles

Curso de Álgebra Lineal

Curso de Álgebra Lineal Curso de Álgebra Lineal 1. NÚMEROS COMPLEJOS 1.1 Definición, origen y operaciones fundamentales con números complejos Definición. Un número complejo, z, es una pareja ordenada (a, b) de números reales

Más detalles

Combinación Lineal. Departamento de Matemáticas, CCIR/ITESM. 10 de enero de 2011

Combinación Lineal. Departamento de Matemáticas, CCIR/ITESM. 10 de enero de 2011 Combinación Lineal Departamento de Matemáticas, CCIR/ITESM 10 de enero de 011 Índice.1. Introducción............................................... 1.. Combinación lineal entre vectores...................................

Más detalles

SISTEMA DE UNIDADES FÍSICAS. Ing. Ronny Altuve

SISTEMA DE UNIDADES FÍSICAS. Ing. Ronny Altuve UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE INGENIERÍA Escuela de Industrial/Computación SISTEMA DE UNIDADES FÍSICAS Elaborado por: Ing. Ronny Altuve Ciudad Ojeda, Mayo de 2015 CONCEPTOS BÁSICOS Medida Magnitud

Más detalles

MATEMATICA III Carácter: Obligatoria

MATEMATICA III Carácter: Obligatoria UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL MATEMATICA III Carácter: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ciencias Básicas CODIGO SEMESTRE DE CREDITO HT HP

Más detalles

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano.

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano. CAPÍTULO El plano vectorial Consideremos P como el plano intuitivo de puntos: A,,C..... El espacio vectorial de los vectores Definición. Vectores fijos Dado dos puntos cualesquiera A e del espacio nos

Más detalles

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA ESCUELA BÁSICA DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA ESCUELA BÁSICA DEPARTAMENTO DE MATEMÁTICA 0 TIPO DE 0 er PROPÓSITO Con este curso, ubicado en el tercer semestre del plan de estudios, se da continuidad a la formación básica obtenida con los cursos iniciales. En el mismo, se tratan contenidos

Más detalles

Ecuación de la Recta

Ecuación de la Recta PreUnAB Clase # 10 Agosto 2014 Forma La ecuación de la recta tiene la forma: y = mx + n con m y n constantes reales, m 0 Elementos de la ecuación m se denomina pendiente de la recta. n se denomina intercepto

Más detalles

Transferencia de Calor por convección Natural CAPÍTULO 3 DE CALOR POR CONVECCIÓN NATURAL. En convección natural el flujo resulta solamente de la

Transferencia de Calor por convección Natural CAPÍTULO 3 DE CALOR POR CONVECCIÓN NATURAL. En convección natural el flujo resulta solamente de la CAPÍTULO 3 TRANSFERENCIA DE CALOR POR CONVECCIÓN NATURAL 3.1 Definición de Convección Natural. En convección natural el flujo resulta solamente de la diferencia de temperaturas del fluido en la presencia

Más detalles

Tema 5. Propiedades de transporte

Tema 5. Propiedades de transporte Tema 5 Propiedades de transporte 1 TEMA 5 PROPIEDADES DE TRANSPORTE 1. TEORÍA CINÉTICA DE LOS GASES POSTULADOS DE LA TEORÍA CINÉTICA DE LOS GASES INTERPRETACIÓN CINÉTICO MOLECULAR DE LA PRESIÓN Y LA TEMPERATURA

Más detalles

Cálculo diferencial DERIVACIÓN

Cálculo diferencial DERIVACIÓN DERIVACIÓN Definición de límite Entorno Definición. Se le llama entorno o vecindad de un punto a en R, al intervalo abierto (a - δ, a + δ ) = {a a - δ < x < a + δ }, en donde δ es semiamplitud a radio

Más detalles

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006 Física III año 26 CINEMATICA MECÁNICA CLÁSICA La cinemática estudia el movimiento de los cuerpos, sin tener en cuenta las causas que lo producen. Antes de continuar establezcamos la diferencia entre un

Más detalles

13. GEOMETRÍA ANALÍTICA EN R 3

13. GEOMETRÍA ANALÍTICA EN R 3 ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA 13. GEOMETRÍA ANALÍTICA EN R 3 I. Generalidades sobre Geometría analítica en R 3 - II. Ecuaciones

Más detalles