CAPÍTULO 3. PROCEDIMIENTOS DE INTEGRACIÓN 3.1. Integración por cambio de variable 3.2. Integración por partes Producto de un polinomio por una

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CAPÍTULO 3. PROCEDIMIENTOS DE INTEGRACIÓN 3.1. Integración por cambio de variable 3.2. Integración por partes 3.2.1. Producto de un polinomio por una"

Transcripción

1 CAPÍTULO. PROCEDIMIENTOS DE INTEGRACIÓN.. Integrción por cmbio de vrible.. Integrción por prtes... Producto de un polinomio por un eponencil... Producto de un polinomio por un seno o un coseno... Producto de un eponencil por un seno o un coseno..4. Producto de un logritmo por otr función..5. Ls tres funciones inverss rcsen, rccos, rctg..6. Alguns funciones rcionles e irrcionles

2 Cpítulo Procedimientos de integrción MÉTODOS POR PARTES CAMBIO DE VARIABLE udv = uv vdu t = f ( )

3 Cpítulo Procedimientos de integrción.. Integrción por cmbio de vrible Se f() un función y F() un de sus primitivs. Si = ϕ(u) F() = F(ϕ(u)) = G(u), y sí, plicndo l regl de l cden pr clculr l derivd, obtenemos que G '(u) = F '(ϕ(u)) ϕ'(u) = f(ϕ(u)) ϕ'(u). Luego: f ( ϕ ( u)) ϕ'( u) du = G(u) = F(ϕ(u)). El cmino seguir serí: elegir un cmbio de vrible pr relizr; resolver l nuev integrl en l nuev vrible; por último, deshcer el cmbio pr dr el resultdo en función de l vrible originl. ( ) ( ) = ϕ u f ( ) d = d = ϕ u du Ejemplos ) d = = f ( ϕ ( u) ) ϕ' ( u) du = F(ϕ(u)) = F() = u d = du / = du = u = ( ) u = u / du = / = u u + du ) d = = d = du u u / = / / / = ( u u ) + du = 4 = 4 5/ / u u + 5 / / 5 / = 0 / u + u = 6 / 5 = ( ) + ( ) 0 / 6

4 Procedimientos de integrción 5 sen = u u ) sen cos d = = cos d = du u du = = = 9 = u 4) sen d = d = du 9 u = ( sen ) = sen du = u = ( cosu) = cos( ) sec 5) d = u = = = d du sec u du = tgu = tg = senu 6) d = = d = cosu du sen u cosu du = + cosu du = u + senu = 4 = rcsen + ( senu = senu cosu = ) = cos u du = Not Se verán más cmbios de vrible l resolver diferentes tipos de integrles de funciones prticulres. Como es obvio, en un mism integrl se pueden plicr diversos cmbios de vrible de mner sucesiv, hst que se llegue un función de l que se conozc de form inmedit un de sus primitivs. Todos los cmbios de vrible que se relicen en un mism integrl deberán ser deshechos en orden contrrio como se hn producido, es decir, primero el

5 6 Introducción l cálculo integrl último, después el nterior, y sí hst llegr l primero, que se deshrá en último lugr... Integrción por prtes Se u()v() el producto de dos funciones de. Aplicndo ls regls de diferencición pr el producto de funciones, obtenemos: o, equivlentemente, d(uv) = v du + u dv u dv = d(uv) v du Integrndo miembro miembro est iguldd, llegmos : u dv = d(uv) v du pero, como l diferencición y l integrción son funciones inverss, se tiene que: d ( uv) = uv, y, por tnto, l epresión nterior qued: u dv = uv v du Est iguldd entre integrles se conoce como el método de integrción por prtes. Así, si l integrl que queremos clculr tiene l form de un producto u dv, se puede intentr plicr este método pr obtener un prte conocid de l primitiv, uv, y un nuev integrl resolver, v du. Se esper que est nuev integrl se más fácil de clculr que l primer. Si fuer más difícil, se prueb intercmbir los ppeles de u y dv (dv debe contener siempre d) y comenzr el cálculo. Si l nuev integrl es ún más difícil, este método no es bueno y no se plic. A veces este proceso hy que repetirlo más de un vez sobre un mism integrl pr llegr conocer l primitiv buscd. Eisten csos en los cules está comprobdo que el método de integrción por prtes funcion bien, no queriendo decir con esto que sen los únicos csos en los cules se puede plicr, ni tmpoco que no se pued plicr otro método de los que trtremos más delnte. Vemos estos csos los que nos referimos.

6 Procedimientos de integrción 7... Producto de un polinomio por un eponencil Clculr: e d Probmos tomr ls prtes como: Así, l integrl quedrá: uv e = u e d = du d = dv v = v du = e e d Est integrl es más complicd que l inicil, y que hemos umentdo el grdo del polinomio. Procedemos cmbir los ppeles de u y de dv, tomndo el polinomio como l prte derivr y l eponencil como l prte integrr: e = u d = dv d = du e v = Aplicndo est nuev elección en l integrl originl I: e e d = e e e = 4 En este cso siempre es más conveniente elegir el polinomio pr derivr, es decir, tomrlo como u (pues en l nuev integrl quedrá un polinomio de un grdo menor) y l función eponencil pr integrr, es decir, tomrl como dv (en l nuev integrl quedrá l mism eponencil slvo constntes).... Producto de un polinomio por un seno o un coseno Clculr: sen d Hcemos: = u sen d = dv d = du cos v =

7 8 Introducción l cálculo integrl Así, uv v du = cos = cos + sen 4 cos d = De nuevo es en generl más conveniente derivr el polinomio, es decir, tomrlo como u, e integrr l función trigonométric, como dv. Además, es bstnte frecuente en estos csos tener que plicr dos o más veces este proceso de integrción por prtes pr resolver l integrl originl. Veámoslo con un ejemplo: Clculr: ( ) cos d Hcemos prtes: = u 4 d = du sen cos d = dv v = Con lo que I qued: sen 4 sen d = sen 4 sen d ( ) = ( ) En l nuev integrl l que hemos llegdo el polinomio no h desprecido, pero se h conseguido rebjr su grdo en un unidd. Prece, pues, que un nuev plicción del proceso de integrción por prtes est nuev integrl, con l mism elección de u (el polinomio) y dv (l función trigonométric), nos conducirá un integrl donde el polinomio hy desprecido, siendo, por tnto, inmedito clculr un de sus primitivs. Nótese que, si en est nuev integrl intercmbimos los ppeles de u (l función trigonométric) y dv (el polinomio), llegremos l integrl originl, puesto que estremos deshciendo lo relizdo en l primer plicción del proceso de integrción por prtes. Así pues, considermos l siguiente elección:

8 Procedimientos de integrción 9 = u sen d = dv d = du cos v = Así, con l plicción sucesiv del método de integrción por prtes l integrl originl, ést quedrá de l form: 4 cos cos d = sen cos cos d = 9 9 sen cos 9 7 sen ( ) sen = ( ) = ( )... Producto de un eponencil por un seno o un coseno Clculr: e sen d Hcemos prtes: e = u sen d = dv e d = du cos v = Con est elección, l integrl I puede epresrse como: e cos + e cos d Encontrmos sí un integrl nálog I. Integrmos de nuevo por prtes y continumos llmndo u l eponencil y dv l función trigonométric (en cso contrrio, volverímos l integrl originl). Así pues, l nuev elección de ls prtes será: e = u cos d = dv e d = du sen v =

9 40 Introducción l cálculo integrl Por tnto, I quedrá: e cos + e e cos + e sen 9 sen e sen d 4 I 9 e sen cos 9 9 e sen cos Est situción, en l cul prece l integrl I que se dese clculr en medio del proceso de integrción, fectd de otro coeficiente, surge con frecuenci en el cálculo de integrles, siendo etremdmente ingenios su resolución tl como se h procedido en el ejemplo...4. Producto de un logritmo por otr función Log Clculr: d En estos csos, l elección de ls prtes es bstnte clr. Como el Logritmo no posee un primitiv inmedit, lo más rzonble es elegir l otr función como dv, y el propio Logritmo como u, y que su derivd si que es fácil de encontrr. Solo en los csos en que l otr función teng un integrción mucho más complicd que l de l función Logritmo, se elegirán ls prtes de form contrri. Est situción es generl, es decir, l elección de ls prtes tiene mucho que ver con que función se más sencill pr clculr un de sus primitivs, puesto que el proceso de derivción ofrece menos dificultdes. En el ejemplo tommos ls prtes como: Log = u d = dv d = du v = Log

10 Procedimientos de integrción 4 Log Log d Log = ( Log) I ( Log ) ( Log )..5. Ls tres funciones inverss rcsen, rccos, rctg Clculr: rcsen d Por rzones similres ls rgumentds pr el cso nterior, l elección priori más sencill será tomr ls prtes como: rcsen = u d = dv d = = v du rcsen d = rcsen + d = = rcsen Alguns funciones rcionles e irrcionles ) Clculr: ( + ) d Hcemos prtes: = u d d = du = dv = v ( + ) ( + ) + + ( + ) d = ( + ) + rctg

11 4 Introducción l cálculo integrl b) Clculr: d Tommos prtes: d = dv = u d = du = v d = + d = = d d = = d d = ( ) = I + Log Log +

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas) Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv

Más detalles

2. Cálculo de primitivas

2. Cálculo de primitivas 5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv

Más detalles

CONCEPTOS CLAVE DE LA UNIDAD 2., entonces se dice que F es antiderivada de f. Siempre que f(x) esté definida.

CONCEPTOS CLAVE DE LA UNIDAD 2., entonces se dice que F es antiderivada de f. Siempre que f(x) esté definida. CONCEPTOS CLAVE DE LA UNIDAD. Si f y F son funciones de, tles que F '( ) f ( ), entonces se dice que F es ntiderivd de f. Siempre que f() esté definid. Alguns veces l ntiderivd, se le llm función primitiv..

Más detalles

Descomposición elemental (ajustes por constantes)

Descomposición elemental (ajustes por constantes) Descomposición elementl (justes por constntes) OBSERVACIONES. Ls primers integrles que precen se hn obtenido del libro de Mtemátics I (º de Bchillerto) McGrw-Hill, Mdrid 007.. Otros problems se hn obtenido

Más detalles

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO UNIVERSIDAD CARLOS III DE MADRID Deprtmento de Mtemátics MATEMÁTICAS CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 2010 2011 Elbordo por Elen Romer Índice generl 4. Cálculo

Más detalles

SELECCIÓN DE PROBLEMAS DEL TEMA 5: INTEGRACIÓN. Análisis Matemático (Grupo 1)

SELECCIÓN DE PROBLEMAS DEL TEMA 5: INTEGRACIÓN. Análisis Matemático (Grupo 1) INTEGRACIÓN. Análisis Mtemático (Grupo ). Clcul ls siguientes integrles indefinids: ( R) ( ) + 4 + 6 4 (e) ln (g) (j) e (m) sen (o) + (h) cos ( ) (k) ln (n) e sen b (p) e sen sen sen (l) (ñ) cos sen rctn

Más detalles

Métodos de Integración

Métodos de Integración CAPÍTULO Métodos de Integrción. Integrción por prtes El método que presentmos en est sección está bsdo en l regl pr derivr un producto de funciones. Como sbemos, si u f.x/ & v g.x/ son funciones derivbles,

Más detalles

Tema 11: Integrales denidas

Tema 11: Integrales denidas Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl

Más detalles

TEMA 4. Cálculo integral

TEMA 4. Cálculo integral TEMA 4. Cálculo integrl En este tem considerremos el cálculo integrl, que es un complemento nturl del cálculo diferencil y tiene múltiples plicciones en otrs ciencis. 4.. Introducción l cálculo integrl

Más detalles

PRIMITIVA E INTEGRACIÓN INDEFINIDA

PRIMITIVA E INTEGRACIÓN INDEFINIDA TEMA CÁLCULO DE PRIMITIVAS. - PRIMITIVA E INTEGRACIÓN INDEFINIDA PRIMITIVA DE UNA FUNCIÓN f(): F() es un primitiv de f() si F () = f() Ejemplos: función: f() Primitiv: F() sen - cos Not: Un función tiene

Más detalles

Métodos de Integración I n d i c e

Métodos de Integración I n d i c e Métodos de Integrción I n d i c e Introducción Cmbio de Vrible Integrción por prtes Integrles de funciones trigonométrics Sustitución Trigonométric Frcciones prciles Introducción. En est sección, y con

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grdo en Químic Bloque Funciones de un vrible Sección.6: Integrción y plicciones. L integrl sirve pr clculr áres de figurs plns limitds por curvs. Pr definir l integrl de un función f : [, b] R se utilizn

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu

Más detalles

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL TEMA INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL. Funciones.. Incrementos rzones de cmbio. 3. Derivds 4. Derivds de orden superior. 5. Primitivs 6. Integrl definid. Este mteril puede descrgrse desde

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 06 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserv, Ejercicio, Opción A Reserv, Ejercicio, Opción B Reserv, Ejercicio,

Más detalles

DERIVADA DE LA FUNCIÓN LOGARITMO DE CUALQUIER BASE Y LA DERIVACIÓN LOGARÍTMICA

DERIVADA DE LA FUNCIÓN LOGARITMO DE CUALQUIER BASE Y LA DERIVACIÓN LOGARÍTMICA DERIVADA DE LA FUNCIÓN LOGARITMO DE CUALQUIER BASE Y LA DERIVACIÓN LOGARÍTMICA Sugerencis pr quien imprte el curso: Se esper que con l propuest didáctic presentd en conjunción con los prendizjes logrdos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserv, Ejercicio, Opción A Reserv, Ejercicio, Opción B Reserv, Ejercicio,

Más detalles

Definición: Dada una función f(x), diremos que la función F(x) es una función primitiva de f(x) en el intervalo [a, b], cuando se verifica que:

Definición: Dada una función f(x), diremos que la función F(x) es una función primitiva de f(x) en el intervalo [a, b], cuando se verifica que: L INTEGRL INDEFINID.- Integrl indeinid. Deiniciones..- Propieddes de l integrl indeinid..- Integrles inmedits..- Métodos de integrción..- Integrl indeinid. Deiniciones Deinición: Dd un unción, diremos

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES Unidd didáctic 7. Funciones reles de vrible rel Autors: Glori Jrne, Espernz Minguillón, Trinidd Zbl CONCEPTOS BÁSICOS Se llm función rel de vrible rel culquier plicción f : D R con D Œ R, es decir, culquier

Más detalles

TEMA 5: INTEGRACIÓN. f(x) dx.

TEMA 5: INTEGRACIÓN. f(x) dx. TEMA 5: INTEGRACIÓN. L integrl indefinid En muchos spectos, l operción llmd integrción que vmos estudir quí es l operción invers l derivción. Definición.. L función F es un ntiderivd (o primitiv) de l

Más detalles

[FACTORIZACION DE POLINOMIOS]

[FACTORIZACION DE POLINOMIOS] 009 CETis 6 Ing. Gerrdo Srmiento Díz de León [FACTORIZACION DE POLINOMIOS] Documento que enseñ como fctorizr polinomios Pr fctorizr polinomios hy vrios métodos: FACTORIZACIÓN DE POLINOMIOS. Scr fctor común:

Más detalles

Matemáticas Empresariales I. Integral Definida

Matemáticas Empresariales I. Integral Definida Mtemátics Empresriles I Lección 8 Integrl Definid Mnuel León Nvrro Colegio Universitrio Crdenl Cisneros M. León Mtemátics Empresriles I 1 / 31 Construcción de l integrl definid Se f un función definid

Más detalles

Formulario de integrales

Formulario de integrales Formulrio de integrles c -5 Slvdor Blsco Llopis Este formulrio puede ser copido y distribuido libremente bjo l licenci Cretive Commons Atribución. Espñ. Séptim revisión: Febrero 5 Set revisión: Julio 3

Más detalles

1. Introducción a las integrales indefinidas o primitivas

1. Introducción a las integrales indefinidas o primitivas Tem 6. Integrles. Introducción ls integrles indefinids o primitivs En Mtemátics, un observción rzonble es que cundo se define un operción que proporcion unos resultdos prtir de unos dtos, se puede plnter

Más detalles

Función no Acotada en uno o en los dos extremos del Intervalo de Integración. f (x) d x = lim

Función no Acotada en uno o en los dos extremos del Intervalo de Integración. f (x) d x = lim Función no Acotd en uno o en los dos etremos del Intervlo de Integrción Si f () está definid sobre (, b] y si f () cundo, se define f () d = lim f () d ε + +ε Si f () está definid sobre [, b) y si f ()

Más detalles

Definición: Dada una función f(x), diremos que la función F(x) es una función primitiva de f(x) en el intervalo [a, b], cuando se verifica que:

Definición: Dada una función f(x), diremos que la función F(x) es una función primitiva de f(x) en el intervalo [a, b], cuando se verifica que: TEM : L INTEGRL INDEFINID.- Integrl indeinid. Deiniciones..- Propieddes de l integrl indeinid..- Integrles inmedits..- Métodos de integrción..- Integrl indeinid. Deiniciones Deinición: Dd un unción, diremos

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES Se dice que un función y f() tiene límite "L" cundo l tiende "" y lo representmos por: f() L cundo pr tod sucesión de números reles que se proime "" tnto como quermos, los vlores correspondientes

Más detalles

MÉTODOS DE INTEGRACIÓN

MÉTODOS DE INTEGRACIÓN Mtemátics II LE.Tem 4: Introducción l teorí de integrción Integrles inmedits MÉTODOS DE INTEGRACIÓN x α = xα+ α+ + C, si α - (f(x)) α f '(x) = (f(x))α+ + C, si α - α + x = x + C f '(x) = f(x) + C f(x)

Más detalles

Integrando Derivadas. f = F (b) F (a) F (x ) = F (x i) F (x i 1 ) i. S(f, P ) F (b) F (a) S(f, P ) f = F (b) F (a) f = f(b) f(a)

Integrando Derivadas. f = F (b) F (a) F (x ) = F (x i) F (x i 1 ) i. S(f, P ) F (b) F (a) S(f, P ) f = F (b) F (a) f = f(b) f(a) Unidd 2 Teorem Fundmentl del Cálculo 2. L integrl como función del límite superior Integrndo Derivds Denición. Un función F es un ntiderivd de un función f sobre un conjunto A si tnto F, f estn denidos

Más detalles

INTEGRALES INDEFINIDAS INTEGRALES DEFINIDAS: CÁLCULO DE ÁREAS

INTEGRALES INDEFINIDAS INTEGRALES DEFINIDAS: CÁLCULO DE ÁREAS INTEGRALES INDEFINIDAS INTEGRALES DEFINIDAS: CÁLCULO DE ÁREAS Mtemátics º de Bchillerto Ciencis y Tecnologí Profesor: Jorge Escribno Colegio Inmculd Niñ Grnd www.coleinmculdnin.org TEMA 7.- INTEGRALES

Más detalles

Funciones trascendentes

Funciones trascendentes Cálculo 1 _Comisión -3 Año 017 Funciones trscendentes I) Funciones trigonométrics Son quells unciones cuys regls de deinición corresponden relciones trigonométrics (seno, coseno, tngente, cotngente, secnte

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

AX = B. X es la matriz columna de las variables:

AX = B. X es la matriz columna de las variables: ÁLGEBR MTRICIL PRO. MRIEL SRMIENTO SESIÓN 9: METODO DE ELIMINCIÓN GUSSIN En est sesión, resolvemos sistems de ecuciones lineles de orden x y x. Pr ello escribimos el sistem en término de mtrices, por ejemplo:

Más detalles

TEMA 5: Logaritmos y ecuaciones logarítmicas. Tema 5: Logaritmos y ecuaciones logarítmicas 1

TEMA 5: Logaritmos y ecuaciones logarítmicas. Tema 5: Logaritmos y ecuaciones logarítmicas 1 TEMA : Logritmos y ecuciones rítmics Tem : Logritmos y ecuciones rítmics ESQUEMA DE LA UNIDAD.- Logritmos...- Logritmo de un número rel...- Logritmos decimles y neperinos..- Propieddes de los ritmos..-

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

Cálculo de primitivas

Cálculo de primitivas Cálculo de primitivs Cmbio de vrible Cálculo de primitivs Utilizremos l notción f (x) pr denotr un primitiv de l función f. Además, busndo del lenguje, menudo hblremos de integrl de l función cundo deberímos

Más detalles

REPASO DE ECUACIONES (4º ESO)

REPASO DE ECUACIONES (4º ESO) TIPOS DE ECUACIONES.- REPASO DE ECUACIONES ( ESO) Eisten diversos tipos de ecuciones, entre ells estudiremos: Polinómics: En ells, l incógnit prece solmente en epresiones polinómics. El grdo de un ecución

Más detalles

ECUACIONES (4º ESO Op B)

ECUACIONES (4º ESO Op B) ECUACIONES ( ESO Op B) IDENTIDADES, IGUALDADES FALSAS Y ECUACIONES.- Un iguldd lgebric está formd por dos epresiones lgebrics (un de ells puede ser un número), seprds por el signo. Ejemplos.- + + 1 ( +

Más detalles

Integrales de funciones de una variable.

Integrales de funciones de una variable. Tem Integrles de funciones de un vrible... L integrl definid como áre. L integrl definid de un función cotd y positiv corresponde l áre encerrd entre l curv y f (x) y el eje OX desde un punto y fx fx hst

Más detalles

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE:

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE: IES Fernndo de Herrer de octure de 0 Primer trimestre - Primer exmen 4º ESO NOMBRE: ) Nomrr los principles conjuntos numéricos, explicitndo cuáles son sus elementos y ls relciones de inclusión entre ellos

Más detalles

Integrales de funciones de una variable.

Integrales de funciones de una variable. Tem Integrles de funciones de un vrible... L integrl definid como áre. L integrl definid de un función cotd y positiv corresponde l áre encerrd entre l curv y fx) y el eje OX desde y f x f x un punto hst

Más detalles

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b. Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función

Más detalles

Tecnólogo Mecánico-Cartografía

Tecnólogo Mecánico-Cartografía PRÁCTICO MATEMÁTICA II Tecnólogo Mecánico - Tecnólogo en Crtogrfí. Mtemátic II En los cursos re-universitrios rendimos derivr funciones. Dd un función f (derivble) se estudiron cierts técnics que nos ermitín

Más detalles

Las integrales que vamos a tratar de resolver numéricamente son de la forma I = f(x)dx

Las integrales que vamos a tratar de resolver numéricamente son de la forma I = f(x)dx Cpítulo 3 Integrción Numéric 3.1. Introducción Ls integrles que vmos trtr de resolver numéricmente son de l form f(x)dx donde [, b] es un intervlo finito. Sbemos que l integrl definid (de Riemnn) de un

Más detalles

una forma de resolver la integral, consiste en encontrar el desarrollo del

una forma de resolver la integral, consiste en encontrar el desarrollo del SSTITCION NIVERSIDAD FRANCISCO DE PALA SANTANDER FACLTAD DE INGENIERA DEPARTAMENTO DE MATEMÁTICA Y ESTADISTICA INTEGRACIÓN POR SSTITCIÓN Nunc olvides que bst un person o un ide pr cmbir tu vid pr siempre

Más detalles

Me temo que esto no me va a gustar mucho. El primer tema es bastante petardete,

Me temo que esto no me va a gustar mucho. El primer tema es bastante petardete, 0 Requisitos previos 0 Primitiv de un función 0 El problem del cálculo de primitivs 5 04 Primitivs inmedits 6 05 Funciones hiperbólics 06 Cálculo de primitivs "por prtes" 4 07 Cmbio de vrible 45 08 Primitiv

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función. LA DERIVADA Tem 6: LA DERIVADA Índice:. Derivd de un unción... Derivd de un unción en un punto... Interpretción geométric.3. Derivds lterles..4. Función derivd. Derivds sucesivs.. Derivbilidd y continuidd.

Más detalles

TEMA 3: ECUACIONES ECUACIONES DE 2º GRADO Las ecuaciones de 2º grado son de la forma ax 2 +bx+c=0 y su solución es:

TEMA 3: ECUACIONES ECUACIONES DE 2º GRADO Las ecuaciones de 2º grado son de la forma ax 2 +bx+c=0 y su solución es: TEMA : ECUACIONES ECUACIONES DE º GRADO Ls ecuciones de º grdo son de l form +b+c=0 y su solución es: b b 4c Cundo b=o o c=0 son incomplets y se resuelven de l siguiente form. Cso b=0, por ejemplo: 6 7=0

Más detalles

Integrales. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid

Integrales. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid Jesús Grcí de Jlón de l Fuente IES Rmiro de Meztu Mdrid Diferencil de un función Diferencil de un función Definición L diferencil de un función f es igul su derivd por un incremento rbitrrio de l vrible.

Más detalles

De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero.

De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero. DETERMINANTE DE UNA MATRIZ DE ORDEN O MÁS PREGUNTA Clculr los determinntes siguientes ) ) c) RESOLUCIÓN Pr resolver el determinnte de un mtriz cudrd de orden o más es recomendle plicr el método de Reducción

Más detalles

TEMA 9: INTEGRALES. CÁLCULO DE ÁREAS

TEMA 9: INTEGRALES. CÁLCULO DE ÁREAS TEMA 9: INTEGRALES. CÁLCULO DE ÁREAS. ÁREA BAJO UNA CURVA. El prolem que pretendemos resolver es el cálculo del áre limitd por l gráfic de un función f() continu y positiv, el eje X y ls sciss = y =. Si

Más detalles

Integración Numérica

Integración Numérica Métodos Numéricos: Integrción Numéric Edurdo P. Serrno Versión previ br 1 1. L integrl. Considermos el problem de clculr l integrl: If) = fx) dx donde f es un función continu. El vlor If) puede clculrse,

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

Métodos de Integración

Métodos de Integración CAPÍTULO Métodos de Integrción. Integrción or sustitución trigonométric A continución veremos un técnic de integrción, l cul se bs en utilizr unciones trigonométrics r licr cmbios de vrible que tendrán

Más detalles

4.6. Teorema Fundamental del Cálculo

4.6. Teorema Fundamental del Cálculo Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 07-2 SEMANA 8: INTEGRAL DE RIEMANN 4.6. Teorem Fundmentl del Cálculo Proposición 4.5. Se un

Más detalles

INTEGRALES IMPROPIAS

INTEGRALES IMPROPIAS NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES IMPROPIAS Ing. Jun Scerdoti Deprtmento de Mtemátic Fcultd de Ingenierí Universidd de Buenos Aires V INDICE INTEGRALES IMPROPIAS.- PUNTOS SINGULARES

Más detalles

La integral indefinida Métodos de integración Integración de funciones de una variable real Integración impropia Aplicaciones de la integral

La integral indefinida Métodos de integración Integración de funciones de una variable real Integración impropia Aplicaciones de la integral Febrero, 2005 Índice generl Se f : I IR. Definición Diremos que F es primitiv de f en I si F (x) = f (x), x I. Teorem Si F y G son dos primitivs de un mism función f en un intervlo I, entonces, / k IR

Más detalles

Parte 7. Derivación e integración numérica

Parte 7. Derivación e integración numérica Prte 7. Derivción e integrción numéric Gustvo Montero Escuel Técnic Superior de Ingenieros Industriles Universidd de Ls Plms de Grn Cnri Curso 006-007 Los problems de derivción e integrción numéric El

Más detalles

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 4 n 4 n es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de un sucesión

Más detalles

f(x) dx = F (x) + C, siendo F (x) una antiderivada de f(x), es decir, siendo F (x) tal que F (x) = f(x)

f(x) dx = F (x) + C, siendo F (x) una antiderivada de f(x), es decir, siendo F (x) tal que F (x) = f(x) Cálculo de primitivs: f(x) dx = F (x) + C, siendo F (x) un ntiderivd de f(x), es decir, siendo F (x) tl que F (x) = f(x) L constnte C se denomin constnte de integrción; es un constnte rbitrri porque se

Más detalles

SEMANA 8: INTEGRAL DE RIEMANN

SEMANA 8: INTEGRAL DE RIEMANN Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Ingenierí Mtemátic Universidd de Chile SEMANA 8: INTEGRAL DE RIEMANN 4.6. Teorem Fundmentl

Más detalles

Métodos de Integración

Métodos de Integración CAPÍTULO Métodos de Integrción. Integrción or sustitución trigonométric A continución veremos un técnic de integrción, l cul se bs en utilizr unciones trigonométrics r licr cmbios de vrible que tendrán

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

Cálculo Diferencial e Integral - Longitud de una curva. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Longitud de una curva. Prof. Farith J. Briceño N. Cálculo Diferencil e Integrl - Longitud de un curv. Prof. Frith J. Briceño N. Objetivos cubrir Longitud de un curv. Áre de un superficie de revolución. Ejercicios Código : MAT-CDI. resueltos Ejemplo :

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

La integral de Riemann

La integral de Riemann L integrl de Riemnn Mrí Muñoz Guillermo mri.mg@upct.es U.P.C.T. Mtemátics I (1 o Ingenierí Electrónic Industril y Automátic) M. Muñoz (U.P.C.T.) L integrl de Riemnn Mtemátics I 1 / 33 Sums superior e inferior

Más detalles

E.T.S. Minas: Métodos Matemáticos

E.T.S. Minas: Métodos Matemáticos E... Mins: Métodos Mtemáticos Resumen y ejemplos em 6: Integrción numéric Frncisco Plcios Escuel Politécnic uperior de Ingenierí de Mnres Universidd Politécnic de Ctluñ Octubre 8, Versión.5 Contenido.

Más detalles

Solución Segunda Prueba Intermedia (23/01/2018) Curso 2017/18

Solución Segunda Prueba Intermedia (23/01/2018) Curso 2017/18 Solución Segund Prueb Intermedi 3//8) Curso 7/8 Problem. Indic si los siguientes enuncidos son VERDADEROS o FALSOS, justicndo l respuest. ) Si f : [, b] R es continu con c f)d < b f)d. b) Si f : [, + )

Más detalles

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS Mtemátic Unidd - UNIDAD N : EXPRESIONES ALGEBRAICAS POLINOMIOS ÍNDICE GENERAL DE LA UNIDAD Epresiones Algebrics Enters...... Polinomios..... Actividdes... 4 Vlor Numérico del polinomio........ 4 Concepto

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida Integrl Indefinid Estmos costumrdos decir que el producto el cociente son operciones inverss. Lo mismo sucede con l potencición l rdicción. Vmos estudir hor l operción invers de l diferencición. Dd l función

Más detalles

Conjuntos numéricos. Intervalos. Operaciones en el conjunto de números reales.

Conjuntos numéricos. Intervalos. Operaciones en el conjunto de números reales. Fich Técnic Conjuntos numéricos Intervlos Operciones en el conjunto de números reles Índice de tems: Conjuntos numéricos Intervlos Operciones y propieddes Módulo o vlor bsoluto de un número rel Conjuntos

Más detalles

Integración de funciones de una variable real

Integración de funciones de una variable real Cpítulo 5 Integrción de funciones de un vrible rel 5.1. Introducción Los inicios del Cálculo Integrl se remontn Arquímedes, mtemático, físico e ingeniero griego del S.III A.C., quién clculó el áre de numeross

Más detalles

Conceptos bá sicos. Sumá, restá y producto de polinomios

Conceptos bá sicos. Sumá, restá y producto de polinomios Unidd. Álgebr: polinomios, ecuciones, inecuciones y sistems Mtemátics I - º Bchillerto Conceptos bá sicos. Sumá, restá y producto de polinomios Un monomio en un vrible o indetermind es un n epresión de

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso Fundmentos Mtemáticos de l Ingenierí. (Tem 9) Hoj Escuel Técnic Superior de Ingenierí Civil e Industril (Esp. en Hidrologí) Fundmentos Mtemáticos de l Ingenierí. Tem 9: Cálculo integrl de funciones de

Más detalles

1 LÍMITE FINITO DE UNA FUNCIÓN EN UN PUNTO

1 LÍMITE FINITO DE UNA FUNCIÓN EN UN PUNTO Límite de funciones. Continuidd MATEMÁTICAS II 1 1 LÍMITE FINITO DE UNA FUNCIÓN EN UN PUNTO Cómo determinr el límite de un función cundo l vrible se proim un vlor? En generl, pr tener un ide de l respuest

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

DIVERSIFICACIÓN CURRICULAR

DIVERSIFICACIÓN CURRICULAR ECUACIÓN DE PRIMER GRADO Se llmn ecuciones igulddes en ls que precen número y letrs (incógnits) relciondos medinte operciones mtemátics. Por ejemplo: - y = + Son ecuciones con un incógnit cundo prece un

Más detalles

Héctor Palma Valenzuela. Dpto. de Matemática UdeC Definición e interpretación geométrica

Héctor Palma Valenzuela. Dpto. de Matemática UdeC Definición e interpretación geométrica Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. L Integrl.-. Definición e interpretción geométric Dd un función continu f :[, b] R ynonegtiv (f (), [, b]), vmos considerr l región del plno bjo l gráfic de

Más detalles

CAPÍTULO XII. INTEGRALES IMPROPIAS

CAPÍTULO XII. INTEGRALES IMPROPIAS CAPÍTULO XII. INTEGRALES IMPROPIAS SECCIONES A. Integrles impropis de primer especie. B. Integrles impropis de segund especie. C. Aplicciones l cálculo de áres y volúmenes. D. Ejercicios propuestos. 9

Más detalles

Integración Numérica. 18 Regla del Trapecio

Integración Numérica. 18 Regla del Trapecio Integrción Numéric L integrl resuelve el problem de clculr el áre bjo l gráfic de un función positiv definid sobre un intervlo cerrdo. El cálculo elementl de funciones de un vrible rel proporcion un método

Más detalles

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado 56 CAPÍTULO. CÁLCULO ALGEBRAICO SECCIÓN.4 Resolución de Ecuciones de Segundo Grdo Introducción Hemos estudido cómo resolver ecuciones lineles, que son quells que podemos escribir de l form x + b = 0. Si

Más detalles

1 Integrales impropias

1 Integrales impropias Integrles impropis Eliseo Mrtínez Herrer 3 de mrzo del 4 Abstrct Se estudin ls integrles impropis sobre l bse del cálculo de integrles definids y el límite de funciones Integrles impropis b Un integrl

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

pág CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si:

pág CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: .- CONTINUIDAD TEMA 6 Continuidd, Cálculo Diferencil. FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continu en si: Lim f( ) f( ) Pr que un función se continu en un punto se h de cumplir: º f ( ) D º Lim

Más detalles

Teorema fundamental del Cálculo.

Teorema fundamental del Cálculo. Sesión Teorem fundmentl del Cálculo (TFC) Tems Teorem fundmentl del Cálculo. Cpciddes Conocer y comprender el TFC. Aplicr el TFC en el cálculo de derivds e integrles definids.. Introducción I. Brrow Inglés.

Más detalles

Cálculo Diferencial e Integral - Teorema Fundamental. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Teorema Fundamental. Prof. Farith J. Briceño N. Cálculo Diferencil e Integrl - Teorem Fundmentl. Prof. Frith J. Briceño N. Objetivos cubrir Segundo Teorem Fundmentl del Cálculo. Teorem del Vlor Medio. Teorem sobre simetrí. Código : MAT-CDI. Ejercicios

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

Examen con soluciones

Examen con soluciones Cálculo Numérico I. Grdo en Mtemátics. Exmen con soluciones. Decidir rzondmente si ls siguientes firmciones son verdders o flss, buscndo un contrejemplo en el cso de ser flss (.5 puntos): () Si f(x) cmbi

Más detalles

C alculo Octubre 2010

C alculo Octubre 2010 Cálculo Octubre 2010 c Dpto. de Mtemátics UDC c Dpto. de Mtemátics UDC L integrl indefinid Sen I R un intervlo bierto y f : I IR Definición Diremos que F es primitiv de f en I si F (x) = f (x), x I Teorem

Más detalles

EJERCICIOS DE INTEGRALES IMPROPIAS

EJERCICIOS DE INTEGRALES IMPROPIAS EJERCICIOS DE INTEGRALES IMPROPIAS. Integrles impropis de primer especie. Clculr Pr n, n con >. F (b) = b n n+ = n + Si n >, entonces F (b) =, con lo que Si n

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE:

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE: IES Fernndo de Herrer de octure de 0 Primer trimestre - Primer emen 4º ESO NOMBRE: ) Nomrr los principles conjuntos numéricos, eplicitndo cuáles son sus elementos y ls relciones de inclusión entre ellos

Más detalles

Laboratorio N 7, Asíntotas de funciones.

Laboratorio N 7, Asíntotas de funciones. Universidd Diego Portles Fcultd de Ingenierí. Instituto de Ciencis Básics Asigntur: Cálculo I Lortorio N 7, Asíntots de funciones. Introducción. Ls síntots de un función son rects que seprn ls regiones

Más detalles

TEMA 6.- DERIVADAS. La siguiente tabla da el precio, en euros, de un producto durante 8 años sucesivos:

TEMA 6.- DERIVADAS. La siguiente tabla da el precio, en euros, de un producto durante 8 años sucesivos: TEMA 6.- DERIVADAS.- TASA DE VARIACIÓN MEDIA L siguiente tbl d el precio, en euros, de un producto durnte 8 ños sucesivos: Si llmmos P( l unción precio según el ño, podemos medir l vrición del precio en

Más detalles