DISTRIBUCIONES DE PROBABILIDAD. DISTRIBUCIÓN DE PROBABILIDAD BINOMIAL.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DISTRIBUCIONES DE PROBABILIDAD. DISTRIBUCIÓN DE PROBABILIDAD BINOMIAL."

Transcripción

1 DISTRIBUCIONES DE PROBABILIDAD. DISTRIBUCIÓN DE PROBABILIDAD BINOMIAL. E estadística, la distribució biomial es ua distribució de probabilidad discreta que mide el úmero de éxitos e ua secuecia de esayos idepedietes de Beroulli co ua probabilidad fija p de ocurrecia del éxito etre los esayos. U experimeto de Beroulli se caracteriza por ser dicotómico, esto es, sólo so posibles dos resultados. A uo de éstos se deomia éxito y tiee ua probabilidad de ocurrecia p y al otro, fracaso, co ua probabilidad q = 1 - p. E la distribució biomial el experimeto se repite veces, de forma idepediete, y se trata de calcular la probabilidad de u determiado úmero de éxitos. Para = 1, la biomial se covierte, de hecho, e ua distribució de Beroulli. Características de la distribució biomial: E cada prueba del experimeto sólo so posibles dos resultados: el suceso A (éxito) y su cotrario B (fracaso). El resultado obteido e cada prueba es idepediete de los resultados obteidos ateriormete. La probabilidad de éxito p y la probabilidad de fracaso q so costates. El experimeto costa de u úmero de pruebas. Todo experimeto que tega estas características diremos que sigue el modelo de la distribució biomial. A la variable x que expresa el úmero de éxitos obteidos e cada prueba del experimeto, la llamaremos variable aleatoria biomial. La probabilidad e ua distribució de probabilidad biomial se puede obteer co el siguiete modelo matemático. Dode: P(x = ) = C p q Media Variaza µ = p = pq Desviació estádar. x es la variable aleatoria. es el úmero de éxitos. es el úmero de esayos. p es la probabilidad de éxito. q es la probabilidad de fracaso q=1-p = pq

2 Ejemplos resueltos. Ejemplo Cuál es la probabilidad de obteer seis águilas al lazar ua moeda diez veces? x= es que salga águila e la moeda. es el úmero de éxitos = es el úmero de esayos= 10 p es la probabilidad de éxito= 0.5 P(x = ) = C p q P(x = ) = C 10 (0.5) (0.5) 10 P (x = ) = (10)(0.015)(0.05) = q es la probabilidad de fracaso q=1-0.5=0.5 Ejemplo. Hallar la probabilidad de que e cico lazamietos de u dado el úmero tres aparezca cuatro veces. x= es que aparezca el úmero 3. es el úmero de éxitos = 4 es el úmero de esayos= 5 1 p es la probabilidad de éxito= = 0. 1 P(x = ) = C p q P(x = 4) = C 5 (0.1) 4 (0.84) P (x = 4) = (5)(0.0005)(0.84) = 0.07 q es la probabilidad de fracaso q= 1-0.1=0.84 Ejemplo 3. El 0% de los focos producidos por ua máquia so defectuosos, determiar la probabilidad de que al elegir cuatro focos al azar dos de ellos esté defectuosos. x= Número de focos defectuosos. es el úmero de éxitos = es el úmero de esayos= 4 p es la probabilidad de éxito= 0% = 0. P(x = ) = C p q P(x = ) = C 4 (0.) (0.8) 4 P (x = 4) = ()(0.04)(0.4) = q es la probabilidad de fracaso q= 1-0.=0.8

3 DISTRIBUCIÓN DE PROBABILIDAD DE POISSON. La distribució de Poisso, se aplica a varios feómeos discretos de la aturaleza (esto es, aquellos feómeos que ocurre 0, 1,, 3... veces durate u periodo defiido de tiempo o e u área determiada) cuado la probabilidad de ocurrecia del feómeo es costate e el tiempo o el espacio. Ejemplos de estos evetos que puede ser modelados por la distribució de Poisso icluye: El úmero de autos que pasa a través de u cierto puto e ua ruta durate u período defiido de tiempo. El úmero de errores de ortografía que uo comete al escribir ua págia. El úmero de llamadas telefóicas e ua cetral telefóica por miuto. El úmero de aimales muertos ecotrados por uidad de logitud de ruta. El úmero de estrellas e u determiado volume de espacio. Características de los procesos que produce ua distribució de probabilidad de Poisso. El promedio (la media) del úmero de evetos que se produce por hora, puede estimarse a partir de datos que se tega dispoibles. Si dividimos la hora pico e periodos (itervalos) de u segudo cada uo, ecotraremos que las siguietes afirmacioes so verdaderas: La probabilidad de que exactamete u eveto ocurra por segudo es muy pequeña y es costate para cada itervalo de u segudo. La probabilidad de que dos o más evetos ocurra e u itervalo de u segudo es ta pequeña que le podemos asigar u valor cero. El úmero de evetos que ocurre e u itervalo de u segudo es idepediete del tiempo e que dicho itervalo se presete e la hora pico. El úmero de evetos e u itervalo de u segudo o depede del úmero de ocurrecias e cualquier otro itervalo de u segudo. La distribució de Poisso se puede determiar por medio de la siguiete fórmula. e λt ( λt) x P(x) = x! Pero como λ t = media µ µ = λt ó µ = p De tal maera que: µ e ( µ ) x P(x) = x! Media µ = µ Variaza = µ Dode: x es el úmero de ocurrecias. e es la base de los logaritmos (.718) λ es la razó media por uidad. t es el úmero de uidades. es el tamaño de la muestra. p es la probabilidad del eveto. Desviació estádar = µ La distribució de Poisso como ua aproximació a la distribució biomial.

4 La distribució de Poisso puede teer ua aproximació a la distribució biomial, pero sólo bajo ciertas codicioes. Tales codicioes se preseta cuado es grade y p es pequeña, esto es, cuado el úmero de esayos es grade y la probabilidad biomial de teer éxito es pequeña. La regla que utiliza co más frecuecia los estadísticos es que la distribució de Poisso es ua buea aproximació de la distribució biomial cuado es igual o mayor que 0 y p es igual o meor que 5%( 0,05). E los casos e que se cumple estas codicioes, podemos sustituir la media µ = p Ejemplos resueltos. Ejemplo 1. Mediate u proceso mecáico se produce alfombras de buea calidad que preseta u promedio de defectos por m. Determiar la probabilidad de que e 1 m exista sólo u defecto. x es el úmero de icidecias= 1 defecto. Media µ = µ e ( µ ) x P( x) = x! =1 = 1! = = Ejemplo. Al puerto de Acapulco arriba a ua razó media ( λ) de bar cos hora, si se observa este proceso durate u periodo t= 1/ hora ecuetre la probabilidad de que arribe 3 barcos e la siguiete media hora. λ = bar cos hora Sustituimos datos. 1 t= hora 1 µ = λt = ( )( ) = 1 µ e ( µ ) x P(x) = x! e 1 (1) 3 P(x = 3bar cos) = 3! (0.378)(1) P (x = 3bar cos) = = 0.013

5 DISTRIBUCIÓN DE PROBABILIDAD NORMAL. Esta distribució es frecuetemete utilizada e las aplicacioes estadísticas. Su propio ombre idica su extedida utilizació, justificada por la frecuecia o ormalidad co la que ciertos feómeos tiede a parecerse e su comportamieto a este tipo de distribució. La importacia de la distribució ormal se debe pricipalmete a que hay muchas variables asociadas a feómeos aturales que sigue el modelo de la ormal. Caracteres morfológicos de idividuos, aimales o platas de ua especie. por ejemplo: Tallas, pesos, evergaduras, diámetros, perímetros, etre otras. Caracteres fisiológicos, por ejemplo; efecto de ua misma dosis de u fármaco, o de ua misma catidad de aboo. Caracteres sociológicos, por ejemplo: cosumo de cierto producto por u mismo grupo de idividuos, putuacioes de u exame. Caracteres psicológicos, por ejemplo; coeficiete itelectual, grado de adaptació a u medio. La gráfica de ua distribució ormal se asemeja mucho a la forma de ua campaa. Por ello es posible aproximarla a ua distribució matemática coocida co el ombre de distribució de Gauss. Ua característica muy importate es que ua distribució ormal es posible especificarla de maera amplia por medio de parámetros; la media y la desviació estádar. Otra cosa importate es que la probabilidad de que ua variable aleatoria tega u valor etre dos putos cualesquiera es igual al área bajo la curva ormal etre esos dos putos. Propiedades importates de la curva ormal. a) Tiee forma de campaa. b) Es simétrica co respecto a la media. c) Se extiede de hasta. d) El área bajo la curva ormal es igual a 100% ó a 1. e) Cada distribució ormal está completamete especificada por su media y su desviació estádar, dada por:

6 Dode: x Es algú valor de la variable e estudio. µ Es la media de la distribució ormal. Es la desviació estádar. Z Es el úmero de desviacioes estádar a partir de la media Valores de Z Pasos para resolver este tipo de problemas. 1. Tipificar el valor de la variable x e estudio a u valor de Z.. Si existe valores de x a aalizar, ecotrar el valor de Z 1 y Z. 3. Hallar el área bajo la curva utilizado la tabla que está e el aexo 1. Nota: Si os pide que el valor de x sea mayor a algú valor, etoces el área bajo la curva es hacia la derecha del valor de z. Si os pide que el valor de x sea meor a algú valor, etoces el área bajo la curva es hacia la izquierda del l valor de z. Si os pide que el valor de x este etre dos valores, etoces el área bajo la curva es la que esté compredida etre Z 1 y Z.

7 Ejemplos resueltos. Ejemplo 1. La media de los pesos de u grupo de estudiates de bachillerato se distribuye e forma ormal co ua media µ = 5 Kg y ua desviació estádar de 5 Kg. Hallar la probabilidad de que al seleccioar a u estudiate al azar su peso sea mayor a 70Kg. x =peso sea mayor a 70Kg. µ = 5Kg = 5Kg Z = = = 1 P(x>70Kg)=? 5 5 El área buscada es la zoa sombreada, e la que de acuerdo a la tabla del aexo 1 el área de z=o a z=1 es igual a , por lo que el área sombreada es igual a = Etoces la probabilidad P(x>70Kg)= Ejemplo. E ua ciudad se estima que la temperatura máxima e el mes de juio (30 días) tiee ua distribució ormal, co media 3 y desviació est ádar de 5. Calcular el úmero de días del mes e los que se espera alcazar ua temperatura máximas etre 1 y 7. x =temperatura alcazada. P(1 C < x < 7 C)=? µ = 3 C = 5 C Z = = 5 = Área de z=0 a z=-0.4 es Área de z=0 a z=0.8 es Área buscada= = Z = = = P(1 C < x <7 C)= x 30 días = 13 dias.

8 Ejemplo 3. Se supoe que los resultados de u exame sigue ua distribució ormal co media µ 78 y variaza =3. Cuál es la probabilidad de que ua persoa que se preseta el exame obtega ua calificació superior a 7? x =Resultado del exame. P(x>7putos) µ = 78putos = 3putos = 3 = 7 78 Z = = = 1 Mayor Área de z=0 a z=-1 es Área buscada= = P(x>7putos)= Ejemplo 4. U fabricate de sobres de correo sabe por experiecia que el peso de los sobres está distribuido ormalmete co media de µ=1.95gr y ua desviació estádar de 0.3gr. Cuál es la probabilidad de que u sobre elegido al azar pese meos de 1.5gr? x =Peso del sobre. P(x<1.5gr) µ = 1.95gr = 0.3gr Z = = = Meor Mayor Área de z=0 a z=-1.5 es Área buscada= =0.08 P(x<1.5gr)=0.08

9 CON MUESTRAS PEQUEÑAS (distribució t Studet). Si la muestra es pequeña <30, la estimació de los itervalos de cofiaza se deberá de realizar por medio de otra distribució cotiua llamada distribució t, esta distribució tambié tiee forma de campaa, pero sus colas so u poco más elevadas, su forma depede de u parámetro llamado grados de libertad, que es -1, esto es el tamaño de la muestra meos uo. Distribució t- Studet La distribució de Studet fue descrita e 1908 por William Sealy Gosset. Gosset trabajaba e ua fábrica de cerveza, Guiess, que prohibía a sus empleados la publicació de artículos cietíficos debido a ua difusió previa de secretos idustriales. De ahí que Gosset publicase sus resultados bajo el seudóimo de Studet. E probabilidad y estadística, la distribució t (de Studet) es ua distribució de probabilidad que surge del problema de estimar la media de ua població ormalmete distribuida cuado el tamaño de la muestra es pequeño. Aparece de maera atural al realizar la prueba t de Studet para la determiació de las diferecias etre dos medias muestrales y para la costrucció del itervalo de cofiaza para la diferecia etre las medias de dos poblacioes cuado se descooce la desviació típica de ua població y ésta debe ser estimada a partir de los datos de ua muestra. El teorema del límite cetral mecioado ateriormete, hace referecia a que la distribució de la media muestral x era aproximadamete ormal co media µ (media de la població) y variaza ( es la variaza de la població y el tamaño de la muestra). Tambié que el estadístico z se obtiee co E la geeralidad de los casos, o dispoemos de la desviació estádar de la població, sio de ua estimació calculada a partir de ua muestra extraída de la misma y por tal razó o es posible calcular Z. Si embargo, si utilizamos ua estimació de y es pequeño ( 30) etoces z o tedrá ua distribució ormal, e tales circustacias se preseta la distribució t de studet, que es ua distribució de probabilidad que surge del problema de estimar la media de ua població ormalmete distribuida cuado el tamaño de la muestra es pequeño.

10 CARACTERISTICAS DE LA DISTRIBUCION t DE STUDENT 1.-El valor de la media es cero..-tiee forma de campaa (como ua distribució ormal) y es simétrica co respecto a la media. La distribució t es más acha y más plaa e el cetro que la distribució ormal, como resultado de ello, se tiee ua mayor variabilidad e las medias de muestras calculadas a partir de muestras más pequeñas. Comparació etre las distribucioes ormal (N) y distribució (t) 3.-La distribució t tiee ua variaza mayor que 1, pero e la medida e que aumeta los grados de libertad, el valor de la variaza se aproxima a 1, lo cual lleva a que la distribució t se aproxime a la distribució ormal estádar; es decir, e la medida e que aumeta el tamaño de la muestra. Por eso es que la distribució t studet se utiliza para muestras pequeñas y la distribució ormal, para muestras grades. E el aexo se puede observar los valores de t correspodietes a los valores de t α = t 0.05, t 0.05, t y t que correspode a los grados de cofiaza del 90%, 95%, 98% y 99% respectivamete.

11 Aalicemos el siguiete ejemplo. U laboratorio realizo u estudio del ivel de morfia de 0 pastillas producida por otro laboratorio. Se cosidera u itervalo de cofiaza del 95%. La siguiete tabla os muestra la catidad de morfia coteida e cada ua de las pastillas Obteemos la media aritmética de la muestra: xi x = 498 x = 0 x = 4. 9mg Posteriormete obteemos la desviació estádar de la muestra: s = ( x x) 1 s = ( 5 4.9) ( ) 19 s =1. 53mg Vamos a determiar el itervalo de cofiaza del 95%. Buscamos e la tabla de valores de t el cociete de 0.05 / = 0.05, e el regló que correspode a 19 grados de libertad (-1). Por lo tato el valor de t=.093, por lo que el itervalo de cofiaza para 95% es: x t s < α µ Sustituyedo los valores: < x + t α s < µ < < µ < < µ < Por tato, co u ivel de cofiaza del 95%, el ivel medio de morfia está etre 4.18 y 5.mg, o bie, que al estimar el ivel medio de morfia como 4.9 miligramos co u grado de cofiaza del 95%.el error es meor a 0.7mg.

Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD. X- μ. f(x) = e para - < x < Z 2. . e para - < z <

Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD. X- μ. f(x) = e para - < x < Z 2. . e para - < z < Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD La distribució ormal: La distribució ormal, campaa de Gauss o, curva ormal, tambié defiida por De Moivre. Características y propiedades: La siguiete fórmula

Más detalles

Intervalos de confianza para la media

Intervalos de confianza para la media Itervalos de cofiaza para la media Ejercicio º 1.- Las vetas diarias, e euros, e u determiado comercio sigue ua distribució N(950, 200). Calcula la probabilidad de que las vetas diarias e ese comercio:

Más detalles

Intervalo de confianza para µ

Intervalo de confianza para µ Itervalo de cofiaza para p y ˆp1 ˆp ˆp1 ˆp ˆp z 1 α/ ; ˆp + z 1 α/, 7.6 ˆp + z 1 α/ ± z 1 α/ 1 + z 1 α/ ˆp1 ˆp + z 1 α/ 4 7.7 siedo ˆp = x/ y z 1 α/ el cuatil 1 α/ de la distribució ormal estádar. El itervalo

Más detalles

Número de personas que se forman en una fila en 1 hora Número de águilas que se obtienen al lanzar una moneda 5 veces.

Número de personas que se forman en una fila en 1 hora Número de águilas que se obtienen al lanzar una moneda 5 veces. Statistics Review Variable Aleatoria o Ua variable aleatoria es ua variable cuyo valor está sujeto a variacioes que depede de la aleatoriedad. o Debe tomar valores uméricos, que depede del resultado del

Más detalles

TEMA 7. ESTIMACIÓN. 7.2. Estimación puntual. Propiedades deseables de los estimadores 7.2.1. Introducción y definiciones 7.2.2. Estimadores Insegados

TEMA 7. ESTIMACIÓN. 7.2. Estimación puntual. Propiedades deseables de los estimadores 7.2.1. Introducción y definiciones 7.2.2. Estimadores Insegados TEMA 7. ETIMACIÓN 7.1. Itroducció y defiicioes 7.. Estimació putual. Propiedades deseables de los estimadores 7..1. Itroducció y defiicioes 7... Estimadores Isegados 7.3. Estimació por itervalos de cofiaza

Más detalles

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS)

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) www.cedicaped.com DISTRIBUCIÓN DE PROBABILIDAD Recordemos que el Espacio Muestral es el cojuto de todos y

Más detalles

Tema 6: Distribuciones Muestrales

Tema 6: Distribuciones Muestrales Tema 6: Distribucioes Muestrales El objetivo es efectuar ua geeralizació de los resultados de la muestra a la població. Iferir o adiviar el comportamieto de la població a partir del coocimieto de ua muestra.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 3, Parte II, Opció A Juio, Ejercicio 3, Parte II, Opció B Reserva

Más detalles

11 I N F E R E N C I A E S T A D Í S T I C A I (INTERVALOS DE CONFIANZA)

11 I N F E R E N C I A E S T A D Í S T I C A I (INTERVALOS DE CONFIANZA) I N F R N C I A S T A D Í S T I C A I (INTRVALOS D CONFIANZA) Sea Ω ua població y sobre ella ua variable aleatoria X que sigue ua ley ormal N(µ; ), co media µ descoocida y desviació típica coocida. Co

Más detalles

8. INTERVALOS DE CONFIANZA

8. INTERVALOS DE CONFIANZA 8. INTERVALOS DE CONFIANZA Al estimar el valor de u parámetro de la distribució teórica, o se provee iformació sobre la icertidumbre e el resultado. Esa icertidumbre es producida por la dispersió de la

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

T ema 8 ESTIMACIÓN. Conceptos previos. Población y muestra:

T ema 8 ESTIMACIÓN. Conceptos previos. Población y muestra: T ema 8 ESTIMACIÓN Coceptos previos Població y muestra: Població se refiere al cojuto total de elemetos que se quiere estudiar ua o más características. Debe estar bie defiida. Llamaremos N al úmero total

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA.

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA. Població: El cojuto de todos los elemetos o idividuos que posee ua determiada característica o cualidad de iterés. Existe situacioes e las que o es posible aalizar

Más detalles

TEMA 6. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA

TEMA 6. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA TEMA 6. INTRODUCCIÓN A LA INFERENCIA ETADÍTICA 6.. Itroducció 6.. Coceptos básicos 6.3. Muestreo aleatorio simple 6.4. Distribucioes asociadas al muestreo 6.4.. Distribució Chi-Cuadrado 6.4.. Distribució

Más detalles

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS ESPACIO MUESTRAL. El cojuto de todos los resultados posibles de u eperimeto estadístico deotado por S o Ω VARIABLE. Se deomia variable a la

Más detalles

ESTADÍSTICA. Estadística: Es una rama de la matemática que comprende Métodos y Técnicas que se emplean

ESTADÍSTICA. Estadística: Es una rama de la matemática que comprende Métodos y Técnicas que se emplean ESTADÍSTICA Estadística: Es ua rama de la matemática que comprede Métodos y Técicas que se emplea e la recolecció, ordeamieto, resume, aálisis, iterpretació y comuicació de cojutos de datos. Població:

Más detalles

TEORÍA DE LA ESTIMACIÓN

TEORÍA DE LA ESTIMACIÓN TEORÍA DE LA ESTIMACIÓN Objetivo: El objetivo de la estimació putual es usar ua muestra para obteer úmeros (estimacioes putuales) que sea la mejor represetació de los verdaderos parámetros de la població.

Más detalles

3. Distribuciones de probabilidad

3. Distribuciones de probabilidad 3. Distribucioes de probabilidad Estudiamos a cotiuació las pricipales distribucioes de probabilidad que se ecuetra e las aplicacioes del cálculo de probabilidades. Clasificaremos las distribucioes atediedo

Más detalles

Estimador Es la regla o procedimiento, expresado en general por medio de una fórmula, que se utiliza para deducir la estimación.

Estimador Es la regla o procedimiento, expresado en general por medio de una fórmula, que se utiliza para deducir la estimación. Teoría de la Estimació Estadística Teoría de la Estimació Estadística Razó para estimar Los admiistradores utiliza las estimacioes porque se debe tomar decisioes racioales, si que tega la iformació pertiete

Más detalles

Desigualdad de Tchebyshev

Desigualdad de Tchebyshev Desigualdad de Tchebyshev Si la Esperaza y la variaza de la variable X so fiitas, para cualquier úmero positivo k, la probabilidad de que la variable aleatoria X esté e el itervalo La probabilidad de que

Más detalles

Teorema del límite central

Teorema del límite central Teorema del límite cetral Carles Rovira Escofet P03/75057/01008 FUOC P03/75057/01008 Teorema del límite cetral Ídice Sesió 1 La distribució de la media muestral... 5 1. Distribució de la media muestral

Más detalles

ESTIMACIÓN POR INTERVALOS DE CONFIANZA

ESTIMACIÓN POR INTERVALOS DE CONFIANZA Estimació por itervalos de cofiaza. I.E.. A uqueira I pag. Coceptos ETIMACIÓN POR INTERVALO DE CONFIANZA E este tema vamos a estudiar como estimar, es decir proosticar, u parámetro de la població, geeralmete

Más detalles

Test de Kolmogorov Smirnov Patricia Kisbye El test chi-cuadrado en el caso continuo

Test de Kolmogorov Smirnov Patricia Kisbye El test chi-cuadrado en el caso continuo Test de Kolmogorov Smirov Técicas de validació estadística Bodad de auste Kolmogorov-Smirov Patricia Kisbye FaMAF 29 de mayo, 2008 Icoveiete: No es secillo costruir los itervalos a partir de las probabilidades.

Más detalles

( ) ( ) ( ) ( ) ( ) ( ) ( ( )) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ( )) ( ) I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS INFERENCIA ESTADÍSTICA El coeficiete itelectual de los alumos de u cetro se distribuye N(110,15). Escogemos 5 alumos al azar. Cuál es la probabilidad

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA X INFERENCIA ESTADÍSTICA Sea ua característica o variable aleatoria de la població objeto de estudio y sea ( X, X, X,..., X ) ua muestra aleatoria de dicha població. 1 3 U parámetro poblacioal es ua caracterizació

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

Estadístico. Parámetro

Estadístico. Parámetro La iferecia estadística comprede el establecer ciertos juicios co respecto a algo después de examiar solamete ua parte o muestra de ello. Así, se ofrece ua muestra gratis de u uevo producto alimeticio

Más detalles

Sobrantes de 2004 (Junio Modelo 5) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Junio Modelo 5) Soluciones Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 2004 (Juio Modelo 5) Solucioes Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A x+y 6 3x-2y 13 Sea el sistema de iecuacioes. x+3y -3 x 0 (2 putos) Dibuje el recito cuyos

Más detalles

Estadística Aplicada a las ciencias Sociales Examen Febrero de 2008 segunda semana

Estadística Aplicada a las ciencias Sociales Examen Febrero de 2008 segunda semana Estadística Aplicada a las ciecias Sociales Exame Febrero de 008 seguda semaa Ejercicio 1.- E la siguiete tabla, se tiee el úmero de alumos de educació de adultos matriculados e el curso graduado escolar

Más detalles

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1 ESTIMACIÓN PUNTUAL. ESTIMACIÓN POR INTERVALOS DE CONFIANZA. 1. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA El objetivo básico de la iferecia estadística es hacer iferecias o sacar coclusioes sobre la població

Más detalles

T1. Distribuciones de probabilidad discretas

T1. Distribuciones de probabilidad discretas Estadística T1. Distribucioes de probabilidad discretas Departameto de Ciecias del Mar y Biología Aplicada Itroducció Iferecia estadística: Parte de la estadística que estudia grades colectivos a partir

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3 Estadística y sus aplicacioes e Ciecias Sociales Práctico 4 - Solució Curso 016 Ejercicio 1 5! 1) Como se trata de muestreo si reposició, se tiee C 5 3 3!! muestras de tamaño =3. ) Distribució muestral

Más detalles

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN INFERENCIA ESTADÍSTICA Y ESTIMACIÓN La estadística iferecial se ocupa de exteder o extrapolar a toda ua població, iformacioes obteidas a partir de ua muestra, así como de tomar de decisioes. El muestreo

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber acerca del comportamieto de parámetros poblacioales tales como: la media ( ), la variaza ( ) o la proporció ( p ). Para

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2006 (Modelo 6 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (2 putos) Sea las matrices A= y B = (1 1). -5-4 Eplique qué dimesió debe teer la matriz X para

Más detalles

La ley de los grandes números

La ley de los grandes números La ley de los grades úmeros "El idicio de que las cosas estaba saliédose de su cauce ormal vio ua tarde de fiales de la década de 1940. Simplemete lo que pasó fue que etre las siete y las ueve de aquella

Más detalles

Ejercicio 1: Un embalaje contiene 9 cajas de CDs. Las 9 cajas tienen la siguiente composición:

Ejercicio 1: Un embalaje contiene 9 cajas de CDs. Las 9 cajas tienen la siguiente composición: Parcial de Probabilidad y Estadística : parte A Ejercicio 1: U embalaje cotiee 9 cajas de CDs. Las 9 cajas tiee la siguiete composició: 6 cajas cotiee 5 discos de música rock y 15 discos de música clásica

Más detalles

Tema 11. Soluciones a los ejercicios adicionales

Tema 11. Soluciones a los ejercicios adicionales Tema. Solucioes a los ejercicios adicioales. El peso e Tm) de la captura diaria realizada por u barco pesquero, se aproxima a ua distribució ormal. Etre qué valores oscilará el peso medio co ua cofiaza

Más detalles

CAPÍTULO I. Conceptos Básicos de Estadística

CAPÍTULO I. Conceptos Básicos de Estadística CAPÍTULO I Coceptos Básicos de Estadística Capítulo I. Coceptos Básicos de Estadística. CAPÍTULO I CONCEPTOS BÁSICOS DE ESTADÍSTICA Para realizar estudios estadísticos es ecesario registrar la ocurrecia

Más detalles

OPCIÓN A EJERCICIO 1_A x 1 0 1

OPCIÓN A EJERCICIO 1_A x 1 0 1 IES Fco Ayala de Graada Sobrates de 006 (Modelo 3 Juio) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A x 1 0 1 Sea las matrices A = y B =. 1 x+1 (1 puto) Ecuetre el valor o valores de x de forma

Más detalles

Técnicas experimentales de Física General 1/11

Técnicas experimentales de Física General 1/11 La distribució de Itroducció. Ejemplo. Defiició geeral de. Grados de libertad. reducido. La distribució de. Probabilidades de. Ejemplos: 1. Distribució de Poisso.. Bodad de u ajuste. Técicas eperimetales

Más detalles

MEDIA Y VARIANZA (VARIABLES DISCRETAS).

MEDIA Y VARIANZA (VARIABLES DISCRETAS). MEDIA Y VARIANZA (VARIABLES DISCRETAS). µ = E ( X ) = x P( X = x) x σ = V ( X ) = E( X ) ( E( X )) σ = D. E.( X ) = V ( X ). EJEMPLO Supoga que se tiee datos de la siguiete variable aleatoria: X = Número

Más detalles

MATEMÁTICAS 2ºBACHILLERATO CCSSII

MATEMÁTICAS 2ºBACHILLERATO CCSSII La trata del recueto, ordeació y clasificació de los datos obteidos por las observacioes, para poder hacer comparacioes y sacar coclusioes. U estudio estadístico costa de las siguietes fases: Recogida

Más detalles

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ.

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ. Itervalos de Cofiaza basados e ua sola muestra Ua estimació putual sólo os proporcioa u valor umérico, pero NO proporcioa iformació sobre la precisió y cofiabilidad de la estimació del parámetro. Etoces

Más detalles

Tema 3: Introducción a la probabilidad. Tema 3: Introducción a la probabilidad. Tema 3: Introducción a la probabilidad. 3.

Tema 3: Introducción a la probabilidad. Tema 3: Introducción a la probabilidad. Tema 3: Introducción a la probabilidad. 3. Tema 3: Itroducció a la probabilidad Tema 3: Itroducció a la probabilidad 3.1 Itroducció Equiprobabilidad Métodos combiatorios Objetivos del tema: l fial del tema el alumo será capaz de: Compreder y describir

Más detalles

Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1

Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 TEMA 10 CÁLCULO DE PROBABILIDADES 10.1 EXPERIENCIAS ALEATORIAS. SUCESOS EXPERIENCIAS DETERMINISTAS Y ALEATORIAS Se llama experiecia

Más detalles

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la

Más detalles

PyE_ EF2_TIPO1_

PyE_ EF2_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EXAMEN FINAL RESOLUCIÓN

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

1 x 1 0,1666. sabiendo que 506, 508, 499, 503, 504, 510, 497, 512, 514, 505, 493, 496, 506, 502, 509, 496.

1 x 1 0,1666. sabiendo que 506, 508, 499, 503, 504, 510, 497, 512, 514, 505, 493, 496, 506, 502, 509, 496. GRADO GESTIÓN AERONÁUTICA: EXAMEN ESTADÍSTICA TEÓRICA 9 de Eero de 015. E-7. Aula 104 1.- La fució de desidad de ua variable aleatoria es: a b 0 f() 0 e el resto sabiedo que 1 P 1 0,1666. Determiar a y

Más detalles

SUMA DE VARIABLES ALEATORIAS

SUMA DE VARIABLES ALEATORIAS SUMA DE VARIABLES ALEATORIAS do C. 018 Clase Nº 9 Mg. Stella Figueroa Teorema Cetral del Límite El teorema afirma que la distribució de la suma de u gra úmero de variables aleatorias tiee aproximadamete

Más detalles

INTRODUCCION Teoría de la Estimación

INTRODUCCION Teoría de la Estimación INTRODUCCION La Teoría de la Estimació es la parte de la Iferecia Estadística que sirve para coocer o acercarse al valor de los parámetros, características poblacioales, geeralmete descoocidos e puede

Más detalles

Muestreo. Mucho de las acciones y decisiones que se toman están basados en la información de una muestra.

Muestreo. Mucho de las acciones y decisiones que se toman están basados en la información de una muestra. 1 Muestreo Muco de las accioes y decisioes que se toma está basados e la iformació de ua muestra. La preguta que siempre se ace, es: qué tamaño de muestra es suficiete para obteer ua buea aproximació de

Más detalles

14. Técnicas de simulación mediante el método de Montecarlo

14. Técnicas de simulación mediante el método de Montecarlo 4. Técicas de simulació mediate el método de Motecarlo 4. Técicas de simulació mediate el método de Motecarlo Qué es la simulació? Proceso de simulació Simulació de evetos discretos Números aleatorios

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 1999-.000 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de

Más detalles

PROCESO DE POISSON Rosario Romera Febrero 2009

PROCESO DE POISSON Rosario Romera Febrero 2009 1 PROCESO DE POISSON Rosario Romera Febrero 2009 1. Proceso de Coteo U proceso estocástico fn t g t0 es u proceso de coteo si N t represeta el total de sucesos ocurridos asta el tiempo t. Sea u espacio

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

EJERCICIO 1. , a partir de las frecuencias observadas, nij. , que se dan en la tabla del ejercicio.

EJERCICIO 1. , a partir de las frecuencias observadas, nij. , que se dan en la tabla del ejercicio. EJERCICIO () Es u problema de idepedecia de criterios y se tedrá que costruir la tabla de cotigecia de frecuecias teóricas (esperadas), t ij, a partir de las frecuecias o observadas, ij, que se da e la

Más detalles

Tema 14: Inferencia estadística

Tema 14: Inferencia estadística Tema 14: Iferecia estadística La iferecia estadística es el proceso de sacar coclusioes de la població basados e la iformació de ua muestra de esa població. 1. Estimació de parámetros Cuado descoocemos

Más detalles

IES Fco Ayala de Granada Soluciones Germán-Jesús Rubio Luna INTERVALOS DE CONFIANZA PARA PROPORCIONES (2007)

IES Fco Ayala de Granada Soluciones Germán-Jesús Rubio Luna INTERVALOS DE CONFIANZA PARA PROPORCIONES (2007) IS Fco Ayala de Graada Solucioes Germá-Jesús Rubio Lua INTRVALOS D CONFIANZA PARA PROPORCIONS (007) jercicio 1- Tomada, al azar, ua muestra de 10 estudiates de ua Uiversidad, se ecotró que 54 de ellos

Más detalles

EJERCICIOS RESUELTOS TEMA 8

EJERCICIOS RESUELTOS TEMA 8 EJERCICIOS RESUELTOS TEMA 8 8.. U ivestigador desea coocer la opiió de los madrileños sobre la saidad pública. Para ello, acude a las 8 de la mañaa al hospital público de la capital más cercao a su domicilio

Más detalles

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky 106 1. INTERVALO DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL upogamos que X1,...,X es ua muestra aleatoria de ua

Más detalles

OPCIÓN A EJERCICIO 1 (A) -5 0

OPCIÓN A EJERCICIO 1 (A) -5 0 IES Fco Ayala de Graada Sobrates 014 (Modelo 1 ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 014 MODELO 1 OPCIÓN A EJERCICIO 1 (A) -5 0-1 -8-1 Sea las matrices B =

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica, 1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras

Más detalles

Mirando las gráficas, justifica estas afirmaciones: Cuantos más dados intervienen, más se parece la distribución de sus promedios a la curva normal.

Mirando las gráficas, justifica estas afirmaciones: Cuantos más dados intervienen, más se parece la distribución de sus promedios a la curva normal. Uidad 1. Iferecia estadística. Estimació de la media Matemáticas aplicadas a las Ciecias Sociales II Resuelve Págia 85 Lazamieto de varios dados Comprueba e la tabla aterior ue: ( = = 3 o = 4) A cotiuació

Más detalles

METODO DE ITERACION DE NEWTON

METODO DE ITERACION DE NEWTON METODO DE ITERACION DE NEWTON Supogamos que queremos resolver la ecuació f( ) y lo que obteemos o es la solució eacta sio sólo ua buea aproimació, para obteer esta aproimació observemos la siguiete figura

Más detalles

4 Contrastes del Chi 2 de bondad del ajuste

4 Contrastes del Chi 2 de bondad del ajuste 4 Cotrastes del Chi de bodad del ajuste U cotraste de bodad del ajuste es de la forma o H 0 : P = P 0 frete a H 1 : P P 0 H 0 : P {P θ } θ Θ frete a H 1 : P / {P θ } θ Θ 4.1 Cotraste del χ para modelos

Más detalles

ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA PARA LA PROPORCIÓN POBLACIONAL.

ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA PARA LA PROPORCIÓN POBLACIONAL. ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA PARA LA PROPORCIÓN POBLACIONAL. U itervalo de cofiaza, para u parámetro poblacioal θ, a u ivel de cofiaza (1 ) 100 %, o es más que u itervalo (L i, L s

Más detalles

EL CONTRASTE DE HIPOTESIS: Esquemas y ejemplos

EL CONTRASTE DE HIPOTESIS: Esquemas y ejemplos EL CONTRASTE DE HIPOTESIS: Esquemas y ejemplos Ua vez expuesta la lógica de u Cotraste de Hipótesis y tras haber defiido los térmios y coceptos ivolucrados, hay que decir que esa lógica geeral se cocreta

Más detalles

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A EXAMEN COMPLETO Istruccioes: a) Duració: 1 hora y 30 miutos. b) Elija ua de las dos opcioes propuestas y coteste los ejercicios de la opció elegida. c) E cada ejercicio, parte o apartado se idica la putuació

Más detalles

Muestreo e Intervalos de Confianza

Muestreo e Intervalos de Confianza Muestreo e Itervalos de Cofiaza PROBLEMAS DE SELECTIVIDAD RESUELTOS MUESTREO E INTERVALOS DE CONFIANZA 1) E ua població ormal co variaza coocida se ha tomado ua muestra de tamaño 49 y se ha calculado su

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO

MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO MUESTREO ESTRATIFICADO El muestreo estratificado cosiste e dividir la població e subcojutos o estratos, y de cada uo de ellos seleccioar ua muestra probabilística; de maera idepediete de u estrato a otro. Existe tres razoes

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

Mirando las gráficas, justifica estas afirmaciones: Cuantos más dados intervienen, más se parece la distribución de sus promedios a la curva normal.

Mirando las gráficas, justifica estas afirmaciones: Cuantos más dados intervienen, más se parece la distribución de sus promedios a la curva normal. Uidad 1. Iferecia estadística. Estimació de la media Matemáticas aplicadas a las Ciecias Sociales II Resuelve Págia 85 Lazamieto de varios dados Comprueba e la tabla aterior ue: DESV. TÍPICA DESV. TÍPICA

Más detalles

1. Intervalos de Conanza

1. Intervalos de Conanza M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.: Itervalos de coaza Objetivos Costruir itervalos de coaza para los parámetros más importates. Aplicar coveietemete los IC atediedo a cada situació

Más detalles

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series.

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series. CÁLCULO Igeiería Idustrial. Curso 2009-200. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Lecció 5. Series. Resume de la lecció. 5.. Sucesioes y series. Sucesió covergete. Se de e ua sucesió

Más detalles

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES INTRODUCCIÓN AL CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES INTRODUCCIÓN AL CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES INTRODUCCIÓN AL CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS INTRODUCCIÓN

Más detalles

12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE LA TABLA DE LA NORMAL N(0,1) E la distribució N(0,1), a la variable se le suele represetar

Más detalles

UNIDAD 4 MODELOS PROBABILÍSTICOS

UNIDAD 4 MODELOS PROBABILÍSTICOS Uiversidad Nacioal del Litoral Facultad de Igeiería y Ciecias Hídricas ESTADÍSTICA Igeiería Iformática TEORÍA Mg.Ig. Susaa Valesberg Profesor Titular UNIDAD 4 MODELOS PROBABILÍSTICOS Estadística - Igeiería

Más detalles

Paso 2: Elegir un estadístico de contraste. Como queremos hacer un contraste de hipótesis para la media, el estadístico de contraste adecuado es:

Paso 2: Elegir un estadístico de contraste. Como queremos hacer un contraste de hipótesis para la media, el estadístico de contraste adecuado es: Hoja 6: Cotraste de hipótesis 1. U laboratorio farmacéutico ha elaborado u fármaco e forma de comprimidos cuyo peso sigue ua distribució Normal co ua desviació típica de 0.12 mg. Se sabe que ua dosis de

Más detalles

SESION 15 DISTRIBUCIONES DE MUESTREO

SESION 15 DISTRIBUCIONES DE MUESTREO SESION 15 DISTRIBUCIONES DE MUESTREO I. CONTENIDOS: 1. Distribució de muestreo. 2. Distribucioes de muestreo de la media 3. Media, mediaa y moda, así como su relació co la desviació estádar de las distribucioes

Más detalles

Guía 1 Matemática: Estadística NM 4

Guía 1 Matemática: Estadística NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

Distribuciones Muestrales

Distribuciones Muestrales 10/08/007 Diseño Estadístico y Herramietas para la Calidad Distribucioes Muestrales Epositor: Dr. Jua José Flores Romero juaf@umich.m http://lsc.fie.umich.m/~jua M. e Calidad Total y Competitividad Distribucioes

Más detalles

Gráficos de control por atributos

Gráficos de control por atributos Gráficos de cotrol por atributos por Felipe de la Rosa Los gráficos de cotrol por variables so istrumetos sumamete útiles para moitorear y mejorar la calidad, si embargo, preseta al meos dos limitacioes

Más detalles

Tema 7: Estimación por intervalos de confianza.

Tema 7: Estimación por intervalos de confianza. Estadística 69 Tema 7: Estimació por itervalos de cofiaza. 7. Itroducció. Cuado tratamos la estimació putual, uo de los problemas que se platearo es que el valor de la estimació es sólo uo de los valores

Más detalles

SOLUCIÓN EXAMEN I PARTE II

SOLUCIÓN EXAMEN I PARTE II Nombre: Apellido: C.I.: Fecha: Firma: MÉTODOS ESTADÍSTICOS I EXAMEN I Prof. Gudberto Leó PARTE I: (Cada respuesta correcta tiee u valor de 1 puto) E los siguietes gráficos se represeta distitas distribucioes

Más detalles

Muestreo y estimación

Muestreo y estimación Muestreo y estimació BENITO J. GONZÁLEZ RODRÍGUEZ bjglez@ull.es DOMINGO HERNÁNDEZ ABREU dhabreu@ull.es MATEO M. JIMÉNEZ PAIZ mjimeez@ull.es M. ISABEL MARRERO RODRÍGUEZ imarrero@ull.es ALEJANDRO SANABRIA

Más detalles

IntroducciónalaInferencia Estadística

IntroducciónalaInferencia Estadística Capítulo 6 ItroduccióalaIferecia Estadística 6.1. Itroducció El pricipal objetivo de la Estadística es iferir o estimar características de ua població que o es completamete observable (o o iteresa observarla

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO Objetivos geerales del tema E este tema se itroducirá el cocepto de estadístico como medio para extraer iformació acerca de la ley de

Más detalles

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc.

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc. Sucesioes Sucesi o. Ua sucesió es u cojuto ifiito de úmeros ordeados de tal forma que se puede decir cuál es el primero, cuál el segudo, el tercero, etc. Los térmios de ua sucesió se desiga mediate a 1,

Más detalles

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos:

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos: T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Variable aleatoria: defiició y tipos: Ua variable aleatoria es ua fució que asiga u úmero real, y sólo uo, a cada uo de los resultados de u eperimeto aleatorio.

Más detalles

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos Probabilidad y Estadística 3 Itervalos de Cofiaza y Test de Hipótesis paramétricos Itervalos de Cofiaza Defiició Dada ua muestra aleatoria simple es decir, u vector de variables aleatorias X co compoetes

Más detalles

TEMA IV: MODELOS PROBABILÍSTICOS COMUNES.

TEMA IV: MODELOS PROBABILÍSTICOS COMUNES. TEMA IV: MODELOS PROBABILÍSTICOS COMUNES. Objetivo: El alumo coocerá alguas de las distribucioes más utilizadas e la práctica de la Igeiería y seleccioará la más adecuada para aalizar algú feómeo aleatorio

Más detalles

Solución: de una distribución con media µ y varianza conocida. = X. Aquí 100. Así σ = a) Se pide determinar "n", de modo que:

Solución: de una distribución con media µ y varianza conocida. = X. Aquí 100. Así σ = a) Se pide determinar n, de modo que: Ejercicios Itervalos de Cofiaza. Se toma ua muestra aleatoria de observacioes y se costruye u itervalo de cofiaza del 95% para la media poblacioal, co variaza coocida. El itervalo de cofiaza resultó co

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles