Practica nº n 5: Fenómenos de Difracción.
|
|
- Natividad Rey Figueroa
- hace 5 años
- Vistas:
Transcripción
1 Facultad de Farmacia Universidad de Granada Departamento de Química Física Practica nº n 5: Fenómenos de Difracción.
2 OBJETIVOS 1.Observar los fenómenos de difracción Rendija simple Rendija doble 2.Calcular λ con redes de difracción Red nº 1 Red nº 3 Red de 100 lineas/mm 3.Determinar la abertura de una rendija variable Realizaremos esta práctica con la luz roja que nos ofrece una radiación del visible producida por un láser.
3 FUNDAMENTO LASER significa Light amplification by stimulated emission of radiation y éste es una fuente de luz de alto monocromatismo, de gran intensidad y coherente tanto espacial como temporalmente. 1.El láserl Éste es el láser que nosotros utilizaremos: El láser que se utiliza es de helio-neón.
4 Para la producción del rayo láser es necesario provocar un bombeo óptico consistente en la excitación de los átomos de los gases nobles mediante una radiación electromagnética intensa (de radiofrecuencia). Los átomos excitados emiten radiación visible de frecuencia uniforme. Esta radiación sufre una serie de reflexiones entre dos espejos. La luz reflejada atraviesa el gas, provocando una "reacción en cadena" por la cual nuevos átomos son excitados a un nivel de energía superior y al volver a un nivel inferior emiten una radiación coherente con la anterior. El proceso continúa hasta que la radiación láser posee suficiente energía como para atravesar uno de los espejos. La radiación obtenida es altamente energética y perfectamente coherente en frecuencia y fase.
5 FENOMENO DE DIFRACCION Así veremos el fenómeno de difracción, con sus zonas iluminadas y zonas sin luz
6 Usando un láser, que tiene muy pequeña divergencia angular (1 miliradian, es decir, el diámetro del rayo aumenta sólo 0,1 cm cada metro) se puede observar la difracción de Fraunhofer sólo con insertar una abertura en la trayectoria del rayo y colocando la pantalla a larga distancia, aunque como veremos utilizaremos lentes para ver mejor el fenómeno.
7
8 Encendido/ Apagado
9 DIFRACCION POR PRODUCIDA POR UNA RENDIJA Cuando un haz luminoso se encuentra con cualquier obstáculo, no detiene su propagación, sino que los bordes del obstáculo o bien el orificio que alcanza la luz (en el caso de una rendija), se convierten en nuevos focos emisores (principio de Huygens), por lo que no se producen sombras, sino figuras de difracción, que consisten en anillos alternativamente claros y oscuros. Este fenómeno es la difracción, que puede ser observada de dos formas diferentes: a) Difracción de Fraunhofer, cuando tanto la fuente luminosa como la pantalla están tan alejadas de la abertura que se puede considerar que se trabaja con rayos paralelos. b) Difracción de Fresnel, cuando una de estas distancias, o ambas es finita, es decir, los rayos serán convergentes o divergentes.
10 Puesto que el tratamiento matemático del tipo b) es más complejo, adoptaremos la situación experimental del tipo a), para ello nos basta con colocar la fuente, F, en el foco de una lente L1, (lente divergente) y el punto de observación en el plano focal de otra nueva lente L2 (lente convergente) lente divergente lente convergente
11 DIFRACCION POR PRODUCIDA POR UNA RENDIJA SIMPLE Difracción de luz coherente de un Laser Luz coherente abertura d senθ = m λ m = nº entero Distribución de la intensidad de la luz difractada Distribucion de la intensidad Maxima intensidad m = ±1 Orden de difracción sen m = ±2 pantalla
12 Cuando el angulo θ es muy pequeño ( en nuestro caso al ser la distancia entre la rendija y la pantalla muy grande, los rayos son casi paralelos) se puede hacer la siguiente aproximación d d d d
13 DIFRACCION E INTERFERENCIAS A TRAVES DE DOS RENDIJAS Cuando dos movimientos ondulatorios se propagan en el mismo medio se producen interferencias: 1. Constructivas Los dos movimientos se encuentran en igualdad de fase y se produce un aumento de intensidad luminosa 2. Destructivas Los dos movimientos se encuentran en oposición de fase y se produce disminución de la intensidad luminosa Constructivas Destructivas
14 Experimento de la doble rendija de Tomas Young Pantalla con rendija simple Luz solar Pantalla con dos rendijas Difraccion coherente Frente de onda esferica Interferencias constructivas Interferencias destructivas Pantalla Interferencias
15 PARTE EXPERIMENTAL Se pondrá de manifiesto el fenómeno de difracción utilizando una abertura circular
16 Para mostrar mejor estos efectos, es conveniente incrementar la anchura del rayo, para lo cual se utilizará una lente divergente de distancia focal 10 cm, colocada a esa misma distancia de la fuente láser. Se coloca en la parte posterior a la abertura circular.
17 una lente convergente, a 25 cm, que enfoca sobre una pantalla distante aproximadamente 5 metros. Se coloca en la parte anterior del siguiente soporte.
18 Las redes y rendijas se colocan en el último soporte
19 Posición de lente Posición de redes convergente y rendija Posición de l.divergente y abertura
20 INTERFERENCIAS Las zonas claras y oscuras son debidas al fenómeno de INTERFERENCIA.Hay dos tipos: Interferencia Constructiva Interferencia Destructiva A B Interferencias en una rendija doble Para cualquier otra dirección de propagación dada por el ángulo (θ ), el frente de ondas avanza de tal modo que entre las ondas que parten de las rendijas A,B existe una diferencia de camino óptico dada por: a = d.senθ = m λ donde d es la separación entre rendijas. Esta diferencia en la trayectoria es la que determinará si las ondas que llegan a P están o no en fase.
21 Hay interferencia constructiva si la diferencia de caminos es un número entero de longitudes de onda d sen θ = m λ m = 0,±1,±2,±3... m es el orden de la franja. Si m = 0 se produce el máximo más intenso o de orden cero. Si m = ±1 es de primer orden... a = d.senθ Se producirá interferencia destructiva cuando la diferencia de caminos sea un número impar de semilongitudes de onda, dando franjas oscuras sobre la pantalla. d senθ = (2m+1) λ/2
22 El fenómeno de difracción lo observaremos con: Rendija Simple Rendija Doble
23 Rendija simple Rendija Simple
24 Rendija doble
25 Figura de difracción observada con una red que posee lineas horizontales y verticales
26 La red número 1 tiene un espaciado entre lineas d =2, m Dibujar sobre papel milimetrado las zonas iluminadas (rojas)
27 Rendija variable Con el tornillo se puede abrir o cerrar la rendija Dibujar sobre el papel milimetrado igual que en el caso anterior, solo la zona iluminada central
28 La red número 3 tiene un espaciado entre rendijas de d = 1, m. Dibujar sobre el papel milimetrado igual que en el caso anterior
29 Con una red que tiene 100 lineas/mm Dibujar sobre el papel milimetrado igual que en el caso anterior
30 Red nº 1 Red nº 3
31 Rendija variable Con el tornillo se abre o se cierra la abertura hasta que aparezca una zona iluminada
32 CALCULOS y Máximo central m=1 y m= 2 y y m=3 a
33 Red nº 1 d = 2, m y m = 3 Medida de D (mayúscula) - distancia redpantalla Con estos datos se puede calcular la longitud de onda
34 Red nº 3 d = 1, m. 2 1 y m = 2 0 Con estos datos y conocido el valor de D podemos calcular la longitud de onda
35 Red de 100 lineas / mm d = 1/100 mm 1 m = 1 y 0 Con estos datos y conocido el valor de D podemos calcular la longitud de onda Con los valores obtenidos de λ calculamos el valor medio
36 Determinación de la anchura de una rendija Valor medio de las λ d = λ D a Distancia entre la rendija y la pantalla a Lo que mide el maximo central
UNIVERSIDAD NACIONAL DEL SANTA. Práctica N 01. Interferencia y Difracción
UNIVERSIDAD NACIONAL DEL SANTA Práctica N 01 Interferencia y Difracción Objetivos.- Estudio de los fenómenos de interferencia y difracción usando un láser como fuente de luz coherente y monocromática.
Naturaleza ondulatoria de la luz. Difracción.
Objetivos Comprobar la naturaleza ondulatoria de la luz. Estudio de la difracción de la luz en diferentes rendijas y obstáculos. Estudiar la difracción de Fraunhofer por una rendija. Material Láser de
Magnetismo y Óptica Departamento de Física Universidad de Sonora
Magnetismo y Óptica 2006 Departamento de Física Universidad de Sonora 1 Magnetismo y óptica 6. Difracción. a. Introducción a la difracción. Difracción de Fresnel y de Fraunhofer. b. Difracción de rendijas
Magnetismo y Óptica. Magnetismo y óptica. Óptica ondulatoria Departamento de Física Universidad de Sonora
Magnetismo y Óptica 2006 Departamento de Física Universidad de Sonora 1 Magnetismo y óptica 6. Difracción. a. Introducción a la difracción. Difracción de Fresnel y de Fraunhofer. b. Difracción de rendijas
INTERFERENCIA DE LA LUZ
INTERFERENCIA DE A UZ 1. OBJETIVO Interferencia de la luz Determinar la longitud de onda de la luz emitida por un láser, a partir del patrón de interferencias que se obtiene al incidir un haz de luz: a)
Laboratorio 6 Difracción de la luz
Laboratorio 6 Difracción de la luz 6.1 Objetivo 1. Estudiar el patrón de difracción dado por rendijas rectangulares sencillas y dobles, aberturas circulares, y rejillas de difracción. 2. Medir las constantes
Interferencias y difracción. Propiedades ondulatorias de la luz
Interferencias y difracción Propiedades ondulatorias de la luz Naturaleza ondulatoria de la luz Interferencias: al combinarse dos ondas hay máximos y mínimos Difracción: debido a la existencia de varias
Física II- Curso de Verano. Clase 6
Física II- Curso de Verano Clase 6 Interferencia Interferencia es un fenómeno característico del movimiento ondulatorio agua luz electrones De qué depende este patrón observado? Depende de la longitud
Slide 1 / 52. Las Ondas Electromagnéticas Problemas de Práctica
Slide 1 / 52 Las Ondas Electromagnéticas Problemas de Práctica Slide 2 / 52 Multiopcion Slide 3 / 52 1 Cuál de las siguientes teorías puede explicar la curvatura de las ondas detrás de los obstáculos en
Problemas de Ondas Electromagnéticas
Problemas de Ondas Electromagnéticas AP Física B de PSI Nombre Multiopción 1. Cuál de las siguientes teorías puede explicar la curvatura de las ondas detrás de los obstáculos en la "región de sombra"?
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I EVALUACION DE FISICA GENERAL II I TÉRMINO
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I EVALUACION DE FISICA GENERAL II I TÉRMINO 2012-2013 Nombre: Paralelo: 01 Fecha: 02/07/2012 Profesor: Ing. Francisca Flores N. ATENCION:
CONCEPTOS DE ÓPTICA FÍSICA (continuación)
CONCEPTOS DE ÓPTICA FÍSICA (continuación) 4.2 La red de difracción Una red de difracción, Fig.15, se construye haciendo rayas iguales, paralelas e igualmente espaciadas, en una superficie plana. Si es
DIFRACCIÓN DE LA LUZ
PRÁCTICA 4 DIFRACCIÓN DE LA LUZ OBJETIVO Determinación de la longitud de onda de una luz monocromática mediante su patrón de difracción al hacerla atravesar una rendija estrecha. INTRODUCCION Cuando un
Física II. Dr. Mario Enrique Álvarez Ramos (Responsable)
Física II Dr. Mario Enrique Álvarez Ramos (Responsable) Dr. Roberto Pedro Duarte Zamorano (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Webpage: http://paginas.fisica.uson.mx/qb 2015 Departamento
Práctica 4. Interferómetro de Michelson
. Interferómetro de Michelson 1. OBJETIVOS Estudiar una de las propiedades ondulatorias de la luz, la interferencia. Aplicar los conocimientos para la medida (interferometría) de longitudes de onda o distancias.
7. Difracción n de la luz
7. Difracción n de la luz 7.1. La difracción 1 7. Difracción de la luz. 2 Experiencia de Grimaldi (1665) Al iluminar una pantalla opaca con una abertura pequeña, se esperaba que en la pantalla de observación
Las Ondas Electromagnéticas Problemas de Práctica. Multiopcion. Slide 1 / 52. Slide 2 / 52. Slide 3 / 52 A B
Slide 1 / 52 Las Ondas lectromagnéticas Problemas de Práctica Slide 2 / 52 Multiopcion 1 uál de las siguientes teorías puede explicar la curvatura de las ondas detrás de los obstáculos en la "región de
Capítulo 4. Rejillas de difracción.
Capítulo 4 Rejillas de difracción. 4.1 Introducción. En este capítulo se estudiarán las rejillas de difracción así como se mencionará el papel que juega dentro de la óptica, también se muestra una imagen
BLOQUE 4.1 ÓPTICA FÍSICA
BLOQUE 4.1 ÓPTICA FÍSICA 1. NATURALEZA DE LA LUZ Hasta ahora hemos considerado a la luz como algo que transporta energía de un lugar a otro. Por otra parte, sabemos que existen dos formas básicas de transportar
Introducción a la Física Experimental Guía de la experiencia Doble rendija de Young. Determinación de la longitud de onda de una luz roja.
Introducción a la Física Experimental Guía de la experiencia Doble rendija de Young. Determinación de la longitud de onda de una luz roja. Departamento de Física Aplicada. Universidad de Cantabria. Febrero
GUÍA DE INSTALACIÓN DEL MÓDULO DE DIFRACCIÓN DE LA LUZ
GUÍA DE INSTALACIÓN DEL MÓDULO DE DIFRACCIÓN DE LA LUZ TABLA DE CONTENIDO Pag. EXPERIMENTO DE DIFRACCIÓN DE LA LUZ... 3 1. INTRODUCCIÓN... 3 2. EQUIPOS... 3 3. MONTAJE GENERAL DEL EXPERIMENTO... 5 3.1
Difracción: Experimento de Young y Principio de Babinet
Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Difracción: Experimento de Young y Principio de Babinet Introducción Durante los primeras décadas del siglo XIX se realizaban
07/05/2017. ÓPTICA FÍSICA: difracción. Introducción a los patrones de difracción
ÓPTICA FÍSICA: difracción Dispositivo Delfina Fernandez y Damián Pontet, 2015 Introducción a los patrones de difracción Difracción es la desviación que sufren las ondas alrededor de los bordes y esquinas
PRÁCTICA Nº4 INTERFERENCIA Y DIFRACCIÓN
PRÁCTICA Nº4 INTERFERENCIA Y DIFRACCIÓN 1.- Objetivo El objetivo de esta práctica es examinar el patrón de difracción a través de una sola rendija y de interferencia a través de una rendija múltiple, utilizando
Física II (Biólogos y Geólogos)
Física II (Biólogos y Geólogos) SERIE 4. Difracción 1. Para un haz de luz de longitud de onda que incide en forma normal sobre una placa con una rendija de ancho b, la intensidad observada sobre una pantalla
2- Describa y deduzca las expresiones matemáticas correspondientes al experimento de la doble rendija de Young.
ASIGNATURA FISICA II AÑO 2012 GUIA NRO. 14 INTERFERENCIA, DIFRACCION Y POLARIZACION Bibliografía Obligatoria (mínima) Capítulos 37 y 38 Física de Serway Tomo II PREGUNTAS SOBRE LA TEORIA Las preguntas
Física 2n de Batxillerat IES El Cabanyal València
Dr JM yensa 07 Óptica geométrica. 0/0/07 UESTIONES ísica n de atxillerat IES El abanyal alència Tiempo de la prueba 6 min.- Un objeto de 0. cm de altura, que está situado a 0 cm de un espejo cóncavo, produce
REPASO Interferencia
REPASO Interferencia Dos fuentes de ondas coherentes separadas por una distancia 4 Considere un punto a en el eje x. las dos distancias de S 1 a a y de S 2 a a son iguales las ondas requieren tiempos iguales
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO SEGUNDA EVALUACIÓN DE FÍSICA D.
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 SEGUNDA EVALUACIÓN DE FÍSICA D Nombre: Paralelo: PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u)
Práctica Nº 7: Red de difracción
Práctica Nº 7: Red de difracción 1.- INTRODUCCIÓN. INTERFERENCIA o DIFRACCIÓN? Desde el punto de vista físico ambos fenómenos son equivalentes. En general se utiliza el término INTERFERENCIA, para designar
Interferencias por reflexión en una lámina de vidrio Fundamento
Interferencias por reflexión en una lámina de vidrio Fundamento Si sobre una lámina de vidrio, de índice de refracción n y espesor e, se hace incidir un haz de luz monocromática, que forma un ángulo θ
DIFRACCIÓN DE LA LUZ II
DIFRACCIÓN DE LA LUZ II 1. OBJETIVO a) Determinar la anchura de una rendija a partir del diagrama de difracción que se obtiene cuando sobre la misma incide un haz de luz procedente de un láser. b) Determinar
Módulo de Óptica. Universidad del Salvador Facultad de Medicina- Post Grado Carrera de Médico Especialista en Oftalmología: Prof. Dr.
Módulo de Óptica Universidad del Salvador Facultad de Medicina- Post Grado Carrera de Médico Especialista en Oftalmología: Prof. Dr. Daniel Scorsetti Optica Física y Geométrica Dr. Tomás y Lic. Gabriel
Como partícula. Como onda. fotón. electrón. Experiencia de la doble rendija 1803 T. Young. Efecto fotoeléctrico 1905 A. Einsten
La luz se comporta a la vez como onda y partícula. Algunos fenómenos se explican más mejor suponiendo que la luz es una onda (reflexión, refracción, interferencia, difracción) en tanto que otros fenómenos,
INTERFERENCIA Y DIFRACCIÓN DE ONDAS SONORAS (ULTRASONIDOS) Esta práctica pretende alcanzar dos objetivos fundamentales:
INTERFERENCIA Y DIFRACCIÓN DE ONDAS SONORAS (ULTRASONIDOS) 1.- OBJETIVOS Esta práctica pretende alcanzar dos objetivos fundamentales: a) El manejo de una serie de instrumentos como son el Goniómetro y
Objetivos. Introducción. β α
Objetivos Medir el espectro emitido por una lámpara de sodio utilizando redes de difracción. Determinar los límites del espectro visible usando una fuente de luz blanca. Introducción Una red de difracción
Difracción de la luz
Difracción de la luz Óptica Física Óptica Geométrica d ~ d >> Difracción de la luz 1. Difracción (cercana) de Fresnel (en honor a: Augustin Jean Fresnel, 1788-1827) 2. Difracción (lejana) de Fraunhofer
Interferencia y Difracción
Universidad Nacional de Tucumán Facultad de Ciencias Exactas y Tecnología Año 2011 Proyecto de Física III Interferencia y Difracción Integrantes Lomenzo, María Florencia Ing. Biomédica (flor_lomenzo@hotmail.com)
Física A.B.A.U. ONDAS 1 ONDAS
Física A.B.A.U. ONDAS 1 ONDAS PROBLEMAS 1. La ecuación de una onda transversal que se propaga en una cuerda es y(x, t) = 10 sen π(x 0,2 t), donde las longitudes se expresan en metros y el tiempo en segundos.
Fuentes de luz. Relaciona cada una de las fotografías con el tipo de fuente de luz: 1. NATURAL
La luz Fuentes de luz Relaciona cada una de las fotografías con el tipo de fuente de luz: 1. NATURAL 2. ARTIFICIAL A. Incandescencia B. Fosforescencia C. Fluorescencia La luz y los cuerpos I. transparentes.
Preguntas del capítulo Ondas electromagnéticas
Preguntas del capítulo Ondas electromagnéticas 1. Isaac Newton fue uno de los primeros físicos en estudiar la luz. Qué propiedades de la luz explicó usando el modelo de partícula? 2. Quién fue la primer
5. Sea una fuente monocromática (λ =5500 Å), y un dispositivo de Young de las siguientes características:
Física 2 (Físicos) Interferencia c DF, FCEyN, UBA Condiciones 1. Diga qué entiende por luz cuasi monocromática y dé algunos ejemplos. 2. Bajo qué condiciones se puede decir que dos fuentes son coherentes?
VI-DEC (Vídeos Didácticos de Experimentos Científicos) Física. Color Estructural. Difracción
VI-DEC (Vídeos Didácticos de Experimentos Científicos) Física Color Estructural. Difracción Objetivo difracción. Material Dar a conocer el fundamento del color estructural que se explica mediante la CD
n = 7, s 1 λ = c ν = , = 4, m
. (Andalucía, Jun. 206) Un rayo de luz con una longitud de onda de 300 nm se propaga en el interior de una fibra de vidrio, de forma que sufre reflexión total en sus caras. a) Determine para qué valores
ESPEJO DE FRESNEL RESUMEN:
RESUMEN: 1 ESPEJO DE FRESNEL El presente documento expone como obtener la longitud de onda de una fuente de luz láser He-Ne a partir de la geometría del experimento, generando dos fuentes virtuales coherentes
Ejercicios de Óptica
Ejercicios de Óptica 1. a) Los rayos X, la luz visible y los rayos infrarrojos son radiaciones electromagnéticas. Ordénalas en orden creciente de sus frecuencias e indica algunas diferencias entre ellas.
Laboratorio de Física II (ByG) 1er cuat Guía 6: Fenómeno de Difracción. La Cristalografía de rayos X.
Laboratorio de Física II (ByG) 1er cuat. 2015 Guía 6:. La Cristalografía de rayos X. Objetivos Estudiar la figura de difracción (también llamada patrón de difracción) producida por diferentes obstáculos
1 LA LUZ. 2 La velocidad de la luz
1 LA LUZ -Newton: La luz está formada por corpúsculos -Hyugens: La luz es una onda -Interferencia -Las ecuaciones de Maxwell -El éter. -Einstein y la teorí a de los fotones. E=hν La luz posee una naturalez
Física 2 (biólogos y geólogos) 1er cuatrimestre SERIE 3. Difracción
Física 2 (biólogos y geólogos) 1er cuatrimestre 2015 19 SERIE 3. Difracción 1. Para un haz de luz de longitud de onda que incide en forma normal sobre una placa con una rendija de ancho b, la intensidad
Antes de empezar el tema
Antes de empezar el tema Movimiento ondulatorio = aquel en el que se propaga energía pero no materia, mediante la propagación de una perturbación llamada onda. Mecánicas Según medio de propagación Electromagnéticas
INTERFERENCIA 07/05/2017 ÓPTICA FÍSICA. ÓPTICA FÍSICA: interferencia y difracción
ÓPTICA FÍSICA INTERFERENCIA Interferencia constructiva, dos ranuras TP Biprisma de Fresnel Perfil C (2º): S=12.6cm Interferencia destructiva, dos ranuras ÓPTICA FÍSICA: interferencia y difracción La interferencia
FENÓMENOS ONDULATORIOS
FENÓMENOS ONDULATORIOS 1. Superposición de ondas. 2. Ondas estacionarias. 3. Pulsaciones. 4. Principio de Huygens. 5. Difracción. 6. Refracción. 7. Reflexión. 8. Efecto Doppler. Física 2º Bachillerato
Física II (Biólogos y Geólogos) SERIE 3. Difracción
Física II (Biólogos y Geólogos) SERIE 3 Difracción 1. Partiendo de la expresión de la intensidad observada sobre una pantalla, explique el significado de cada uno de los términos que aparece en dicha expresión
Experimento 11 Difracción
Experimento 11 Difracción Objetivos Producir patrones de difracción de diferentes aberturas; describir cualitativamente, con detalle sus características más sobresalientes, compararlos con las predicciones
Seminario 6: Difracción y polarización
Seminario 6: Difracción y polarización Fabián Andrés Torres Ruiz Departamento de Física,, Chile 5 de Abril de 007. Problemas. (Problema 5, capitulo 38, Física, Raymond A. Serway, V, cuarta edición) La
Problemario FS107 Óptica Básica Cal16B. Parámetros ópticos
Problemario FS107 Óptica Básica Cal16B Parámetros ópticos 33.3 Un haz de luz tiene una longitud de onda de 650 nm en el vacío. Cuál es la rapidez de esta luz en un líquido cuyo índice de refracción a esta
Interferencia Luminosa: Experiencia de Young
Interferencia Luminosa: Experiencia de Young Objetivo emostrar el comportamiento ondulatorio de la luz a través de un diagrama de interferencia. Equipamiento - Lámpara de Filamento rectilíneo - Soporte
Física 2. Primer cuatrimestre Turno A Guía N o 8: Interferencia. A- Elementos de óptica geométrica. Leyes de Snell, prismas
Física 2. Primer cuatrimestre 2004. Turno A Guía N o 8: Interferencia A- Elementos de óptica geométrica Leyes de Snell, prismas 1). Los índices de refracción de cierta clase de vidrio para el rojo y el
difracción? 2) Grafique la intensidad sobre la pantalla, en función de qué variable lo hace? Qué otra
Física 2 (Físicos) Difracción de Fraunhofer Difracción c DF, FCEyN, UBA 1. a) Considere la figura de difracción de Fraunhofer producida por una rendija de ancho b ubicada entre dos lentes convergentes
Tipler Mosca: 33 Alonso Finn: 34-35
Tema 6: Interferencia y difracción de ondas * Diferencia de fase y coherencia. * Interferencia en películas delgadas. * Diagrama de interferencias de dos rendijas. * Diagrama de difracción de una rendija.
TRABAJO PRÁCTICO N 12 INTERFERENCIA
TRABAJO PRÁCTICO N 12 Introducción Interferencia es un fenómeno que se presenta en todo tipo de ondas; tiene lugar cuando en una región del espacio actúan dos o más ondas simultáneamente superponiendo
JUNIO 2000 (CUESTIONES)...
BLOQUE III. ÓPTICA. Convocatorias 1. JUNIO 1994... 3 1.1. PROBLEMA... 3 1.2. CUESTIÓN... 3 2. SEPTIEMBRE 1994... 3 2.1. CUESTIÓN... 3 2.2. CUESTIÓN... 3 3. JUNIO 1995... 3 3.1. CUESTIÓN... 3 4. SEPTIEMBRE
PROPAGACION DE ONDAS: FRENTE DE ONDA Y RAYOS.
PROPAGACION DE ONDAS: FRENTE DE ONDA Y RAYOS. Para describir el movimiento de ondas que se propagan en dos o tres dimensiones son útiles los conceptos de frente de onda y de rayo. Se define el frente de
RENDIJA DE DIFRACCIÓN
RENDIJA DE DIFRACCIÓN Física de Oscilaciones Ondas Óptica Semestre 01 de 2010 Escuela de Física Sede Medellín 1 Objetivo general Estudiar el fenómeno de difracción de la luz. 2 Objetivos especícos Estudiar
ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ
1 ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ INTRODUCCIÓN TEÓRICA: La característica fundamental de una onda propagándose por un medio es su velocidad (v), y naturalmente, cuando la onda cambia
Problemas de Óptica Física
Problemas de Óptica Física Cte. de Planck: h= 6.6x10-34 J.s= 4.1x10-15 ev.s Velocidad de la luz en el vacío: c = 3x10 8 m/s Problema 1 Si se observa en una pantalla alejada el patrón de difracción al hacer
Optica de Fourier y filtrado espacial
Optica de Fourier y filtrado espacial Objetivo Estudiar la óptica de Fourier y la formación de imágenes con luz coherente. Difracción de Fraunhofer Sea una onda plana de luz coherente que incide sobre
Indicar espacio distinto de aula (aula informáti ca, audiovisu al, etc.) GRUPO (marcar X) Indicar SI/NO es una sesión con 2 profesores PEQ UEÑ O
SESIÓN SEMANA DENOMINACIÓN ASIGNATURA: AMPLIACIÓN DE FÍSICA GRADO: Ingeniería en Tecnologías de Telecomunicación; Ingeniería de Sistemas de Telecomunicación Ingeniería de Sistemas Audiovisuales; Ingeniería
Problemario de Ondas Electromagnéticas, Luz y Óptica
Universidad Central de Venezuela Facultad de Ciencias Escuela de Física Problemario de Ondas Electromagnéticas, Luz y Óptica Física General III Prof. Anamaría Font Mayo 2008 Índice 1. Ondas Electromagnéticas
TRABAJO PRÁCTICO N 14 ESPECTROMETRÍA REDES DE DIFRACCIÓN
TRABAJO PRÁCTICO N 14 Introducción La luz blanca ordinaria (luz del sol, luz de lámparas incandescentes, etc.) es una superposición de ondas cuyas longitudes de onda cubren, en forma continua, todo el
1. Fundamentos de óptica
Relación microscopio - ojo Espectro radiación electromagnética Diferencias en intensidad o brillo Propiedades de la luz Teoría corpuscular Teoría ondulatoria Dualidad onda-corpúsculo Propiedades de la
SESIÓN 8. Redes de difracción. Espectroscopia.
SESIÓN 8. Redes de difracción. Espectroscopia. TRABAJO PREVIO 1. Conceptos fundamentales. Cuestiones 1. Conceptos fundamentales. Difracción. La difracción es un fenómeno óptico que se produce cuando la
Velocidad de la Luz. c = (2,9979 ± 0,0001) x 10 8 m/s
Velocidad de la Luz Métodos fallidos, como el de Galileo Galilei en 1667. Método astronómico de Olaf Roemer en 1675, concluye que c > 2 x 10 8 m/s (periodo de eclipse de satélites de Jupiter). Método de
Revisión cronológica de las teorías sobre la luz
UD 5 ONDAS ELECTROMAGNÉTICAS 5.1 LA NATURALEZA DE LA LUZ Revisión cronológica de las teorías sobre la luz 1.704 Teoría corpuscular de Newton: Los focos luminosos emiten minúsculas partículas de luz que
I.E.S. MARTÍNEZ MONTAÑÉS DEPARTAMENTO DE FÍSICA Y QUÍMICA ÓPTICA
Cuestiones ÓPTICA 1. a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? 2. a) Qué es una onda electromagnética?
Práctica 6: Redes de difracción F2 ByG 2º Cuat 2005
Práctica 6: Redes de difracción F2 ByG 2º Cuat 2005 Objetivos: Se propone medir el espectro de una lámpara de sodio utilizando redes de difracción. Se propone determinar los límites del espectro visible
Seminario 5: Interferencia
Seminario 5: Interferencia Fabián Andrés Torres Ruiz Departamento de Física,, Chile 18 de Abril de 2007. Problemas 1. (Problema 3, capitulo 37,Física, Raymond A. Serway, V2, cuarta edición) Un experimento
ÓPTICA STRI 2014 TRABAJO PRÁCTICO 1 - UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL LA PLATA CARRERA DE GRADO
CARRERA DE GRADO -INGENIERÍA EN SISTEMAS DE INFORMACIÓN- ÓPTICA UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL LA PLATA STRI 2014 TRABAJO PRÁCTICO 1 - Página 1 de 5 1) Dado el siguiente gráfico: ÓPTICA
FÍSICA 2º Bachillerato Ejercicios: Óptica
1(8) Ejercicio nº 1 Entre las frecuencias del rojo 4 3.10 14 Hz y la del violeta 7 5.10 14 Hz se encuentran todos los colores del espectro visible. Cuáles son su período y su longitud de onda? Ejercicio
DIFRACCIÓN DE LA LUZ
DIFRACCIÓN DE LA LUZ 1. OBJETIVO a) Determinar la anchura de una rendija a partir del diagrama de difracción que se obtiene cuando sobre la misma incide un haz de luz procedente de un láser. b) Determinar
1. Diga qué entiende por luz cuasi monocromática y dé algunos ejemplos.
FÍSICA 2 (FÍSICOS) - CÁTEDRA PROF. DEPINE SEGUNDO CUATRIMESTRE DE 2015 GUÍA 5: INTERFERENCIA Y DIFRACCIÓN 1. Diga qué entiende por luz cuasi monocromática y dé algunos ejemplos. 2. Bajo qué condiciones
FÍSICA 2 (FÍSICOS) - CÁTEDRA PROF. DEPINE PRIMER CUATRIMESTRE DE 2014 GUÍA 5: INTERFERENCIA Y DIFRACCIÓN
FÍSICA 2 (FÍSICOS) - CÁTEDRA PROF. DEPINE PRIMER CUATRIMESTRE DE 2014 GUÍA 5: INTERFERENCIA Y DIFRACCIÓN 1. Diga qué entiende por luz cuasi monocromática y dé algunos ejemplos. 2. Bajo qué condiciones
FÍSICA 2 (FÍSICOS) - CÁTEDRA PROF. SKIGIN PRIMER CUATRIMESTRE DE 2016 GUÍA 5: INTERFERENCIA Y DIFRACCIÓN INTERFERENCIA
FÍSICA 2 (FÍSICOS) - CÁTEDRA PROF. SKIGIN PRIMER CUATRIMESTRE DE 2016 GUÍA 5: INTERFERENCIA Y DIFRACCIÓN INTERFERENCIA 1. Diga qué entiende por luz cuasi monocromática y dé algunos ejemplos. 2. Bajo qué
Estudio de la coherencia espacial de una fuente de luz
Estudio de la coherencia espacial de una fuente de luz Clase del miércoles 29 de octubre de 2008 Prof. María Luisa Calvo Coherencia espacial Está ligada a las dimensiones finitas de las fuentes de luz.
ANALOGIAS. (Págs. 70, 71, 72 y 73).
1 LICEO SALVADOREÑO CIENCIA, SALUD Y MEDIO, AMBIENTE HERMANOS MARISTAS PROFESORES: CLAUDIA POSADA / CARLOS ALEMAN GRADO Y SECCIONES: 9º: A, B, C, D Y E. UNIDAD N 5: ONDAS, LUZ Y SONIDO. GUIA N 1 ANALOGIAS.
Física P.A.U. ÓPTICA 1 ÓPTICA
Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un rayo de luz de frecuencia 5 10¹⁴ Hz incide con un ángulo de incidencia de 30 sobre una lámina de vidrio de caras plano-paralelas de espesor
Tutoría 2: Experimentos de difracción
Tutoría 2: Experimentos de difracción T2.1 Introducción En esta tutoría trataremos la cuestión fundamental de cómo conocemos donde se sitúan los átomos en un sólido. La demostración realizada se basa en
Física 2 (Físicos) - Cátedra Dr. Depine - 2do. Cuatrimestre 2009 Interferencia y Difracción
Física 2 (Físicos) - Cátedra Dr. Depine - 2do. Cuatrimestre 2009 Interferencia y Difracción 1. Diga qué entiende por luz cuasi monocromática y dé algunos ejemplos. 2. Bajo qué condiciones se puede decir
CUESTIONES DE ÓPTICA
CUESTIONES DE ÓPTICA 2017 1) Utilizando diagramas de rayos, construya la imagen de un objeto real por una lente convergente si está situado: i) a una distancia 2f de la lente, siendo f la distancia focal;
COMPROMISO DE HONOR. Yo,.. al firmar este compromiso, reconozco que el
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FISICA I TERMINO ACADEMICO 2013-2014 SEGUNDA EVALUACIÓN DE FISICA D 26 DE AGOSTO DEL 2013 COMPROMISO
La luz y las ondas electromagnéticas
La luz y las ondas electromagnéticas Cuestiones (96-E) a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? (96-E)