INSTRUCTIVO PARA TUTORÍAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INSTRUCTIVO PARA TUTORÍAS"

Transcripción

1 INSTRUCTIVO PARA TUTORÍAS Las tutorías corresponen a los espacios acaémicos en los que el estuiante el Politécnico Los Alpes puee profunizar y reforzar sus conocimientos en iferentes temas e cara al eamen e amisión e la Universia Nacional y/o Eamen e Estao ICFES Saber. Las tutorías tienen un límite estricto e cupos y para la asistencia a este espacio es inispensable la INSCRIPCIÓN PREVIA, aemás se eben tener en cuenta los siguientes aspectos:. Asistir puntualmente a la tutoría. Después e 0 minutos, bajo ningún argumento el ocente permitirá el ingreso el estuiante.. Leer la siguiente tabla y cumplir con los prerrequisitos establecios que en ella se ispongan. Asignatura: MATEMÁTICAS Nombre e la Tutoría: CONCEPTO DE DERIVADA Tema: CÁLCULO Conceptos que el estuiante ebe manejar: OPERACIONES BÁSICAS, VALOR DE UNA EXPRESIÓN EN UN PUNTO. Documento Base: Instrucciones: Realice un cuaro resumen e las fórmulas para erivar que aparecen en el ocumento (aparecen como cuaros resaltaos con la inicación regla ).

2 DERIVADAS ALGEBRAICAS DERIVADAS ALGEBRAICAS Entiénase la erivaa como la peniente e la recta tangente a la función en un punto ao, lo anterior implica que la función ebe eistir en ese punto para poer trazar una recta tangente en él... DIFERENCIACIÓN NORMAL La erivaa se puee conocer como un caso particular el límite. Para conocer numéricamente el valor e la peniente e una función en un punto ao es necesario resolver la ecuación: Peniente en P Lim h 0 f ( + h) f ( ) h Para lo cual hay necesia e utilizar una calculaora y evaluar la ecuación en valores cercanos a cero (0). A lo anterior se le conoce como el métoo numérico, utilizao para conocer la peniente e la ecuación e grao menor, pero eiste lo que se llama iferenciación formal para resolver ecuaciones e grao superior... FUNCIONES POLINOMIALES Y SUS DERIVADAS Eisten los conocios monomios y polinomios, los primeros contiene solamente una epresión e la variable, y los segunos corresponen a una suma finita e monomios.

3 Sea f ( ) Derivaa una función e. Si el limite y f ' ( ) Lim h 0 f ( + h) f ( ) h Eiste y es finito, iremos que este límite es la erivaa e ƒ respecto a y que ƒ es iferenciable en. A continuación se estuiaran algunas reglas para iferenciación: Derivaa e una Constante Regla No.. La erivaa e una constante es cero El significao geométrico e esta afirmación es el hecho que la peniente e la recta c, para cualquier valor e, es cero. Derivaa e una potencia entera positiva Potencias enteras positivas e Regla No.. Si n es un número entero positivo, entonces: n n n

4 Deucción: Entonces n ( ) f y f ( + ) f ( ) Como n es un número entero positivo, se puee aplicar: ( ) (... ) a b a b a + a b + + ab + b n n n n n n Done a +, b, a b, que reemplazao en la ecuación anterior a: y n ( + ) ( ) ( ) ( ) ( )... ( ) n n n n n ( ) y y n n n n ( ( + ) + ( + ) ( + ) + ) Hacieno que 0, y y Lim 0 (( 0 n ) ( 0 n )... ( 0 n ) ) n y y y n n n n n (... ) n Ejemplos.: a.) Derivar la epresión: 5 4 ( ) 5 5

5 b.) Derivar la epresión: ( ) Derivaa e una Constante por una Función Constante por una función Regla No.. Si u f () es cualquier función iferenciable e, y c es una constante, entonces: ( c u) u c La regla se resume en el hecho que la erivaa e una constante por una función es la constante multiplicaa por la erivaa e la función. Geométricamente hablano significa que si multiplicamos la orenaa e una función por un valor cualquiera, estamos multiplicano por ese mismo número el valor e la peniente. Deucción: ( cu) ( cu) ( cu) cf Lim 0 f Lim c 0 f c Lim 0 ( + ) cf ( ) + f + f u ( cu) c ( ) ( ) ( ) ( ) Aplicano la efinición e Derivaa. Factorizano la constante Aplicano límite e la constante Remplazano el limite por la efinición e la erivaa.

6 Ejemplo: Derivar la epresión ( 7 ) 7 ( ) Por tratarse e una constante. 5 4 ( 7 ) 7( 5 ) 4 ( 7 5 ) 5 Aplicano la erivaa e la potencia. Realizano el proucto. Derivaa e una Suma Regla e la suma Si u y v son funciones iferenciables e, entonces la suma u + v es una función iferenciable e, y Regla No..4 ( u + v) u + v Para toos los valores e en que eistan las erivaas e u y v La iea es que si u y v tiene erivaas en el punto, entonces sus suma también tiene erivaa en y correspone a la suma e las erivaas e u y v en. Análogamente, la erivaa e la suma e cualquier número finito e funciones iferenciales es la suma e sus erivaas. Deucción : u + v y + y u + u) + ( v + v) f f ( ) ( + ) ( Sumano en caa término.

7 f ( + ) f ( ) ( + ) ( ) u + v Restano u + v y u v f f + y y ( u + v) Lim Lim 0 0 y u v Lim + Lim 0 0 Diviieno término a término por la epresión Aplicano el límite cuano 0 Por las propieaes e los límites. Ejemplo: Derivar la epresión y y ( ) + ( 7 ) ( 5) + ( 4) Derivano caa término y así se puee aplicar para cualquier número finito e términos. Ejercicios Propuestos: : Daa f ( ), obtener f ( ) 4. f ( ) 9. ( ) 5 4 t t f ( t ) t ( ) 5. f ( ) 6. ( ) f + C t f + + C f f ( ) + 8. f ( ) f ( ) C + f 5 0. ( )

8 .. PRODUCTOS POTENCIAS Y COCIENTES En esta sección estuiaremos a u y v como os funciones iferenciables e. Derivaa e un Proucto Regla el Proucto Regla No..5 El proucto e las funciones iferenciables u y v es iferenciable y: ( u v) u v + v u Al igual que para la suma, la erivaa el proucto únicamente eiste para aquellos valores en one eista la erivaa e u y la erivaa e v. y u v Por efinición y + ( u + u ) ( v + v ) Sumano y en ambos laos el igual y + u v + u v + v u + u v Realizano el proucto u v + v u + u v Restano uv en ambos laos. y v u v u + v + u Diviieno a ambos laos por. Cuano 0, u también lo hace, lo que se puee epresar en la forma: u u u Lim u Lim Lim Lim 0 0 Luego la epresión y se puee epresar en la forma: y v u v Lim Lim u + Lim v + Lim u y v u u + v

9 Al igual que para la suma, la erivaa el proucto únicamente eiste para aquellos valores en one eista la erivaa e u y la erivaa e v. En La figura anterior se representa gráficamente el significao e la regla el proucto. Hay que tener en cuenta que se trata e la función u multiplicaa por la erivaa e la función v. Ejemplo: Derivar f ( t ) t ( t ) u Si : u t t v v ( t ) t ( t ) ( t ) y v u Entonces: u + v t t t y t ( ) ( t ) t ( t ) + t + t t t t

10 Derivaa e Potencias enteras positivas e una función iferenciable Potencias enteras positivas e una función iferenciable Regla No.6 Si u es una función iferenciable e, y n es un n número entero positivo, entonces u es iferenciable, y: n n ( u ) n u u La ausencia el termino u e la ecuación invalia la iferenciación, por lo que hay que tener cuiao e incluir el iferencial e la ecuación. DERIVADA DE UN COCIENTE La razón o cociente u v e os polinomios en, no es en general un polinomio. Dicha razón es una función racional e. Regla el Cociente Regla No.7 En los puntos one v 0, el cociente u v e os funciones iferenciables, es también iferenciable y: u v v u ( u v ) v Como sucee en toas las ecuaciones vistas hasta el momento, la anterior regla tiene valor únicamente en aquellos puntos en os e las funciones u y v tengan valor y sean iferenciables.

11 Al igual que para la suma, la erivaa el cociente únicamente eiste para aquellos valores en one eista la erivaa e u y la erivaa e v. Ahora restano u v y + y ( u + u) ( v + v) u en ambos laos e la iguala se tiene: v ( v u + v u ) ( u v + u v ) ( ) ( ) u + u u v u u v v + v v v v + v v v + v Diviieno a ambos laos por se tiene. Cuano 0, se puee epresar: u v v u v v v ( + ) y ya que: u u v Lim ; Lim v ( ( + ) ) ( + ) ( + 0 ) Lim v v v Lim v Lim v v v v v v v Lim v Lim 0 0 Luego la epresión y se puee epresar en la forma: u v v u y y Lim Lim Lim v v u v v u y v ( ( + ) )

12 Ejemplo : Derivar y y u + Enunciao el problema u + Aplicano erivaa e una suma. v + 6 Enunciao el problema. v Aplicano erivaa e una suma ( + 6)( + ) ( + )( ) + 6 ( ) 4 4 ( ) ( ) ( + 6) y ( + 6) Aplicano la efinición e la erivaa e un cociente: Realizano las multiplicaciones inicaas. Factorizano y agrupano términos. Ejemplo : f + 6 para los Calcular las ecuaciones e las rectas tangentes a la función ( ) puntos y ; eterminar si estas rectas se cortan y calcular las coorenaas el punto e corte. La primera erivaa es: f ( ) +, que evaluaa para los os valores e, a los valores e las penientes e las rectas tangentes, así: ( ) ( ) ( ) f ( ) ( ) ( ) f Para conocer los valores e y en los os lugares inicaos, se procee e la siguiente manera:

13 Para ;, se tiene : f ( ) y f ( ) ( ), se tiene : f ( ) y f ( ) ( ) ( ) Para ; Para obtener las os ecuaciones e las rectas tangentes, se utiliza la forma m + b, así: Para, el valor e b se obtiene como ( ) b, el valor e b se obtiene como ( )( ) Para Luego las os ecuaciones son: 6 + b b b Para, la ecuación e la recta tangente es: 6 40, y Para, la ecuación e la recta tangente es: 8 Para eterminar si se cortan, se igualan entre si estas os ecuaciones : El valor e y corresponiente a, es: Luego las coorenaas el punto e corte son :, 6 Ejercicios Propuestos : En los siguientes ejercicios, aa ( ) y f, encontrar y :

14 5 y y 6 y ( + )( + ) 8 ( )( ) 9 y ( 7)( ) y En los siguientes ejercicios hallar la ecuación e la recta tangente a la función en el punto ao: a. f ( ) para (, 5 ) b. f ( ) + 5 para (, )

3 DERIVADAS ALGEBRAICAS

3 DERIVADAS ALGEBRAICAS DERIVADAS ALGEBRAICAS DERIVADAS ALGEBRAICAS Entiénase la erivaa como la peniente e la recta tangente a la función en un punto ao, lo anterior implica que la función ebe eistir en ese punto para poer trazar

Más detalles

3.1. DERIVADAS DE SEGUNDO ORDEN

3.1. DERIVADAS DE SEGUNDO ORDEN .. DERIVADAS DE SEGUNDO ORDEN La erivaa y ' f ' es la primera erivaa e y con respecto a, pero igualmente es posible realizar la erivaa e la erivaa, y y '' f ''. Lo que se conoce como la seguna erivaa e

Más detalles

DERIVADAS DE LAS FUNCIONES ELEMENTALES

DERIVADAS DE LAS FUNCIONES ELEMENTALES Universia Metropolitana Dpto. e Matemáticas Para Ingeniería Cálculo I (FBMI0) Proesora Aia Montezuma Revisión: Proesora Ana María Roríguez Semestre 08-09A DERIVADAS DE LAS FUNCIONES ELEMENTALES DERIVADAS

Más detalles

2.3 Reglas del producto, del cociente y derivadas de orden superior

2.3 Reglas del producto, del cociente y derivadas de orden superior SECCIÓN 2.3 Reglas el proucto, el cociente y erivaas e oren superior 119 2.3 Reglas el proucto, el cociente y erivaas e oren superior Encontrar la erivaa e una función por la regla el proucto. Encontrar

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS CAPÍTULO 6 FUNCIONES TRIGONOMÉTRICAS 6.1 FUNCIONES TRASCENDENTES (Áreas 1, y ) Las funciones trascenentes se caracterizan por tener lo que se llama argumento. Un argumento es el número o letras que lo

Más detalles

CALCULO DIFERENCIAL Escuela Colombiana de Ingeniería 5.1. DERIVADA DE LA FUNCIÓN EXPONENCIAL ( ) f ( x) = a Enunciado. x h x. x h.

CALCULO DIFERENCIAL Escuela Colombiana de Ingeniería 5.1. DERIVADA DE LA FUNCIÓN EXPONENCIAL ( ) f ( x) = a Enunciado. x h x. x h. Escela Colombiana e Ingeniería.. DERIVADA DE LA FUNCIÓN EXPONENCIAL Aplicano la efinición e la erivaa se tiene: f a Ennciao. + f + f a a f ' Lim Lim Aplicano la efinición e la erivaa. 0 0 a a a a ( a f

Más detalles

2.4 La regla de la cadena

2.4 La regla de la cadena 0 CAPÍTULO Derivación. La regla e la caena Encontrar la erivaa e una función compuesta por la regla e la caena. Encontrar la erivaa e una función por la regla general e la potencia. Simplificar la erivaa

Más detalles

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x)

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x) . Hallar la erivaa por efinición e f ( ) Solución: para resolver la erivaa aplicaremos la efinición e la erivaa: f '( ) lim 0 f ( ) f ( ) f ( ) f '( ) lim 0 ara allar la erivaa meiante efinición ebemos

Más detalles

UNIDAD I CÁLCULO DIFERENCIAL

UNIDAD I CÁLCULO DIFERENCIAL Vicerrectorao Acaémico Faculta e Ciencias Aministrativas Licenciatura en Aministración Mención Gerencia y Mercaeo Unia Curricular: Matemática I UNIDAD I CÁLCULO DIFERENCIAL Elaborao por: Ing. Ronny Altuve

Más detalles

2.5 Derivación implícita

2.5 Derivación implícita SECCIÓN.5 Derivación implícita 4.5 Derivación implícita Distinguir entre funciones eplícitas e implícitas. Hallar la erivaa e una función por erivación implícita. E X P L O R A C I Ó N Representación gráfica

Más detalles

Regla de la cadena. f (x) 1 x 3. d dx x3 1 x 3. (3x 2 ) 3 x. f(x) 3 d dx ln x 3. 1 x. para x70, d dx ln x 1. para x60, d dx ln( x) 1x.

Regla de la cadena. f (x) 1 x 3. d dx x3 1 x 3. (3x 2 ) 3 x. f(x) 3 d dx ln x 3. 1 x. para x70, d dx ln x 1. para x60, d dx ln( x) 1x. 74 CAPÍTULO 3 La erivaa EJEMPLO 4 Diferencie f ()=ln 3. Regla e la caena Solución Debio a que 3 ebe ser positiva, se entiene que 70. Así, por (3), con u= 3, tenemos Solución alterna: Por iii) e las lees

Más detalles

FUNCIONES IMPLÍCITAS. y= e tanx cos x. ln x. y= x x CAPÍTULO 10. 10.1 FUNCIONES IMPLÍCITAS (Áreas 1, 2 y 3)

FUNCIONES IMPLÍCITAS. y= e tanx cos x. ln x. y= x x CAPÍTULO 10. 10.1 FUNCIONES IMPLÍCITAS (Áreas 1, 2 y 3) CAPÍTULO 10 FUNCIONES IMPLÍCITAS 10.1 FUNCIONES IMPLÍCITAS (Áreas 1, 3) En el curso e Precálculo el 4º semestre se vieron iferentes clasificaciones e las funciones, entre ellas las funciones eplícitas

Más detalles

() 25 de mayo de / 9

() 25 de mayo de / 9 DEFINICION. Una función es iferenciable en a si f (a) existe, y iremos que es iferenciable en un intervalo abierto si es iferenciable en caa uno e los puntos el intervalo. NOTA. Para las funciones que

Más detalles

La regla de la constante. DEMOSTRACIÓN Sea ƒ(x) c. Entonces, por la definición de derivada mediante el proceso de límite, se deduce que.

La regla de la constante. DEMOSTRACIÓN Sea ƒ(x) c. Entonces, por la definición de derivada mediante el proceso de límite, se deduce que. SECCIÓN. Reglas básicas e erivación razón e cambio 07. Reglas básicas e erivación razón e cambio Encontrar la erivaa e una función por la regla e la constante. Encontrar la erivaa e una función por la

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 3 Cálculo Diferencial en una variable 3.1 Introucción Analizaremos en este Tema los conceptos funamentales acerca e las erivaas e las funciones reales e variable real. En el tema siguiente estuiaremos

Más detalles

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella.

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella. DERIVADA Interpretación Geométrica Objetivo: Encontrar la peniente e la recta tangente a una curva en un punto ao e ella. Para precisar correctamente la iea e tangente a una curva en un punto, se utilizará

Más detalles

TEMA 1 INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES

TEMA 1 INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES TEMA 1 INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES 7 INTRODUCCIÓN El propósito e este tema es introucir a los alumnos en la terminología básica e las Ecuaciones Diferenciales eaminar brevemente como se

Más detalles

Información importante

Información importante Universia Técnica Feerico Santa María Departamento e Matemática Coorinación e Matemática I (MAT021) 1 er Semestre e 2010 Semana 9: Lunes 17 viernes 21 e Mayo Información importante El control Q2A es el

Más detalles

Cálculo I. Índice Reglas Fundamentales para el Cálculo de Derivadas. Julio C. Carrillo E. * 1. Introducción 1. 2.

Cálculo I. Índice Reglas Fundamentales para el Cálculo de Derivadas. Julio C. Carrillo E. * 1. Introducción 1. 2. 3.2. Reglas Funamentales para el Cálculo e Derivaas Julio C. Carrillo E. * Ínice 1. Introucción 1 2. Reglas básicas 3 3. El Álgebra e funciones erivables 4 4. Regla e la caena 8 * Profesor Escuela e Matemáticas,

Más detalles

4.1. DERIVADAS DE LAS FUNCIONES TRIGONOMETRICAS

4.1. DERIVADAS DE LAS FUNCIONES TRIGONOMETRICAS Escuela Colombiana e Ingeniería 4.. DERIVADAS DE LAS FUNCIONES TRIGONOMETRICAS Derivaa e y La erivaa e y se puee obtener como: y + Lim 0 Para calcular este límite se utilizan los siguientes conceptos previamente

Más detalles

2.3 Reglas del producto, del cociente y derivadas de orden superior

2.3 Reglas del producto, del cociente y derivadas de orden superior SECCIÓN.3 Reglas el proucto, el cociente erivaas e oren superior 119.3 Reglas el proucto, el cociente erivaas e oren superior Encontrar la erivaa e una función por la regla el proucto. Encontrar la erivaa

Más detalles

Regla de la cadena. Ejemplo 1. y = f (g(x)) Como las funciones son diferenciables son suaves.

Regla de la cadena. Ejemplo 1. y = f (g(x)) Como las funciones son diferenciables son suaves. 1 Regla e la caena Hasta aquí hemos erivao funciones que no son compuestas. El problema surge cuano tenemos una función que es compuesta, por ejemplo, igamos que el precio e la gasolina epene el precio

Más detalles

INSTRUCTIVO PARA TUTORÍAS

INSTRUCTIVO PARA TUTORÍAS INSTRUCTIVO PARA TUTORÍAS Las tutorías corresponden a los espacios académicos en los que el estudiante del Politécnico Los Alpes puede profundizar y reforzar sus conocimientos en diferentes temas de cara

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones CONCEPTOS ECUACIONES Una ecuación es una igualdad entre dos epresiones en las que aparece una o varias incógnitas. En

Más detalles

FÓRMULAS DE DERIVACIÓN

FÓRMULAS DE DERIVACIÓN SESIÓN Nº 1 Derivaas e Funciones Trigonométricas, Eponenciales y Logarítmicas Ahora correspone revisar las fórmulas principales e erivación y algunos ejemplos e aplicación. FÓRMULAS DE DERIVACIÓN 1) (

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE--4-M---7 CURSO: Matemática Básica SEMESTRE: Primero CÓDIGO DEL CURSO: TIPO DE EXAMEN: Eamen Final FECHA DE

Más detalles

LA DERIVADA UNIDAD III III.1 INCREMENTOS. y, esto es:

LA DERIVADA UNIDAD III III.1 INCREMENTOS. y, esto es: Página el Colegio e Matemáticas e la ENP-UNAM La erivaa Autor: Dr. José Manuel Becerra Espinosa LA DERIVADA UNIDAD III III. INCREMENTOS Se eine como incremento e la variable al aumento o isminución que

Más detalles

UNIVERSIDAD DIEGO PORTALES GUÍA N 11 CÁLCULO I. Profesor: Carlos Ruz Leiva DERIVADAS. Derivadas de orden superior. Ejemplos

UNIVERSIDAD DIEGO PORTALES GUÍA N 11 CÁLCULO I. Profesor: Carlos Ruz Leiva DERIVADAS. Derivadas de orden superior. Ejemplos UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS Profesor: Carlos Ruz Leiva GUÍA N CÁLCULO I DERIVADAS Derivaas e oren superior Ejemplos Hallar las siguientes

Más detalles

4.1 Antiderivadas o primitivas e integración indefinida

4.1 Antiderivadas o primitivas e integración indefinida 48 CAPÍTULO 4 Integración 4. Antierivaas o primitivas e integración inefinia Escribir la solución general e una ecuación iferencial. Usar la notación e la integral inefinia para las antierivaas o primitivas.

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS. S O L U C I Ó N y R Ú B R I C A

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS. S O L U C I Ó N y R Ú B R I C A ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS AÑO: 207 PERÍODO: PRIMER TÉRMINO MATERIA: Cálculo e una variable PROFESOR: EVALUACIÓN:

Más detalles

INSTRUCTIVO PARA TUTORÍAS

INSTRUCTIVO PARA TUTORÍAS INSTRUCTIVO PARA TUTORÍAS Las tutorías corresponden a los espacios académicos en los que el estudiante del Politécnico Los Alpes puede profundizar y reforzar sus conocimientos en diferentes temas de cara

Más detalles

Reglas de derivación (continuación)

Reglas de derivación (continuación) Derivaas Reglas e erivación Suma [f() + g()] = f () + g () Proucto Cociente [kf()] = kf () [f()g()] = f ()g() + f()g () [ ] f() = f ()g() f()g () g() g() Regla e la caena {f[g()]} = f [g()]g () {f(g[h()])}

Más detalles

4.1 Antiderivadas o primitivas e integración indefinida

4.1 Antiderivadas o primitivas e integración indefinida 48 CAPÍTULO 4 Integración 4. Antierivaas o primitivas e integración inefinia Escribir la solución general e una ecuación iferencial. Usar la notación e la integral inefinia para las antierivaas o primitivas.

Más detalles

1. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: y ' + y = 0

1. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: y ' + y = 0 Elaborao por: Jhonn Choquehuanca Lizarraga Ecuaciones Diferenciales e Primer oren Aplicaciones. Grafique la familia e curvas que representa la solución general e la ecuación iferencial: ' + = 0 Solución:

Más detalles

Examen Final de Precálculo (Mate 3171) Nombre 14 de diciembre de 2001

Examen Final de Precálculo (Mate 3171) Nombre 14 de diciembre de 2001 Eamen Final e Precálculo (Mate 7) Nombre e iciembre e 00 Escriba la letra que correspone a la mejor alternativa en el espacio provisto. (os puntos caa uno) ) Si la gráfica e f es la e la erecha entonces

Más detalles

2.1. Derivada de una función en un punto

2.1. Derivada de una función en un punto Capítulo 2 Diferenciación 1 2.1. Derivaa e una función en un punto Ritmo (o razón, o tasa) e cambio e una función en un momento ao. Peniente e la recta tangente. Aproximación por la peniente e las rectas

Más detalles

2.5 Derivación implícita

2.5 Derivación implícita SECCIÓN.5 Derivación implícita.5 Derivación implícita Distinguir entre funciones eplícitas e implícitas. Hallar la erivaa e una función por erivación implícita. EXPLORACIÓN Representación gráfica e una

Más detalles

V. 2 DISCUSIÓN DE UNA CURVA

V. 2 DISCUSIÓN DE UNA CURVA DISCUSIÓN DE ECUACIONES ALGEBRAICAS UNIDAD V Eisten dos problemas fundamentales en la Geometría Analítica:. Dada una ecuación hallar el lugar geométrico que representa.. Dado un lugar geométrico definido

Más detalles

Derivadas de orden superior e implícitas

Derivadas de orden superior e implícitas CDIN06_MAAL_Implícitas Versión: Septiembre 0 Revisor: Sanra Elvia Pérez Derivaas e oren superior e implícitas por Sanra Elvia Pérez Derivación implícita Las funciones que has estuiao hasta este momento

Más detalles

INSTRUCTIVO PARA TUTORÍAS

INSTRUCTIVO PARA TUTORÍAS INSTRUCTIVO PARA TUTORÍAS Las tutorías corresponden a los espacios académicos en los que el estudiante del Politécnico Los Alpes puede profundizar y reforzar sus conocimientos en diferentes temas de cara

Más detalles

MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS x = x - x y2 = f(x2) y = y - y y = f(x )

MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS x = x - x y2 = f(x2) y = y - y y = f(x ) Faculta e Contauría Aministración. UNAM Derivaa Autor: Dr. José Manuel Becerra Espinosa MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS Se eine como incremento e la variable al aumento o isminución que eperimenta,

Más detalles

3.2 DIVIDIR UN POLINOMIO POR x a. REGLA DE RUFFINI

3.2 DIVIDIR UN POLINOMIO POR x a. REGLA DE RUFFINI TEMA 3 ÁLGEBRA MATEMÁTICAS CCSSI 1º BACH 1 TEMA 3 ÁLGEBRA 3.1 DIVISIÓN DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio por otro monomio de grado inferior es un nuevo monomio cuyo grado es

Más detalles

Tema 8: Derivación. José M. Salazar. Noviembre de 2016

Tema 8: Derivación. José M. Salazar. Noviembre de 2016 Tema 8: Derivación. José M. Salazar Noviembre e 2016 Tema 8: Derivación. Lección 9. Derivación: teoría funamental. Lección 10. Aplicaciones e la erivación. Ínice 1 Derivaas. Principales nociones y resultaos.

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS Unia os Geometría Trigonometría 8. FUNCIONES TRIGONOMÉTRICAS 8. El círculo trigonométrico o unitario En temas anteriores, las funciones trigonométricas se asociaron con razones, es ecir con cocientes e

Más detalles

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a) Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:

Más detalles

La regla de la constante. La derivada de una función constante es 0. Es decir, si c es un número real, entonces d c 0. dx (Ver la figura 2.

La regla de la constante. La derivada de una función constante es 0. Es decir, si c es un número real, entonces d c 0. dx (Ver la figura 2. SECCIÓN. Reglas básicas e erivación razón e cambio 07. Reglas básicas e erivación razón e cambio Encontrar la erivaa e una función por la regla e la constante. Encontrar la erivaa e una función por la

Más detalles

Cálculo I Derivadas de Funciones Trascendentes. Julio C. Carrillo E. * 1. Introducción Derivadas de funciones trigonométricas inversas 7

Cálculo I Derivadas de Funciones Trascendentes. Julio C. Carrillo E. * 1. Introducción Derivadas de funciones trigonométricas inversas 7 3.3. Derivaas e Funciones Trascenentes Julio C. Carrillo E. * Ínice. Introucción 2. Derivaas e funciones trigonométricas 3. Derivaas e funciones trigonométricas inversas 7 4. Derivaas e la función exponencial

Más detalles

LA DERIVADA POR FÓRMULAS

LA DERIVADA POR FÓRMULAS CAPÍTULO LA DERIVADA POR FÓRMULAS. FÓRMULAS Obtener la erivaa e cualquier función por alguno e los os métoos vistos anteriormente, el e tabulaciones y el e incrementos, resulta una tarea muy engorrosa,

Más detalles

Logaritmos. MaTEX. Logaritmos. Logaritmos. Proyecto MaTEX. Tabla de Contenido. Directorio. Fco Javier González Ortiz

Logaritmos. MaTEX. Logaritmos. Logaritmos. Proyecto MaTEX. Tabla de Contenido. Directorio. Fco Javier González Ortiz Directorio Tabla e Contenio Inicio rtículo Proyecto Fco Javier González Ortiz MTEMTICS º achillerato c 2004 gonzaleof@unican.es 3 e junio e 2004 Versin.00. Introucción Tabla e Contenio 2. Logaritmo e un

Más detalles

Universidad Politécnica de Puerto Rico Departamento de Ciencias y Matemáticas. Preparado por: Prof. Manuel Capella-Casellas, M.A.Ed.

Universidad Politécnica de Puerto Rico Departamento de Ciencias y Matemáticas. Preparado por: Prof. Manuel Capella-Casellas, M.A.Ed. Universidad Politécnica de Puerto Rico Departamento de Ciencias y Matemáticas Preparado por: Prof. Manuel Capella-Casellas, M.A.Ed. Agosto, 00 Notación exponencial La notación exponencial se usa para repetir

Más detalles

INTEGRAL INDEFINIDA. Una pregunta inicial para hacerse. Cuál es una función F(x), que al haber sido derivada se obtuvo f ( x) B?.

INTEGRAL INDEFINIDA. Una pregunta inicial para hacerse. Cuál es una función F(x), que al haber sido derivada se obtuvo f ( x) B?. es INTEGRAL INDEFINIDA UConcepto e antierivaau: Una pregunta inicial para hacerse. Cuál es una función F(), que al haber sio erivaa se obtuvo f ( ) =?. La repuesta es: F ( ) =. Una nueva pregunta. Es la

Más detalles

Derivadas algebraicas

Derivadas algebraicas CDIN0_M1AAL1_Algebraicas Versión: Septiembre 01 Revisor: Sanra Elvia Pérez Derivaas algebraicas por Sanra Elvia Pérez Derivaa e una función El concepto e erivaa, base el cálculo iferencial, ha permitio

Más detalles

Matemática Empresarial

Matemática Empresarial Corporación Universitaria Minuto de Dios - UNITOLIMA GUIA DE TRABAJO 1. Matemática Empresarial Guía N.001 F. Elaboración: 19 febrero /11 F. 1 Revisión: 19 febrero /11 Pagina 1 de 6 TEMA: Números reales

Más detalles

EXPRESIONES ALGEBRAICAS RACIONALES

EXPRESIONES ALGEBRAICAS RACIONALES Epresiones Algebraicas Racionales EXPRESIONES ALGEBRAICAS RACIONALES Llamaremos epresiones algebraicas racionales a las de la forma A() donde A() y B() son B() polinomios de variable, y B() 0. Por ejemplo,

Más detalles

DESCOMPOSICIÓN FACTORIAL

DESCOMPOSICIÓN FACTORIAL 6. 1 UNIDAD 6 DESCOMPOSICIÓN FACTORIAL Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques la factorización de polinomios cuyos términos tienen coeficientes

Más detalles

Universidad Abierta y a Distancia de México. 2 cuatrimestre. Cálculo diferencial. Unidad 3. Derivación

Universidad Abierta y a Distancia de México. 2 cuatrimestre. Cálculo diferencial. Unidad 3. Derivación Universia Abierta y a Distancia e Méico cuatrimestre Cálculo iferencial Eucación Abierta y a Distancia * Ciencias Eactas, Ingenierías y Tecnologías Ínice Presentación e la unia 3 Propósitos 3 Competencia

Más detalles

Pre saberes: Despeje de ecuaciones. Concepto de línea recta.

Pre saberes: Despeje de ecuaciones. Concepto de línea recta. Colegio Javier III Triestre En el 07 Activa tu fe Presentación # Tea: La recta Elaborao por: profesor Héctor Luis Fernánez Pre saberes: Despeje e ecuaciones. Concepto e línea recta. OBJETIVOS DE CLASE:.

Más detalles

2.1. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable x)

2.1. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable x) Bloque : Cálculo Diferencial Tema : Límite y Continuidad de una función.. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable ) La forma de comportarse una función para valores muy grandes

Más detalles

Tema 6: Derivadas, Técnicas de Derivación

Tema 6: Derivadas, Técnicas de Derivación Matemáticas º Bacillerato CCNN Tema 6: Derivaas, Técnicas e Derivación.- Introucción.- Tasa e Variación Meia.- Derivaa e una unción en un punto..- Derivaas Laterales...- Interpretación geométrica e la

Más detalles

Capítulo II Límites y Continuidad

Capítulo II Límites y Continuidad (Apuntes en revisión para orientar el aprendizaje) INTRODUCCIÓN Capítulo II Límites y Continuidad El concepto de límite, después del de función, es el fundamento matemático más importante que ha cimentado

Más detalles

4. Mecánica en la Medicina Derivar e Integrar

4. Mecánica en la Medicina Derivar e Integrar 4. Mecánica en la Meicina Derivar e Integrar Teoría Dr. Willy H. Gerber Instituto e Ciencias Físicas y Matemáticas, Universia Austral, Valivia, Chile 17.04.2011 W. Gerber 4. Mecánica en la Meicina - Matemática

Más detalles

Ecuaciones. 3º de ESO

Ecuaciones. 3º de ESO Ecuaciones 3º de ESO El signo igual El signo igual se utiliza en: Igualdades numéricas: 2 + 3 = 5 Identidades algebraicas: (x + 4) x = x 2 + 4 4x Fórmulas: El área, A,, de un círculo de radio r es: A =

Más detalles

Se dice que dos monomios son semejantes cuando tienen la misma parte literal

Se dice que dos monomios son semejantes cuando tienen la misma parte literal Expresiones algebraicas 1 MONOMIOS Conceptos Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural.

Más detalles

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos NÚMEROS REALES NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de

Más detalles

Anexo C. Introducción a las series de potencias. Series de potencias

Anexo C. Introducción a las series de potencias. Series de potencias Anexo C Introducción a las series de potencias Este apéndice tiene como objetivo repasar los conceptos relativos a las series de potencias y al desarrollo de una función ne serie de potencias en torno

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION

INSTITUCION EDUCATIVA LA PRESENTACION INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA Y LUIS LOPEZ TIPO DE GUIA: NIVELACION PERIODO GRADO FECHA DURACION 8 A/B Abril

Más detalles

Escuela de Economía UTPL Cálculo I Autora: Ing. Ana Lucía Abad Ayavaca UNIDAD II: DERIVADA

Escuela de Economía UTPL Cálculo I Autora: Ing. Ana Lucía Abad Ayavaca UNIDAD II: DERIVADA UNIDAD II: DERIVADA Continuano con el estuio e la seguna unia lo iniciaremos con el estuio el cálculo iferencial que se ocupa e cómo varía una cantia en relación con otra (LA DERIVADA). En el teto guía

Más detalles

Se dice que una ecuación es entera cuando las incógnitas esta sometidas únicamente a las operaciones de suma, resta y multiplicación.

Se dice que una ecuación es entera cuando las incógnitas esta sometidas únicamente a las operaciones de suma, resta y multiplicación. III. UNIDAD : ECUACIONES DE PRIMER GRADO III.. ECUACIONES DE PRIMER GRADO III... Ecuaciones de Primer Grado con una incógnita Se dice que una ecuación es entera cuando las incógnitas esta sometidas únicamente

Más detalles

La derivada de las funciones trascendentes

La derivada de las funciones trascendentes La erivaa e las funciones trascenentes Manuel Barahona, Eliseo Martínez Diciembre 205 Muchos fenómenos e la naturaleza son moelaos meiante funciones eponeciales, logarítimicas, trigonométricas y combinaciones

Más detalles

Ecuación vectorial de la recta en el plano y su ecuación cartesiana

Ecuación vectorial de la recta en el plano y su ecuación cartesiana iceo Técnico Aolfo Matthei ierano la Eucación Técnico Profesional Docente: Cristian Casas. GUIA MATEMATICA Departamento e Matemática Curso: 4 Meio Fecha : Puntos : NOMBRE: Nota : Ecuación vectorial e la

Más detalles

Derivación de funciones de una variable real

Derivación de funciones de una variable real Capítulo 4 Derivación e funciones e una variable real 4.1. Derivaa e una función 4.1.1. Introucción Definición 4.1.1. Sea f : (a, b) R R y x 0 (a, b). Se ice que la función f es erivable en el punto x

Más detalles

Escuela Politécnica. Universidad de Alcalá

Escuela Politécnica. Universidad de Alcalá Escuela Politécnica. Universia e Alcalá Asignatura: PROPAGACIÓN Y ONDAS Grao en Ingenieria Electrónica e Comunicaciones (G37) Grao en Ingeniería Telemática (G38) Grao en Ingeniería en Sistemas e Telecomunicación

Más detalles

FORMULARIO V Introducción a la Física. Licenciatura en Física. f (z) = = lim = lim

FORMULARIO V Introducción a la Física. Licenciatura en Física. f (z) = = lim = lim FORMULARIO V1.00 - Introucción a la Física Licenciatura en Física 1 Operaor Derivaa 1.1 De nición formal f (z 0 ) lim lim z 0!z z z 0 4z!0 f (z + 4z) 4z (1) 1. Derivaas e algunas funciones elementales

Más detalles

Complejos, C. Reales, R. Fraccionarios

Complejos, C. Reales, R. Fraccionarios NÚMEROS COMPLEJOS Como ya sabemos, conocemos distintos cuerpos numéricos en matemáticas como por ejemplo el cuerpo de los números racionales, irracionales, enteros, negativos,... Sin embargo, para completar

Más detalles

SESIÓN 1 PRE-ALGEBRA, CONCEPTOS Y OPERACIONES ARITMÉTICAS BÁSICAS

SESIÓN 1 PRE-ALGEBRA, CONCEPTOS Y OPERACIONES ARITMÉTICAS BÁSICAS SESIÓN 1 PRE-ALGEBRA, CONCEPTOS Y OPERACIONES ARITMÉTICAS BÁSICAS I. CONTENIDOS: 1. Introducción: de la aritmética al álgebra. 2. Números reales y recta numérica. 3. Operaciones aritméticas básicas con

Más detalles

Tema 6 Lenguaje Algebraico. Ecuaciones

Tema 6 Lenguaje Algebraico. Ecuaciones Tema 6 Lenguaje Algebraico. Ecuaciones 1. El álgebra El álgebra es una rama de las matemáticas que emplea números y letras con las operaciones aritméticas de sumar, restar, multiplicar, dividir, potencias

Más detalles

Guía 4. FRACCIONARIOS: si al menos uno de sus términos contiene letras en su denominador

Guía 4. FRACCIONARIOS: si al menos uno de sus términos contiene letras en su denominador Guía 4 TIPOS DE POLINOMIOS NOTA: término independiente de un polinomio con relación a una letra es el término que no contiene dicha letra. ENTEROS: si cada término del polinomio es entero Ejemplo: mn +

Más detalles

Criterios de evaluación. Objetivos. Contenidos. Actitudes. Conceptos. Procedimientos

Criterios de evaluación. Objetivos. Contenidos. Actitudes. Conceptos. Procedimientos P R O G R A M A C I Ó N D E L A U N I D A D Objetivos Calcular potencias de base un número entero. 2 Conocer y utilizar las propiedades de las operaciones con potencias. 3 Conocer qué es una potencia cuyo

Más detalles

Matemticas V: Cálculo diferencial

Matemticas V: Cálculo diferencial Matemticas V: Cálculo iferencial Soluciones Tarea 8. Para caa una e las siguientes ecuaciones encuentra la ecuación e la recta tangente a la curva en el punto ao p. (a) x y + xy, p (, ). Suponemos que

Más detalles

RESOLUCIÓN DE ACTIVIDADES

RESOLUCIÓN DE ACTIVIDADES RESOLUCIÓN DE ACTIVIDADES Activiaes iniciales 1. Calcula las matrices inversas e las siguientes matrices: 1 1 2-3 1 2 1 1 1 1 0 1 2 2 5 1 1 1 1 0 0 1 1 1 1 1 Las matrices buscaas son: 1/4 1/4 1/4 1/4 1

Más detalles

Lección 8: Potencias con exponentes enteros

Lección 8: Potencias con exponentes enteros GUÍA DE MATEMÁTICAS III Lección 8: Potencias con exponentes enteros Cuando queremos indicar productos de factores iguales, generalmente usamos la notación exponencial. Por ejemplo podemos expresar x, como

Más detalles

DERIVACIÓN. mtan. y x x. lim lim y ' f '( x) CAPÍTULO IV

DERIVACIÓN. mtan. y x x. lim lim y ' f '( x) CAPÍTULO IV 75 CAPÍTULO IV DERIVACIÓN. LA DERIVADA COMO PENDIENTE DE UNA CURVA La peniente e una curva en un punto ao, es iual a la peniente e la recta tanente a la curva en icho punto. Δ Q, Δ Q Q P, La peniente e

Más detalles

FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN

FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN 1 FUNCIONES FUNCIÓN REAL DE VARIABLE REAL Una función real de variable real es una relación que asocia a cada número real, (variable independiente),

Más detalles

Derivación. (x c) que pasa por el punto fijo (c, f(c)) y el punto móvil (c + h, f(c + h)) cuando h tiende a 0.

Derivación. (x c) que pasa por el punto fijo (c, f(c)) y el punto móvil (c + h, f(c + h)) cuando h tiende a 0. Derivación Definición y propieaes básicas Definición. Una función f efinia en un entorno e un punto c R es erivable en c si y sólo si el ite f c = f fc + h fc f fc c := = h h c c eiste y toma un valor

Más detalles

Qué diferencia observas entre los primeros cinco ejemplos que son polinomios y estos dos que no lo son?

Qué diferencia observas entre los primeros cinco ejemplos que son polinomios y estos dos que no lo son? POLINOMIOS Definición: Un polinomio en la variable x es una expresión algebraica formada solamente por la suma de términos de la forma ax n, donde a es cualquier número y n es un número entero no negativo.

Más detalles

Información importante

Información importante Departamento e Matemática Coorinación e Matemática I (MAT01) 1 er Semestre e 010 Semana 1: Lunes 07 viernes 11 e Junio Información importante Durante esta semana se publicarán las notas el Certamen en

Más detalles

Apuntes de Matemática Discreta 12. Ecuaciones Diofánticas

Apuntes de Matemática Discreta 12. Ecuaciones Diofánticas Apuntes e Matemática Discreta 2. Ecuaciones Diofánticas Francisco José González Gutiérrez Cáiz, Octubre e 2004 Universia e Cáiz Departamento e Matemáticas ii Lección 2 Ecuaciones Diofánticas Contenio 2.

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-13-5-M-1--17 CURSO: Matemática Básica SEMESTRE: Primero CÓDIGO DEL CURSO: 13 TIPO DE EXAMEN: Primera Retrasaa

Más detalles

NÚMEROS ENTEROS. En la recta numérica se pueden representar los números naturales, el cero y los números negativos.

NÚMEROS ENTEROS. En la recta numérica se pueden representar los números naturales, el cero y los números negativos. NÚMEROS ENTEROS El conjunto de los números enteros está formado por: Los números positivos (1, 2, 3, 4, 5, ) Los números negativos ( El cero (no tiene signo) Recta numérica En la recta numérica se pueden

Más detalles

Un monomio es el producto indicado de un número por una o varias letras GRADO 4º

Un monomio es el producto indicado de un número por una o varias letras GRADO 4º TEMA. POLINOMIOS OPERACIONES. MONOMIOS Un monomio es el producto indicado de un número por una o varias letras GRADO º COEFICIENTE PARTE LITERAL. VALOR NUMÉRICO DE UN MONOMIO Es el resultado que se obtiene

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Una expresión algebraica es una combinación de letras y números relacionadas por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las

Más detalles

3. Resolver triángulos rectángulos utilizando las definiciones de las razones trigonométricas.

3. Resolver triángulos rectángulos utilizando las definiciones de las razones trigonométricas. Contenidos mínimos MI. 1. Contenidos. Bloque I: Aritmética y Álgebra. 1. Conocer las clases de números, los conjuntos numéricos: naturales, enteros, racionales, reales y complejos y las propiedades que

Más detalles

Ecuaciones de primer grado

Ecuaciones de primer grado Ecuaciones de primer grado º ESO - º ESO Definición, elementos y solución de la ecuación de primer grado Una ecuación de primer grado es una igualdad del tipo a b donde a y b son números reales conocidos,

Más detalles

Profesor: Rafa González Jiménez. Instituto Santa Eulalia ÍNDICE

Profesor: Rafa González Jiménez. Instituto Santa Eulalia ÍNDICE TEMA 5: DERIVADAS. APLICACIONES. ÍNDICE 5..- Derivada de una función en un punto. 5...- Tasa de variación media. Interpretación geométrica. 5..2.- Tasa de variación instantánea. Derivada de una función

Más detalles

Ecuaciones Diferenciales de primer Orden

Ecuaciones Diferenciales de primer Orden 4 Ecuaciones Diferenciales e primer Oren 1.1 1.1. Introucción Las palabras ecuaciones y iferenciales nos hacen pensar en la solución e cierto tipo e ecuación que contenga erivaas. Así como al estuiar álgebra

Más detalles

CAPÍTULO V APLICACIONES DE LA DERIVADA

CAPÍTULO V APLICACIONES DE LA DERIVADA CAPÍTULO V 0 APLICACIONES DE LA DERIVADA 5. TEOREMA DE ROLLE Sea f una función continua en el intervalo [a,b] erivable en el intervalo abierto (a,b) tal que f(a) = f(b). Entonces eiste un punto c (a,b)

Más detalles

TEORÍA DE LAS ECUACIONES

TEORÍA DE LAS ECUACIONES TEORÍA DE LAS ECUACIONES Página 7 TEMA 8 TEORÍA DE LAS ECUACIONES En este tema se va a estudiar de manera breve un poco de la teoría sobre la resolución de ecuaciones de grado superior a dos. Como se irá

Más detalles