LEY CERO DE TERMODINÁMICA LEY CERO DE TERMODINÁMICA Y CALOR 8/20/2014

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LEY CERO DE TERMODINÁMICA LEY CERO DE TERMODINÁMICA Y CALOR 8/20/2014"

Transcripción

1 LEY CERO DE TERMODINÁMICA Termometría Calor Ileana Nieves Martínez QUIM 441 LEY CERO DE TERMODINÁMICA Y CALOR Si dos cuerpos establecen equilibrio termal con un tercero, ambos están en equilibrio termal entre sí. Es el principio básico para el desarrollo de la termometría (medidas de temperatura usando termómetros). CALOR, q es la energía que pasa de un cuerpo a otro como consecuencia de dierencias en temperatura. thermodynamics/zeroth.htm 2 1

2 DESARROLLO DE LOS TERMÓMETROS 18 Grados Fahrenheit 1 Grados Celsius 1 Kelvin Agua hierve Agua se congela Cero absoluto 3 DESARROLLO DE LOS TERMÓMETROS 18 Grados Fahrenheit 1 Grados Celsius 1 Grados Kelvin Agua hierve Agua se congela Cero absoluto 4 2

3 TERMOMETRÍA MEDIDAS DE TEMPERATURA Ejemplo de propiedades ísicas usadas para medir temperatura. olumen Presión Se usan puntos de reerencia: Ejemplo:? x aì a b j b y a a b b 2 2 a 2 b 2 a i b j =? a b 5 TERMOMETRÍA MEDIDAS DE TEMPERATURA? x aì a b j b y a a b b 2 2 Ejemplo C y 1 C para agua. t x y 1 1 a a t? 1a ì a 1 x i x a1 a x1 x x x x x 1 x x x x 1 i i?? t t aì a?

4 PROPIEDAD FÍSICA PARA MEDIR TEMPERATURA x x x x 1 t x tx 1 x1 x 1 x x l l 1 l tl 1 l l o x x l 1 1 t 7 TEMPERATURA ABSOLUTA t t b t t t T lim er multiplicar 1 término por P

5 PROPIEDADES TERMODINÁMICAS Calor Trabajo CALOR, (Q) Energía que se transiere a través de la rontera en un cambio de estado debido a una dierencia en temperatura. Convención Calor de ambiente al sistema (dq > {+}) Calor de sistema al ambiente (dq < {-}) Cuando NO hay intercambio de calor el sistema es ADIABÁTICO (q = ) Ecuación de calor dq ncdt q ncdt 1 5

6 TRABAJO, W Trabajo mecánico de desplazamiento dw F x dx Cantidad que pasa de un sistema al medio ambiente a través de una rontera durante cambio de estado. Se convierte totalmente en levantar un peso en el medio ambiente. Características Se nota en el medio ambiente, no aparece dentro ni uera. Ocurre durante un cambio de estado Se oberva levantamiento de un peso. 11 TRABAJO (OTRAS CARACTERÍSTICAS) Descripción de la ecuación de trabajo: dw F x dx Trabajo hecho sobre el objeto. Desplazamiento en contra del cuál se hace trabajo. La mecánica el w se asocia a la uerza que lo produce. La termodinámcia se enoca en el sistema y los alrrededores. Convención: Trabajo de ambiente sobre sistema (dw > {+}) Sistema sobre ambiente (dw < {-}) 12 6

7 TRABAJO DE EXPANSIÓN Y COMPRESIÓN W expansión < W compresión > tro/chapt.1_6/heatengine/beta_stirling.gi /thermo/intro/chapt.1_6/stirlco oler/fpsc.gi 13 TRABAJO DE EXPANSIÓN Y COMPRESIÓN Presión Se deine como un cambio en Externa, P ext volumen en contra de una presión inicial inicial externa Si : Pint P ext P P ext inal int inal dw F z dz F z P F z P x A A dw Pext A dz Pext d Pext < P int expansión Pext > Pint compresión Pext = Pint equilibrio Area(A), Presión(P int ) 14 7

8 TRABAJO DE EXPANSIÓN Y COMPRESIÓN Presión Externa, P ext P int = P ext Se deine como un cambio en volumen en contra de una presión externa dw F z dz F z P F z P x A A dw P A dz P d Pext < P int expansión Pext > Pint compresión Pext = Pint equilibrio Area(A), Presión(P int ) 15 TRABAJO PERSPECTIA GEOMÉTRICA Presión Externa, P ext Presión, P P i, i P, W W = - P ext ( i ) olumen, Area(A), Presión(P int ) P int > P ext P int = P = P ext 16 8

9 TRABAJO PERSPECTIA GEOMÉTRICA Presión Externa, P ext Presión, P P i, i W W = P ext ( i ) P, olumen, Area(A), Presión(P int ) P int > P ext P int = P = P ext 17 EXPANSIÓN CONTRA PRESIÓN CONTANTE Presión, P T contante = W olumen, dw P d ext ext dw P d P i w P ext i w ext P P i i Expansión al vacío, P ext = P w ext 18 9

10 TRABAJO EN ETAPAS (T CONSTANTE) w I w II w III w I P P P 3 P I ext 2 1 w II Pext 3 2 w III Pext 4 3 wi Pext 5 4 w P P 5 P 1 P 2 w neto w I w II w III w I P 3 P 4 P 5 w I w II w III w I w neto en una etapa TRABAJO MÁXIMO O REERSIBLE GAS IDEAL m áx ext int interna w P d P dp d P d nrt w máx d nr T i ln i P i P dp w neto en una etapa 2 i 1

11 PRIMERA LEY DE TERMODINÁMICA Ley de conservación de energía: La energía no se crea ni se destruye, sino que se transorma de una orma a otra. PRIMERA LEY PARÁMETROS ASOCIADOS Relaciona cambios en energía interna, U, con el calor suplido al sistema, q, y el trabajo hecho por el sistema hacia el ambiente, w. Se ormula por la siguiente expresión: du dq dw U U U qw i 22 11

12 CARACTERÍSTICAS DE LA ENERGÍA INTERNA, U Función de estado No depende del paso Propiedad característica de un sistema Propiedad extensiva Integral Cíclico: du U q w q w Se almacena q y w como energía de: Rotación, U rot ibración, U vib Traslación, U tras 23 RELACIÓN ENTRE ENERGÍA INTERNA Y TERMAL (TRES DIMENSIONES). U tot = U tras +U rot + U vib PRINCIPIO DE EQUIPARTICIÓN DE ENERGÍA: Por cada término cuadrado en la expresión de la energía existe una aportación de energía termal equivalente a ½ kt. Utotal Utras Urot Uvib U 3 kt 3 kt 3N 6 kt total 2 2 U 3 3 total 2RT 2RT 3N 6 RT R N k donde k =constante de Boltzman B B 24 12

13 RELACIÓN ENTRE ENERGÍA INTERNA Y TERMAL (DOS DIMENSIONES). U tot = U tras +U rot + U vib U 3 2 total 2kT 2kT 3N 5 kt 25 EXPRESIONES MATEMÁTICAS PARA U(T,) Cambios en energía : U T, U U du dt d dq dw T T p ero dw Pd y dq CdT exp U U du CdT Pd dt d a olumen constante: T U du dq C dt dt T exp T U U C dt y C T 26 13

14 EJEMPLO: GAS IDEAL MONOATÓMICO (HE, NE, AR) U U U U total tras rot vib U 3 3 total 2nRT 2nRT 3N 6 nrt para monoatómico : U U nrt C total U T tras nr 27 U EXPRESIONES MATEMÁTICAS PARA: T P U U du dt d T dt T P U U U T T T P T P U U C T P T U du C dt T 28 14

15 REGLA DE CADENA PARA x y z y z x z x y x y x y z 1 y z xxy z z x z x y y z z 1 y z z x x y x y 29 U T U T U T T U T U T U REGLA DE CADENA PARA U T U T 1 T T T U U U T U 1 D einir T U : J J C U T 3 15

16 16 EXPRESIONES MATEMÁTICAS Y SU RELACIÓN CON PROPIEDADES FÍSICAS J T P J U C du C C dt T U du C dt 31 DISEÑO DEL EXPERIMENTO DE JOULE Para determinar: y v J T U C Joule J U T

17 Termómetro EXPERIMENTO DE JOULE Condiciones experimentales: T ; dq; dw du Por lo tanto el experimento mide: T J U Gas con alta presión acío Resultados de experimento de Joule 1) No se levanta peso al ambiente. 2) Para gases ideales: J = T U J 3) Para gases reales, líquidos y sólidos: J P ext U T 33 CONSECUENCIAS DE JOULE EN LA 1 RA LEY, Como: T ; w y U du C dt dw T J Para gases ideales a T constante U =. du U T dt U T d ; d 34 17

18 CAMBIOS A PRESIÓN CONSTANTE ENTALPÍA CAMBIOS A PRESIÓN CONSTANTE, (ENTALPÍA) U U i i U U i q P P i P P P a P i du dq P d U P U P q i i P constante i U P U i P i i q P H qp H calor a presión constante. U P H entalpía U nrt H gas ideal du dq Pd 36 18

19 EXPRESIONES MATEMÁTICAS PARA ENTALPÍA Cambios en entalpía : H T, P H H H dh dt dp C dt dp T P P P P P T T A presión constante dp H dh dt CPdT T dh P C dt 37 EXPRESIONES MATEMÁTICAS PARA ENTALPÍA Cambios en entalpía : H T, P H H H dh dt dp C dt dp T P P P P T T dividiendo entre dt H H dh dt dp dt T P P T H H P H CP CP T P T T P T 38 19

20 REGLA DE CADENA PARA DETERMINAR P T P T T P T P P T P T P T 1 P T T T P P 1 P P T T 39 REGLA DE CADENA PARA DETERMINAR H P T H P T P T H P T H T H P T H P 1 1 T P T T H P H porque deinimos H P T P H JT H P H H T C P T P P JT T H H CP CP CPJ T T P T 4 2

21 EXPERIMENTO JOULE THOMPSON Determinación de: T H y Thompson-Lord Kelvin C J T P JT PH P T EXPERIMENTO DE JOULE- THOMPSON Condiciones experimentales Paso lento a través de la placa Pi P; Ti T; T P q Presión Contracorriente i Acelerador Presión con la corriente w i = -P i = -P i (- i ) w der = -P der = -P ( -) 42 21

22 EXPERIMENTO DE JOULE- THOMPSON Condiciones experimentales Paso lento a través de la placa Pi P; Ti T; T P q Presión Contracorriente i Acelerador Presión con la corriente w i = -P i = -P i (- i ) w der = -P der = -P ( -) 43 OBSERACIONES DEL EXPERIMENTO DE JOULE-THOMPSON a ) Proceso irreversible b) w sobre placa c) dw P d izq w P d P P w i i izq i i i i i izq compresión isotermal a T d) dw P d der w P d P P w der der expansión isotermal a T i 44 22

23 RESULTADOS DEL EXPERIMENTO DE J-T eriicar si experimento mide: T T J T lim P P H P w w w P P neto izq der i i q U U U i q U U P P i i i U P U P i i i H H H i H w neto 45 OBSERACIONES Y CONCLUSIONES DE J-T T H lim y C J T P P JT P H P T Gas ideal: H U nrt H U nrt P P P T T T H J T P T H Gas real: C P JT P T H CP 1 JT para cualquier substancia T 46 23

24 APLICACIÓN q Gas río DEL PRINCIPIO DE JOULE-THOMPSON Intercambio de calor Líquido T Gas real: J T P H q Compresor 47 H T Gas real: CPJ T CP P T PH si dp y dt (expansión) JT JT si dp y dt ( He & H ) 2 Joule-Thomson_curves_2.svg 48 24

TERMODINÁMICA Tema 10: El Gas Ideal

TERMODINÁMICA Tema 10: El Gas Ideal TERMODINÁMICA Tema 10: El Gas Ideal Fundamentos Físicos de la Ingeniería 1 er Curso Ingeniería Industrial Dpto. Física Aplicada III 1 Índice Introducción Ecuación de estado Experimento de Joule Capacidades

Más detalles

JMLC - Chena IES Aguilar y Cano - Estepa

JMLC - Chena IES Aguilar y Cano - Estepa Termodinámica es la parte de la física que estudia los intercambios de calor y trabajo que acompañan a los procesos fisicoquímicos. Si estos son reacciones químicas, la parte de ciencia que los estudia

Más detalles

Tema10: Gas Ideal. Fátima Masot Conde. Ing. Industrial 2007/08. Fátima Masot Conde Dpto. Física Aplicada III Universidad de Sevilla

Tema10: Gas Ideal. Fátima Masot Conde. Ing. Industrial 2007/08. Fátima Masot Conde Dpto. Física Aplicada III Universidad de Sevilla 1/32 Tema 10: Gas Ideal Fátima Masot Conde Ing. Industrial 2007/08 Tema 10: Gas Ideal 2/32 Índice: 1. Introducción. 2. Algunas relaciones para gases ideales 3. Ecuación de estado del gas ideal 4. Energía

Más detalles

Tema 2. Segundo Principio de la Termodinámica

Tema 2. Segundo Principio de la Termodinámica ema Segundo Principio de la ermodinámica EMA SEGUNDO PRINCIPIO DE LA ERMODINÁMICA. ESPONANEIDAD. SEGUNDO PRINCIPIO DE LA ERMODINÁMICA 3. ENROPÍA 4. ECUACIÓN FUNDAMENAL DE LA ERMODINÁMICA 5. DEERMINACIÓN

Más detalles

32 F : Punto de congelamiento del agua: Agua y hielo en equilibrio térmico a la presión de una atmósfera.

32 F : Punto de congelamiento del agua: Agua y hielo en equilibrio térmico a la presión de una atmósfera. 1 Temperatura Por experiencia se sabe que muchas propiedades físicas de los cuerpos cambian si los calentamos. Por ejemplo el volumen de una columna de Mercurio aumenta al aplicarle una llama. Con esta

Más detalles

γ =tensión superficial

γ =tensión superficial rabajo Primera ley El trabajo de expansión-compresión, w, es la transferencia de energía debida a una diferencia de presiones. Es función de la trayectoria, es decir, depende del camino seguido, del número

Más detalles

Para aprender Termodinámica resolviendo Problemas

Para aprender Termodinámica resolviendo Problemas Para aprender ermodinámica resolviendo Problemas Entropía. La entropía se define como δ ds = q reversible La entropía es una función de estado, es una propiedad extensiva. La entropía es el criterio de

Más detalles

Química 2º Bacharelato

Química 2º Bacharelato Química 2º Bacharelato DEPARTAMENTO DE FÍSICA E QUÍMICA Termodinámica química 13/12/07 Nombre: Problemas 1. a) Calcula qué calor se desprende en la combustión de 20,0 cm 3 de etanol líquido a presión atmosférica

Más detalles

Adjunto: Lic. Auliel María Inés

Adjunto: Lic. Auliel María Inés Ingeniería de Sonido Física 2 Titular: Ing. Daniel lomar Vldii Valdivia Adjunto: Lic. Auliel María Inés 1 Termodinámica i Temperatura La temperatura de un sistema es una medida de la energía cinética media

Más detalles

TEMA 2: Principios de la Termodinámica

TEMA 2: Principios de la Termodinámica Esquema: TEMA : Principios de la Termodinámica TEMA : Principios de la Termodinámica...1 1.- Introducción...1.- Definiciones....1.- Sistema termodinámico.....- Variables....3.- Estado de un sistema...3.4.-

Más detalles

UNIVERSIDAD DE PUERTO RICO COLEGIO UNIVERSITARIO DE HUMACAO DEPARTAMENTO DE QUIMICA

UNIVERSIDAD DE PUERTO RICO COLEGIO UNIVERSITARIO DE HUMACAO DEPARTAMENTO DE QUIMICA UNIVERSIDAD DE PUERTO RICO COLEGIO UNIVERSITARIO DE HUMACAO DEPARTAMENTO DE QUIMICA RESUMEN DE SEGUNDA LEY Y EFICIENCIA QUIM 4041 Prof. Ileana Nieves Martínez I. Ciclo de Carnot A. Consiste de un proceso

Más detalles

PRINCIPIOS DE TERMODINÁMICA Y ELECTROMAGNETISMO

PRINCIPIOS DE TERMODINÁMICA Y ELECTROMAGNETISMO PRINCIPIOS DE TERMODINÁMICA Y ELECTROMAGNETISMO Objetivo El alumno analizará los conceptos, principios y leyes fundamentales de la termodinámica y de los circuitos eléctricos para aplicarlos en la resolución

Más detalles

TERMODINÁMICA. La TERMODINÁMICA estudia la energía y sus transformaciones

TERMODINÁMICA. La TERMODINÁMICA estudia la energía y sus transformaciones TERMODINÁMICA La TERMODINÁMICA estudia la energía y sus transformaciones SISTEMA Y AMBIENTE Denominamos SISTEMA a una porción del espacio que aislamos de su entorno para simplificar su estudio y denominamos

Más detalles

Por qué son diferentes estas dos capacidades caloríficas?

Por qué son diferentes estas dos capacidades caloríficas? Por qué son diferentes estas dos caacidades caloríficas? En un aumento de temeratura con volumen constante, el sistema no efectúa trabajo y el cambio de energía interna es igual al calor agregado Q. En

Más detalles

1. Probabilidad de que se encuentre en uno de los dos lados del envase depende. Para una partícula. Para dos partículas.

1. Probabilidad de que se encuentre en uno de los dos lados del envase depende. Para una partícula. Para dos partículas. TERCERA LEY DE TERMODINÁMICA, ENERGÍA LIBRE DE GIBBS-HELMHOLTZ Y GIBBS I. Estadística (entropía) - aumento en el desorden de la energía y configuración espacial. A. = configuración B. Ejemplo: 1. Probabilidad

Más detalles

Bol. 2: Convección Atmosférica y Nubes

Bol. 2: Convección Atmosférica y Nubes Bol. 2: Convección Atmosférica y Nubes Por equilibrio radiativo no podemos explicar el perfil observado de temperatura en troposfera La troposfera es calentada en gran parte por convección lo que realiza

Más detalles

TEMA 4: BALANCES DE ENERGÍA. IngQui-4 [1]

TEMA 4: BALANCES DE ENERGÍA. IngQui-4 [1] TEMA 4: BALANCES DE ENERGÍA IngQui-4 [1] OBJETIVOS! Aplicar la ecuación de conservación al análisis de la energía involucrada en un sistema.! Recordar las componentes de la energía (cinética, potencial

Más detalles

Mezclas ( G, S, H) ) Equilibrio y energía libre de Gibbs. Química Física I QUIM 4041 6/17/2014. Ileana Nieves Martínez. 17 de Junio de 2014

Mezclas ( G, S, H) ) Equilibrio y energía libre de Gibbs. Química Física I QUIM 4041 6/17/2014. Ileana Nieves Martínez. 17 de Junio de 2014 Equilibrio y energía libre de Gibbs Química Física I QUIM 441 Ileana Nieves Martínez 1 Mezclas (G, S, H) ) 2 1 Energía Libre molar parcial: i a T y constantes. dg dn dn 1 1 2 2... dg SdT Vd dn G total

Más detalles

Conceptos fundamentales en Termodinámica

Conceptos fundamentales en Termodinámica Conceptos fundamentales en Termodinámica Física II Grado en Ingeniería de Organización Industrial Primer Curso Joaquín Bernal Méndez Curso 2011-2012 Departamento de Física Aplicada III Universidad de Sevilla

Más detalles

Grado en Ingeniería de Tecnologías. Calor específico: calorimetría Calor latente y cambios de fase

Grado en Ingeniería de Tecnologías. Calor específico: calorimetría Calor latente y cambios de fase TERMODINÁMICA Tema 9: Primer r Principioipi Tecnologías Industriales Dpto. Física Aplicada III 1 Índice Introducción Calor y energía interna Calor específico: calorimetría Calor latente y cambios de fase

Más detalles

MICA.- TEMA 2 CURSO 2009-2010

MICA.- TEMA 2 CURSO 2009-2010 ERMODINÁMICA MICA.- EMA CURSO 009-00 00 Bases Físicas del Medio Ambiente º de Ciencias Ambientales rofesor: Juan Antonio Antequera Barroso mica: arte de la Física que estudia macroscópicamente las transformaciones

Más detalles

8/6/2014. Objetivos. Propiedad física. Marco teórico. Densidad de sólidos y tratamiento estadístico de los datos experimentales

8/6/2014. Objetivos. Propiedad física. Marco teórico. Densidad de sólidos y tratamiento estadístico de los datos experimentales 8/6/0 Densidad de sólidos y tratamiento estadístico de los datos experimentales Ileana Nieves Martínez QUIM 00 Obetivos Determinar la densidad de algunos sólidos usando diferentes métodos para: discernir

Más detalles

TEMA 4 EL ESTADO GASEOSO

TEMA 4 EL ESTADO GASEOSO TEMA 4 EL ESTADO GASEOSO INDICE 4.1 Conceptos preliminares. 4. - Gases ideales o perfectos. 4.3.- Teoría cinética. 4.4 Propiedades de los gases en la teoría Cinético-molecular. 4.5 - Gases reales. Ecuación

Más detalles

Introducción a la Termodinámica. Conceptos generales

Introducción a la Termodinámica. Conceptos generales Introducción a la Termodinámica. Conceptos generales 1. Introducción: objetivos de la termodinámica. 2. Sistemas termodinámicos. 3. Propiedades termodinámicas. 4. Equilibrio térmico y Temperatura. a. Escalas

Más detalles

INTRODUCCIÓN TERMODINÁMICA DORY CANO DÍAZD. Junio de 2007

INTRODUCCIÓN TERMODINÁMICA DORY CANO DÍAZD. Junio de 2007 INTRODUCCIÓN TERMODINÁMICA MICA DORY CANO DÍAZD MSc.. Ingeniero Civil Mecánico Junio de 2007 UNIDAD 1: Conceptos básicos y Primera Ley de la Termodinámica 2.1.- Conceptos de Energía, Calor, Trabajo, Temperatura,

Más detalles

Termodinàmica Fonamental. Luis Carlos Pardo planta 11 Despatx 11.61

Termodinàmica Fonamental. Luis Carlos Pardo planta 11 Despatx 11.61 Termodinàmica Fonamental Luis Carlos Pardo planta 11 Despatx 11.61 Tema 4: Aplicacions del primer principi 1.- Expansió de Joule-Gay-Loussac 2.- Calor molar d'un gas ideal 3.1.- Relació de Mayer 3.- Experiment

Más detalles

Unidad11 CARACTERISTICAS TERMICAS DE LOS MATERIALES

Unidad11 CARACTERISTICAS TERMICAS DE LOS MATERIALES Unidad11 CARACTERISTICAS TERMICAS DE LOS MATERIALES 11 1 PRESENTACION Algunas aplicaciones industriales importantes requieren la utilización de materiales con propiedades térmicas específicas, imprescindibles

Más detalles

Termodinámica: Gases Ideales y Sustancia Pura

Termodinámica: Gases Ideales y Sustancia Pura Termodinámica: Gases Ideales y Sustancia Pura Presenta: M. I. Ruiz Gasca Marco Antonio Instituto Tecnológico de Tláhuac II Septiembre, 2015 Marco Antonio (ITT II) México D.F., Tláhuac Agosto, 2015 1 /

Más detalles

Transferencia de Calor por convección Natural CAPÍTULO 3 DE CALOR POR CONVECCIÓN NATURAL. En convección natural el flujo resulta solamente de la

Transferencia de Calor por convección Natural CAPÍTULO 3 DE CALOR POR CONVECCIÓN NATURAL. En convección natural el flujo resulta solamente de la CAPÍTULO 3 TRANSFERENCIA DE CALOR POR CONVECCIÓN NATURAL 3.1 Definición de Convección Natural. En convección natural el flujo resulta solamente de la diferencia de temperaturas del fluido en la presencia

Más detalles

PROGRAMA DE FISICOQUÍMICA I

PROGRAMA DE FISICOQUÍMICA I UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE CIENCIAS QUÍMICAS Y FARMACIA ESCUELA DE QUÍMICA DEPARTAMENTO DE FISICOQUÍMICA INFORMACIÓN GENERAL PROGRAMA DE FISICOQUÍMICA I No. De Código: 051225 Créditos:

Más detalles

Para aprender Termodinámica resolviendo problemas TERMOQUÍMICA.

Para aprender Termodinámica resolviendo problemas TERMOQUÍMICA. TERMOQUÍMICA. Estado estándar El estado estándar de un elemento es el estado más estable de ese elemento a 98.5K y bar. Por ejemplo, el estado estándar del oxígeno es O gaseoso y el estado estándar del

Más detalles

PROGRAMA DE FISICOQUÍMICA

PROGRAMA DE FISICOQUÍMICA UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE CIENCIAS QUÍMICAS Y FARMACIA ESCUELA DE QUÍMICA DEPARTAMENTO DE FISICOQUÍMICA INFORMACIÓN GENERAL PROGRAMA DE FISICOQUÍMICA No. De Código: 052211 Créditos:

Más detalles

INSITITUCION EDUCATIVA NACIONAL LOPERENA DEPARTAMENTO DE CIENCIAS NATURALES FISICA I - 2016 PROGRAMACIÓN

INSITITUCION EDUCATIVA NACIONAL LOPERENA DEPARTAMENTO DE CIENCIAS NATURALES FISICA I - 2016 PROGRAMACIÓN INSITITUCION EDUCATIVA NACIONAL LOPERENA DEPARTAMENTO DE CIENCIAS NATURALES FISICA I - 2016 PROGRAMACIÓN PRIMER PERIODO UNIDAD 1: LOS FUNDAMENTOS (INTRODUCCIÓN) Utiliza los fundamentos matemáticos, en

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA TERMODINÁMICA AANZADA Ecuación de estado Gases Ideales P = n P = Unidad I: Propiedades y Leyes de la Termodinámica P T 2 = cte T P 3 = cte P 2 = cte Gases ideales Gases reales Gases y vapores T 1 = cte

Más detalles

TERMODINÁMICA MÓDULO 3

TERMODINÁMICA MÓDULO 3 A. Paniagua F-21 TERMODINÁMICA MÓDULO 3 PROPIEDADES DE LOS GASES IDEALES Ley de Boyle En 1660, Robert Boyle daba cuenta de uno de los primeros experimentos cuantitativos que se refieren al comportamiento

Más detalles

Electricidad y calor. Webpage: 2007 Departamento de Física Universidad de Sonora

Electricidad y calor. Webpage:  2007 Departamento de Física Universidad de Sonora Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temas 3. Gases ideales y estados termodinámicos. i. Concepto y características del gas ideal.

Más detalles

Laboratorio 4. Cocientes de capacidades de calor de gases

Laboratorio 4. Cocientes de capacidades de calor de gases Laboratorio 4. Cocientes de capacidades de calor de gases Objetivo Determinar el cociente de capacidades de calor () para gases como dióxido de carbono (CO ) y nitrógeno (N ) utilizando la expansión adiabática.

Más detalles

7 Energía térmica y calor

7 Energía térmica y calor Solucionario 7 Energía térmica y calor EJERCICIOS PROPUESOS 7. Si se duplica la temperatura de un gas, se duplica la velocidad media de sus moléculas? Por qué? Cuando se duplica la temperatura de un gas,

Más detalles

Estrictamente hablando se entiende por TERMODINÁMICA la parte de la física que estudia los procesos en los cuales los sistemas intercambian energía o materia cuando están en equilibrio. El intercambio

Más detalles

EQUILIBRIO QUIMICO. Química General e Inorgánica Licenciatura en Ciencias Biológicas Profesorado en Biología Analista Biológico

EQUILIBRIO QUIMICO. Química General e Inorgánica Licenciatura en Ciencias Biológicas Profesorado en Biología Analista Biológico Química General e Inorgánica Licenciatura en Ciencias Biológicas rofesorado en Biología Analista Biológico EQUILIBRIO QUIMICO En general las reacciones químicas no se completan, es decir que no siempre

Más detalles

Análisis esquemático simplificado de una torre de enfriamiento.

Análisis esquemático simplificado de una torre de enfriamiento. Análisis esquemático simplificado de una torre de enfriamiento. En el diagrama el aire con una humedad Y 2 y temperatura t 2 entra por el fondo de la torre y la abandona por la parte superior con una humedad

Más detalles

Ley de Boyle P 1/V (T y n constante) Ley de Charles Gay-Lussac V T (P y n constante) Ley de Amonton P T (V y n constante)

Ley de Boyle P 1/V (T y n constante) Ley de Charles Gay-Lussac V T (P y n constante) Ley de Amonton P T (V y n constante) Práctica 6 Ecuación de los Gases Ideales 6.1 Objetivo El estado de un gas puede describirse en términos de cuatro variables (denominadas variables de estado): presión (P), volumen (V), temperatura (T)

Más detalles

Interacción aire - agua. Termómetro húmedo

Interacción aire - agua. Termómetro húmedo Interacción aire - agua. Termómetro húmedo Objetivos de la práctica! Obtener experimentalmente la denominada temperatura húmeda.! Estudiar las magnitudes psicrométricas de dos corrientes de aire húmedo,

Más detalles

La Materia y sus Transformaciones

La Materia y sus Transformaciones La Materia y sus Transformaciones Los estados de la materia La materia se presenta en la Naturaleza en tres estados distintos: sólido, líquido y gaseoso. La Temperatura La temperatura es un medida que

Más detalles

Los principios de Carnot son:

Los principios de Carnot son: IV.- Principios de Carnot La segunda ley de termodinámica pone límites en la operación los ciclos. Una máquina térmica no puede operar intercambiando calor con un reservorio simple, y un refrigerador no

Más detalles

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física 2011

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física 2011 Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales

Más detalles

Física 21 Termodinámica II

Física 21 Termodinámica II Física Termodinámica II Gas Ideal En este parte usaremos como modelo de estudio el llamado gas ideal. odemos describir éste, como un sistema de partículas (átomos, moléculas, etc.) cuya única interacción

Más detalles

Temperatura. Temperatura. La temperatura es la energía cinética promedio de las partículas. Calor. El calor es una transferencia de energía

Temperatura. Temperatura. La temperatura es la energía cinética promedio de las partículas. Calor. El calor es una transferencia de energía Temperatura Temperatura La temperatura es la energía cinética promedio de las partículas Calor El calor es una transferencia de energía Diferencias entre calor y temperatura Todos sabemos que cuando calentamos

Más detalles

Práctica No 2. Determinación experimental del factor de compresibilidad

Práctica No 2. Determinación experimental del factor de compresibilidad Práctica No 2 Determinación experimental del factor de compresibilidad 1. Objetivo general: Determinación del comportamiento de un gas a diferentes presiones, mediante el cálculo experimental del factor

Más detalles

TEMA: ENERGÍA TÉRMICA

TEMA: ENERGÍA TÉRMICA ENERGÍA INTERNA TEMA: ENERGÍA TÉRMICA Llamamos energía interna (U) de un cuerpo a la energía total de las partículas que lo constituyen, es decir, a la suma de todas las formas de energía que poseen sus

Más detalles

PROBLEMAS DE FÍSICA II

PROBLEMAS DE FÍSICA II PROBLEMAS DE FÍSICA II Curso 013 014 Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio 1. TERMODINÁMICA 1 PROBLEMA 1.1 Procesos e intercambio de energía Describir, para cada ciclo dibujado,

Más detalles

ANÁLISIS DEL EFECTO DE LAS EFICIENCIAS DE LOS COMPRESORES Y LAS TURBINAS EN UN CICLO BRAYTON CON UNA ETAPA DE COMPRESIÓN Y DOS DE EXPANSIÓN

ANÁLISIS DEL EFECTO DE LAS EFICIENCIAS DE LOS COMPRESORES Y LAS TURBINAS EN UN CICLO BRAYTON CON UNA ETAPA DE COMPRESIÓN Y DOS DE EXPANSIÓN ANÁLISIS DEL EFECTO DE LAS EFICIENCIAS DE LOS COMRESORES Y LAS TURBINAS EN UN CICLO BRAYTON CON UNA ETAA DE COMRESIÓN Y DOS DE EXANSIÓN Francisco Javier Ortega Herrera a, Maria Alejandra Gonzalez Arreguin

Más detalles

CUADERNILLO PREPARADO POR LA CÁTEDRA DE TERMODINÁMICA 1.1.1. TEMPERATURA:

CUADERNILLO PREPARADO POR LA CÁTEDRA DE TERMODINÁMICA 1.1.1. TEMPERATURA: CUADERNILLO PREPARADO POR LA CÁTEDRA DE TERMODINÁMICA 1.1.1. TEMPERATURA: 1.1.. Introducción: El concepto de temperatura está muy relacionado con el diario vivir. Tenemos un concepto intuitivo de algo

Más detalles

10/4/2011. Objetivos. Marco teórico. Gases Experimento Ley de Boyle y Ley de Charles

10/4/2011. Objetivos. Marco teórico. Gases Experimento Ley de Boyle y Ley de Charles Gases Experimento Ley de Boyle y Ley de Charles Ileana Nieves Martínez QUIM 3003 1 Objetivos Determinar el comportamiento de los gases relacionado a: Temperatura Presión Volumen. Utilizar un sensor de

Más detalles

GASES IDEALES INTRODUCCION

GASES IDEALES INTRODUCCION GASES IDEALES INRODUCCION El punto de vista de la termodinámica clásica es enteramente macroscópico. Los sistemas se describen sobre la base de sus propiedades macroscópicas, tales como la presión, la

Más detalles

8. y = Solución: x 4. 9. y = 3 5x. Solución: y' = 5 3 5x L 3. 10. y = Solución: 4 4 (5x) 3. 11. y = Solución: (x 2 + 1) 2. 12.

8. y = Solución: x 4. 9. y = 3 5x. Solución: y' = 5 3 5x L 3. 10. y = Solución: 4 4 (5x) 3. 11. y = Solución: (x 2 + 1) 2. 12. 7 Cálculo de derivadas. Reglas de derivación. Tabla de derivadas Aplica la teoría Deriva en función de :. y = 8. y = 5 3 5 4. y = ( ) 5 0( ) 4 9. y = 3 5 5 3 5 L 3 3. y = 7 + 3 4. y = e e 5. y = 7 7 +

Más detalles

Calorimetría de bomba

Calorimetría de bomba Calorimetría de bomba Laboratorio de Química Física QUM 4051 leana Nieves Martínez agsoto 2014 1 Es el estudio de transferencia de calor, (q) a través de las fronteras de un sistema químico basado en Capacidad

Más detalles

Germán Fernández

Germán Fernández Academia Minas Centro Universitario CalleUría43-1ºOviedo Tel.985241267-985245906. En Oviedo, desde 1961 Los derechos de copia, reproducción y modificación de este documento son propiedad de. El presente

Más detalles

PRÁCTICA 4: DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES

PRÁCTICA 4: DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES PRÁCTICA 4: DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES Prof. Elizabeth K. Galván Miranda Prof. Ximena Villegas Pañeda Facultad de Química, UNAM Departamento de Fisicoquímica Laboratorio de Termodinámica

Más detalles

TEMA 12.-TERMODINÁMICA QUÍMICA.

TEMA 12.-TERMODINÁMICA QUÍMICA. EMA.-ERMODINÁMICA QUÍMICA. ema.- ermodinámica Química. Introducción.. Definiciones básicas. 3. rabajo y calor. 4. Primer principio de la termodinámica. 5. Calor específico y capacidad calorífica. 6. Medida

Más detalles

Energía interna: ec. energética de estado. Energía interna de un gas ideal. Experimento de Joule. Primer principio de la Termodinámica

Energía interna: ec. energética de estado. Energía interna de un gas ideal. Experimento de Joule. Primer principio de la Termodinámica CONTENIDO Calor: capacidad calorífica y calor específico Transiciones de fase: diagramas de fase Temperatura y presión de saturación Energía interna: ec. energética de estado. Energía interna de un gas

Más detalles

Termodinámica. Calor y Temperatura

Termodinámica. Calor y Temperatura Termodinámica Calor y Temperatura 1 Temas 4. PRIMERA LEY DE LA TERMODINÁMICA. 4.1 Concepto de Trabajo aplicado a gases. 4.2 Trabajo hecho por un gas ideal para los procesos: Isocóricos, isotérmicos, Isobáricos

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables F. Alvarez y H. Lugo Universidad Complutense de Madrid 23 Noviembre, 2011 Campo escalar Denominamos campo escalar a una función f : R n R, es decir, una función cuyo dominio

Más detalles

Objetivos: Programa Sintetico. Programa : TEMA Nº 1: Introducción a la Termodinámica Técnica

Objetivos: Programa Sintetico. Programa : TEMA Nº 1: Introducción a la Termodinámica Técnica ASIGNATURA: TERMODINAMICA CODIGO : 94-0828 ORIENTACIÓN : GENERAL Clase: Anual DEPARTAMENTO: MECANICA Horas Sem : 6 (seis) AREA: TECNOLOGÍAS BASICAS Horas/año : 192 Objetivos: Enseñar a los alumnos conceptos

Más detalles

UNIVERSIDAD AUTONOMA DE TAMAULIPAS

UNIVERSIDAD AUTONOMA DE TAMAULIPAS R-RS-01-25-03 UNIVERSIDAD AUTONOMA DE TAMAULIPAS NOMBRE DE LA FACULTAD O UNIDAD ACADEMICA NOMBRE DEL PROGRAMA INGENIERO INDUSTRIAL NOMBRE DE LA ASIGNATURA TERMODINAMICA PROGRAMA DE LA ASIGNATURA LUGAR

Más detalles

Es útil para determinar una derivada que no se puede determinar físicamente

Es útil para determinar una derivada que no se puede determinar físicamente Interludo Matemátco Regla de Cadena 1 Regla de la cadena? Es útl para determnar una dervada que no se puede determnar íscamente z,, z z z z 1 z z z 1 Ejemplo de la Regla de la cadena d d d 0 d d (d) (d)

Más detalles

Calor específico de un metal

Calor específico de un metal Calor específico de un metal Objetivos Determinar el calor específico del Cobre (Cu). Comprobar experimentalmente la ley cero de la Termodinámica. Introducción Diferentes sustancias requieren diferentes

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS Asignatura: FÍSICA II

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS Asignatura: FÍSICA II UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS Asignatura: FÍSICA II LABORATORIO DE FÍSICA CICLO: AÑO: Laboratorio: 08 Laboratorio 08: CALOR ESPECÍFICO DE UN METAL I. OBJETIVOS General Aplicar

Más detalles

Termodinámica: Primer Principio Parte 4

Termodinámica: Primer Principio Parte 4 Termodinámica: Primer Principio Parte 4 Olivier Skurtys Departamento de Ingeniería Mecánica Universidad Técnica Federico Santa María Email: olivier.skurtys@usm.cl Santiago, 13 de mayo de 2012 Presentación

Más detalles

Psicrometría - Propiedades del aire húmedo

Psicrometría - Propiedades del aire húmedo Psicrometría Propiedades del aire húmedo Autor Jesús Soto lunes, 25 de febrero de 2008 S.LOW ENERGY PSICROMETRÍA. PROPIEDADES DEL AIRE HÚMEDO Índice de propiedades z Altura sobre el nivel del mar Lv Calor

Más detalles

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temas 4. Primera ley de la Termodinámica. i. Concepto de Trabajo aplicado a gases. ii. Trabajo

Más detalles

ENERGIA. La energía se define como la capacidad que tiene un sistema para producir trabajo.

ENERGIA. La energía se define como la capacidad que tiene un sistema para producir trabajo. ENERGIA La energía se define como la capacidad que tiene un sistema para producir trabajo. Tipos de energía almacenada: son aquellos que se encuentran dentro del sistema 1. Energía potencial: es debida

Más detalles

Bol. 2: Convección Atmosférica y Nubes

Bol. 2: Convección Atmosférica y Nubes Bol. 2: Convección Atmosférica y Nubes Termodinámica El link entre la circulación y la transferencia de calor latente, sensible y radiación entre la superficie y la atmósfera es termodinámica. Termodinámica

Más detalles

TEMA 5 CINÉTICA QUÍMICA

TEMA 5 CINÉTICA QUÍMICA TEMA 5 CINÉTICA QUÍMICA ÍNDICE 1. Cinética Química 2. Orden de reacción 3. Mecanismo de las reacciones químicas 4. Factores que influyen en la velocidad de reacción 5. Teoría de las reacciones químicas

Más detalles

Termodinámica. Energía interna y Temperatura

Termodinámica. Energía interna y Temperatura Termodinámica Energía interna y Temperatura 1.Conceptos fundamentales Termodinámica: Ciencia macroscópica Sistema Termodinámico: porción del unierso dentro de una superficie cerrada ( borde) que lo separa

Más detalles

El resultado se expresa mediante una cantidad seguida de la unidad elegida. La cantidad representa el número de veces que se repite la unidad.

El resultado se expresa mediante una cantidad seguida de la unidad elegida. La cantidad representa el número de veces que se repite la unidad. LA MEDIDA Magnitudes físicas Todas las propiedades que podemos medir se denominan magnitudes. Para medir una magnitud hay que determinar previamente una cantidad de esta, llamada unidad. Al medir, se comparan

Más detalles

de una reacción n en la cual, tanto reactivos como productos están n en condiciones estándar (p = 1 atm; ; T = 298 K = 25 ºC;

de una reacción n en la cual, tanto reactivos como productos están n en condiciones estándar (p = 1 atm; ; T = 298 K = 25 ºC; Entalpía a estándar de la reacción Es el incremento entálpico de una reacción n en la cual, tanto reactivos como productos están n en condiciones estándar (p = 1 atm; ; T = 298 K = 25 ºC; conc.. = 1 M).

Más detalles

OPERACIONES UNITARIAS 1 PROF. PEDRO VARGAS UNEFM DPTO. ENERGÉTICA

OPERACIONES UNITARIAS 1 PROF. PEDRO VARGAS UNEFM DPTO. ENERGÉTICA OPERACIONES UNITARIAS PROF. PEDRO VARGAS UNEFM DPTO. ENERGÉTICA Disponible en: www.operaciones.wordpress.com FLUJO COMPRESIBLE. Consideraciones básicas y relaciones P V T Al considerar el movimiento de

Más detalles

EJERCICIO DE EXAMEN DE FISICOQUÍMICA

EJERCICIO DE EXAMEN DE FISICOQUÍMICA EJERCICIO DE EXAMEN DE FISICOQUÍMICA 1) En un recipiente de volumen fijo, se tienen los gases ideales 1 y 2 a una presión total P. Si en estas condiciones se introduce un gas ideal manteniendo la presión

Más detalles

Física II Grado en Ingeniería de Organización Industrial Primer Curso. Departamento de Física Aplicada III Universidad de Sevilla

Física II Grado en Ingeniería de Organización Industrial Primer Curso. Departamento de Física Aplicada III Universidad de Sevilla El gas ideal Física II Grado en Ingeniería de Organización Industrial rimer Curso Joaquín Bernal Méndez Curso 2011-2012 Departamento de Física Aplicada III Universidad de Sevilla Índice Introducción Ecuación

Más detalles

Termodinámica y Máquinas Térmicas

Termodinámica y Máquinas Térmicas Termodinámica y Máquinas Térmicas Tema 01. Conceptos Fundamentales Inmaculada Fernández Diego Severiano F. Pérez Remesal Carlos J. Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema

Más detalles

MOVIMIENTO ARMÓNICO AMORTIGUADO

MOVIMIENTO ARMÓNICO AMORTIGUADO MOVIMIENTO ARMÓNICO AMORTIGUADO OBJETIVO Medida experimental de la variación exponencial decreciente de la oscilación en un sistema oscilatorio de bajo amortiguamiento. FUNDAMENTO TEÓRICO A) SISTEMA SIN

Más detalles

El agua calentada en microondas se enfría más rápido?

El agua calentada en microondas se enfría más rápido? El agua calentada en microondas se enfría más rápido? Primera parte Experiencia de Laboratorio, Física experimental II, 2009 Larregain, Pedro pedrolarregain@yahoo.com Machado, Alejandro machado.alejandro@yahoo.com

Más detalles

Módulo 1 Termodinámica

Módulo 1 Termodinámica Módulo 1 Termodinámica 1er cuatrimestre del 2012 Dra. Noelia Burgardt Termodinámica de equilibrio - Sistemas, paredes, procesos, función de estado - Repaso de gases ideales y reales - Trabajo y calor -

Más detalles

Bioenergética e Introducción al metabolismo

Bioenergética e Introducción al metabolismo Bioenergética e Introducción al metabolismo M a t e r i a Metabolismo E n e r g í a 1 - Ciclos de la materia 2 - Bioenergética 3 - Introducción al metabolismo 4 - Transferencia de grupos fosforilo y ATP

Más detalles

Termodinámica. 2 o curso de la Licenciatura de Físicas

Termodinámica. 2 o curso de la Licenciatura de Físicas Termodinámica 2 o curso de la Licenciatura de Físicas Lección 7 Definición de Sistemas ideales. Entropía de un gas ideal. Propiedades de un gas ideal. Gas perfecto Correcciones al gas ideal: ecuación de

Más detalles

Ciencias Básicas Física General y Química Ingeniería Civil División Coordinación Carrera(s) en que se imparte

Ciencias Básicas Física General y Química Ingeniería Civil División Coordinación Carrera(s) en que se imparte UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO Aprobado por el Consejo Técnico de la Facultad de Ingeniería en su sesión ordinaria del 19 de noviembre de 2008 PRINCIPIOS

Más detalles

Unidades de la enegía. Unidad Símbolo Equivalencia. Caloría Cal 1 cal = 4,19 J. Kilowatio hora kwh 1 kwh = 3.600.000 J

Unidades de la enegía. Unidad Símbolo Equivalencia. Caloría Cal 1 cal = 4,19 J. Kilowatio hora kwh 1 kwh = 3.600.000 J PUNTO 1º Y 2º - QUÉ ES LA ENERGÍA? La energía es una magnitud física que asociamos con la capacidad de producir cambios en los cuerpos. La unidad de energía en el Sistema Internacional (SI) es el julio

Más detalles

TEMA 6 EQUILIBRIO QUÍMICO

TEMA 6 EQUILIBRIO QUÍMICO TEMA 6 EQUILIBRIO QUÍMICO ÍNDICE 1. Equilibrio químico homogéneo y heterogéneo 2. Concentraciones en equilibrio 3. Constante de equilibrio K c 4. Constantes de equilibrio K p y K c 5. Cociente de reacción

Más detalles

Valor evaluación = 70 % Fecha de entrega: Agosto 20 de 2012. Valor presentación taller = 30% Fecha de evaluación: a partir de agosto 20 de 2012.

Valor evaluación = 70 % Fecha de entrega: Agosto 20 de 2012. Valor presentación taller = 30% Fecha de evaluación: a partir de agosto 20 de 2012. COLEGIO NACIONAL LOPERENA FISICA GRADO UNDECIMO PLAN DE RECUPERACION DE FISICA (SEGUNDO PERIODO) TEMPERATURA CALOR MOVIMIENTO PERIÓDICO MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO PENDULAR. NOTA: Desarrolla

Más detalles

Lección: Primer principio de la termodinámica

Lección: Primer principio de la termodinámica Lección: Primer principio de la termodinámica TEMA: Introducción 1 Adolfo Bastida Pascual Universidad de Murcia. España... 2 I.A. Energía interna..................... 2 I.B. Enunciado del primer principio......

Más detalles

Principios Cero y Primero

Principios Cero y Primero Principios Cero y Primero Prof. Luis Conde Departamento de Física Aplicada Página personal: http://plasmalab.aero.upm.es/~lcl/ Procesos termodinámicos Un sistema termodinámico experimenta un cambio de

Más detalles

CURSO FÍSICA II 2012 CLASE VIII

CURSO FÍSICA II 2012 CLASE VIII UNIVERSIDAD NACIONAL DEL NORDESTE FACULTAD DE INGENIERÍA DEPARTAMENTO DE FÍSICA Y QUÍMICA CURSO FÍSICA II 2012 CLASE VIII MECÁNICA DE FLUIDOS PROPIEDADES DE FLUIDOS ESTÁTICA DE LOS FLUIDOS CINÉMATICA DE

Más detalles

2ª PRUEBA 26 de febrero de 2016

2ª PRUEBA 26 de febrero de 2016 2ª PRUEB 26 de febrero de 216 Problema experimental. Calibrado de un termistor. Como bien sabes, un termómetro es un dispositivo que permite medir la temperatura. Los termómetros clásicos se basan en el

Más detalles

Departamento de Física y Química. PAU Física. Modelo 2010/2011.

Departamento de Física y Química. PAU Física. Modelo 2010/2011. 1 PAU Física. Modelo 2010/2011. OPCIÓN A Cuestión 1.- Un cuerpo de masa 250 g unido a un muelle realiza un movimiento armónico simple con una recuencia de 5 Hz Si la energía total de este sistema elástico

Más detalles

Ramas de la Química Física

Ramas de la Química Física Conocimiento en las Ciencias Naturales Medicina Biología Química Física Métodos Químico Físicos Matemática 16 de Agosto de 01 1 Ramas de la Química Física QUÍMICA FÍSICA ermodinámica arte que aplica los

Más detalles

Tema 3: Ecuaciones químicas y concentraciones

Tema 3: Ecuaciones químicas y concentraciones Tema 3: Ecuaciones químicas y concentraciones Definición de disolución. Clases de disoluciones. Formas de expresar la concentración de una disolución. Proceso de dilución. Solubilidad. Diagramas de fases

Más detalles

UNIVERSIDAD NACIONAL SANTIAGO ANTÚNEZ DE MAYOLO

UNIVERSIDAD NACIONAL SANTIAGO ANTÚNEZ DE MAYOLO UNIVERSIDAD NACIONAL SANTIAGO ANTÚNEZ DE MAYOLO DEPARTAMENTO ACADÉMICO CIENCIAS M. RAMÍREZ G. 1 Dr. Miguel RAMÍREZ GUZMÁN Teoría Cinética Molecular Ofrece un modelo para explicar las propiedades de los

Más detalles

PARTE I TERMODINÁMICA QUÍMICA

PARTE I TERMODINÁMICA QUÍMICA PARTE I TERMODINÁMICA QUÍMICA 01-Gonza lez.indd 1 5/6/06 19:26:43 01-Gonza lez.indd 2 5/6/06 19:26:49 Capítulo I Conceptos fundamentales Defi niciones 1,3,9 carácter macroscópico del sistema. Se determina

Más detalles

PLAN GLOBAL QUIMICA GENERAL

PLAN GLOBAL QUIMICA GENERAL UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA PLAN GLOBAL QUIMICA GENERAL I. DATOS DE IDENTIFICACIÓN Nombre de la materia: QUIMICA GENERAL Código: 2004046 Grupo: 7 Carga horaria: 6 teóricas

Más detalles