(Apuntes en revisión para orientar el aprendizaje) Capítulo III La derivada y algunas aplicaciones

Tamaño: px
Comenzar la demostración a partir de la página:

Download "(Apuntes en revisión para orientar el aprendizaje) Capítulo III La derivada y algunas aplicaciones"

Transcripción

1 (Apuntes en revisión para orientar el aprendizaje) Capítulo III La derivada y algunas aplicaciones INTRODUCCIÓN Uno de los problemas fundamentales del Cálculo Diferencial se refiere a la determinación de la pendiente de la recta tangente a una curva en un punto dado. Para ilustrar este concepto matemático, considérense los casos siguientes: 1) Ángulo entre curvas. ) Velocidad y la aceleración en un instante determinado. 3) Razones de variación de una variable con respecto a otra. 4) Aproimación de valores de una función 5) Valores máimos y mínimos de una función. RAZÓN MEDIA DE VARIACIÓN Sea ( ) f = + 3 y supóngase que la variable " " aumenta de a.4. Entonces, el incremento será Δ =.4 Δ = 0.4 Para obtener el incremento Δ y de la función, se hace lo siguiente: ( ) ( ) y = + 3 ; y+δ y = +Δ + 3 +Δ Se restan ambas epresiones y, ( ) 3( ) ( 3 ) Δ y = +Δ + +Δ + Δ y = + Δ +Δ Δ 3+ Δ y = Δ +Δ + 3Δ Si se dividen ambos miembros entre Δ se tiene que: Δy Δ +Δ + 3Δ Δy = = +Δ + 3 Δ Δ Δ Definición. La razón media de variación de la función y = f con respecto a " " cuando esta variable ( ) eperimenta un incremento Δ, es igual al cociente del

2 incremento de la función entre el incremento de la variable Δy independiente, esto es, Δ. y y +Δ y f recta secante y + Δ Δy Se puede apreciar que, que representa a la razón media Δ de variación de la función con respecto a la variable independiente, es la pendiente de la recta secante. Por otro lado, la ecuación de una recta cuya pendiente es " m " y con ordenada al origen " b " es y = m+ b y si se determina en esta función su razón media de variación se tendrá: y = m+ b ; y+δ y = m( +Δ ) + b y+δ y = m+ mδ + b Δy Δ y = m+ mδ + b m b Δ y = mδ = m Δ Para el caso de una recta, la razón media de variación es constante y equivale a la pendiente " m " de la recta. y ( +Δ ) f f( ) y = m+ b Δ Δ y + Δ Δ y = m Δ

3 CONCEPTO DE RECTA TANGENTE 3 Se debe al célebre matemático francés Pierre de Fermat, de los grandes matemáticos del siglo XVII. Se basa en el siguiente razonamiento: La recta tangente en un punto " A " de una curva puede interpretarse como la posición límite de la secante, que es la tangente, cuando el punto " B " tiende al punto " A ". y f recta secante A B ( ) lim secante B A recta tangente = tangente LA DERIVADA COMO RAZÓN INSTANTÁNEA DE VARIACIÓN Si el punto " B " tiende al punto " A ", esto implica necesariamente que el incremento Δ tiende a cero y si Δy esto sucede, entonces el límite lim se conoce como la Δ 0 Δ razón instantánea de variación de " y " con respecto a " ". Para la función analizada con anterioridad, es decir, y = + 3, la razón media de variación es Δ y = +Δ + 3. Y si se calcula la razón instantánea de Δ Δ y variación se tendrá: lim = lim ( +Δ + 3) = + 3 y Δ 0 Δ Δ 0 cuando =, la razón instantánea de variación es 7. Definición. A la razón instantánea de variación de una función f con respecto a " ", se le conoce como la derivada de la función con respecto a la variable independiente, es decir,

4 Δ y lim = derivada de f con respecto a " " Δ 0 Δ De acuerdo con lo ya tratado, se puede escribir que: Δy = lim ; Δ y = f( 0 +Δ) f( 0) d Δ 0 Δ f( 0 +Δ) f( 0) = lim d Δ 0 Δ y si además se considera que Δ = 0, entonces f( ) f( 0 ) Δ 0 0 = lim d 0 0 Esta epresión define a la derivada de la función, específicamente en el punto en el que = 0. 4 INTERPRETACIÓN GEOMÉTRICA DE LA DERIVADA f y ( +Δ ) f secante B Δ y tangente ( ) lim recta secante B A = recta tangente B A Δ 0 ; lim β = α lim tanβ = tanα Δ 0 Δ 0 Δy Δy tan BAC=tan β= lim = tanα = Δ Δ 0 Δ d Por lo tanto la derivada es la tangente trigonométrica del ángulo que forma la tangente geométrica con el eje de las abscisas. Equivale a la pendiente de la recta tangente donde = tanα = mt d m es la pendiente de la recta tangente. T f( ) α A β Δ C + Δ

5 NOTACIONES DE LA DERIVADA Las notaciones más conocidas son: y' ó f' notación de Lagrange Dy ó Df d ó f d d i y ó f ( ) ( ) notación de Cauchy i ( ) notación de Leibniz ( ) notación de Newton 5 Ejemplo. Supóngase que parte de la trayectoria de un juego mecánico de montaña rusa tiene la forma mostrada en la figura, donde el recorrido de A a B y de B a C, son curvas parabólicas distintas, y el recorrido de C a D es una media circunferencia. A B C D Si se denota con " θ " el ángulo que forma el piso del carrito con la línea horizontal: i ) Qué valor tiene θ en el punto más alto? ii ) Qué valor tiene θ en el punto más bajo? iii ) Eisten otros puntos en donde tenga el mismo valor que los que tuvo en los primeros incisos? Solución. θ = 0 θ A B C D θ = 0 θ = 0

6 6 Ejemplo. Se tiene una pila de cemento colocada junto a una pared vertical sobre un piso horizontal. Considerando el origen de coordenadas en la intersección de piso y pared, el perfil del cemento está descrito, con una buena aproimación, por la curva y = + 9. Supóngase además que hay una escalera perfectamente recta e indeformable que se apoya simultáneamente en la pared, el cemento y el suelo. i) Demostrar que si la abscisa del punto de contacto de la escalera con la pila de cemento es 1.5, entonces la ecuación de la escalera se puede epresar como y = ii) Determinar la longitud de la escalera. Solución. i) Un modelo geométrico del problema planteado es el siguiente: y Pared Pila de cemento Escalera y = + 9 Piso

7 7 Ejemplo. Determinar la ecuación de la recta que pasa por el punto ( 4,0) y es tangente a la curva y = + 1. Obtener también las coordenadas del punto de tangencia y hacer un dibujo del problema planteado. Solución. La gráfica de la curva con la recta tangente y el punto de tangencia se muestran a continuación:

8 8 Ejemplo. El volumen de un cierto tipo de bacterias en un cultivo de laboratorio es inversamente proporcional al número de días " n " que pasan sin nutrientes, de tal forma que el modelo para esta relación es: 10,000 V = n función que se satisface a partir del primer día, es decir, cuando n = 1 y V = 10,000 bacterias. Obtener la razón de cambio en la que decrece el número de bacterias con respecto a los días sin alimento, cuando n = 4. Solución. Ejemplo. El costo de una cierta aleación de metales depende de la cantidad de oro que contiene. La mínima cantidad que debe contener es de 3 gramos y su costo es de $ 81,000 y aumenta este de acuerdo con el modelo: 3 C= donde " C " es el costo en pesos y " " el oro en gramos. Determinar la razón de cambio del costo de la aleación, con respecto a la cantidad de oro, cuando tiene "5" gramos de este metal precioso.

9 Solución. 9 MÉTODO DE LOS CUATRO PASOS PARA DERIVAR Considérese la función: y = f( ) ( 1) Primer paso: Se incrementa en Δ el valor de la variable independiente, con lo que la variable dependiente eperimenta el correspondiente incremento Δ y: y+δ y = f( +Δ) ( ) Segundo paso: Se resta la epresión ( 1 ) de la ( ), con lo que se obtiene el incremento Δ y: Δ y = f( +Δ) f( ) ( 3) Δy Tercer paso: Se calcula el cociente de incrementos Δ, dividiendo la epresión ( 3 ) entre el incremento Δ. Así, y f( +Δ) f( ) Δ = ( 4) Δ Δ Cuarto paso: Se calcula el límite del cociente anterior cuando el incremento Δ tiende a cero:

10 ( + Δ ) ( ) Δ y f f lim = lim Δ 0 Δ Δ 0 Δ Si este límite eiste, entonces se obtiene la derivada de la función considerada: = f'( ) d y se dice que la función dada es derivable. Ejemplo. Calcular la derivada de las siguientes funciones mediante el método de los cuatro pasos: 3 3 i) y = ; ii) y = ; iii) y =

11 11 Teorema. Derivada de la función constante Sea la función constante y = f( ) = k, con k una constante. Entonces su derivada es igual a cero, es decir, 0 d = y = k y k m T = = 0 d y k k ; lim lim ( 0 ) = k = = = 0 d Δ 0 Δ d Δ 0 d

12 Teorema. Derivada de la función identidad y = f =. Entonces su derivada es Sea la función identidad ( ) igual a la unidad, esto es, 1 d = y 1 y = 0 45 m T = = 1 d y +Δ ; lim lim () = = = 1 = 1 d Δ 0 Δ d Δ 0 d Teorema. Derivada de la función identidad elevada a un eponente real. Aquí sólo se verá el caso del eponente natural. Elevada a un eponente real también es demostrable. n Sea entonces la función y = ; n. Entonces su derivada está dada por: n 1 = n d ( ) n + Δ = lim d Δ 0 Δ A través del desarrollo del binomio de Newton, se llega a: ( ) 1 1 n n n n nn n n + Δ + Δ + +Δ = lim 1!! d Δ 0 Δ n nn ( 1) n 1 n 1 n lim = + Δ + +Δ d Δ 0 1!! n

13 d = n n 1 13 Ejemplo. Calcular la derivada de las funciones siguientes: i) f = ; ii) y = 4 ( ) 5 Teorema. Derivada de la suma de funciones h = f+ g. Entonces, la Considérese la función ( ) ( ) ( ) derivada de la función " h " es igual a: h' = f' + g' ( ) ( ) ( ) Teorema. Derivada del producto de una función por un escalar Sea la función h ( ) = α f ( ) ; α. Entonces su derivada será: ( ) = α '( ) h' f

14 Ejemplo. Obtener la derivada de la función: f = 5 ( ) 6 14 Ejemplo. Derivar las siguientes funciones: 1 i 4 1 ) f ( ) = ; ii ) y = Teorema. Derivada de una función como radicando de una raíz cuadrada. h = f. Entonces su derivada es igual a: Sea la función ( ) ( ) ( ) h' = f' ( ) f( )

15 Ejemplo. Obtener la derivada de la función 1 3 y = Teorema. Derivada del producto de dos funciones h = f g. Entonces, la derivada de " h " Sea la función ( ) ( ) ( ) es: ( ) = ( ) ( ) + ( ) ( ) h' f g' g f' Ejemplo. Obtener la derivada de: ( ) ( ) f =

16 Teorema. Derivada de un cociente de funciones. f( ) Sea la función " h " dada por h ( ) =, esto es, cuya regla g de correspondencia involucra el cociente de las funciones " f " y " g ". Entonces su derivada es igual a: g( ) f' ( ) f( ) g' ( ) h' ( ) = g( ) ( ) 16 Ejemplo. Derivar las siguientes funciones: i) f( ) = ; ii) y =

17 17 Teorema. Regla de la cadena (Derivada de una función de función) y f u u= g, ambas derivables, Sean las funciones = ( ) y ( ) tales que con ellas se logra la función compuesta y = f g D ; g D Entonces se cumple que: = d { f} ( ( )) g ( ) du du d A cada incremento Δ de la variable independiente " " le corresponde un incremento Δ u de la variable intermedia " u " y un incremento Δ y de la variable dependiente " y ". Si se multiplican numerador y denominador del cociente Δy Δ por Δ u, se llega a la siguiente identidad: Δy Δy Δu Δy Δy Δu = = ; Δu 0 Δ Δ Δu Δ Δu Δ Como u= g( ) es derivable, será también continua, por lo que si Δ 0, entonces Δu 0. Entonces, tomando límites en la epresión antes obtenida, se llega a: Δy Δy Δu lim = lim lim Δ 0 Δ Δu 0Δu Δ 0 Δ Y, por la definición de derivada, se tiene que: du = d du d y queda demostrado el teorema. Ejemplo. Obtener la derivada de la función 3 1 y = 1+

18 18 Ejemplo. Obtener la derivada de: ( ) f = 3 1 Ejemplo. Obtener para la siguiente función, mediante la d aplicación de la regla de la cadena, por pasos: ( ) y =

19 19 Ejemplo. Calcular las derivadas de las funciones siguientes y evaluarlas en el punto indicado. ( + 8) 3+ 9 i) y = ; = 1 ; ii) f 3 ( ) = ; = Resumen de las fórmulas obtenidas: Sean uvw,, funciones de " " y " C " una constante real: Entonces: DC= 0 D= 1 ( + ) = + ( ) D u v w Du D v D w DCv D v D CDv D uv = ud v+ vdu u D v vd u udv v = = C CDv = v n = n 1 n n n 1 Du = nu Du D Du u = u

20 DERIVADA DE FUNCIONES EXPRESADAS EN FORMA IMPLÍCITA 0 Cuando se tenga una función en forma implícita, se utiliza la regla de la cadena para derivarla cuantas veces se presente. Ejemplo. Calcular d en la ecuación + y = 4 Ejemplo. Calcular para la ecuación: d 4 3 y y + 8y= 4 y

21 y Ejemplo. Considérese la ecuación + 4 = 18. y Demostrar que = y. d 1 DERIVADA DE LAS FUNCIONES CIRCULARES DIRECTAS Teorema. Sea la función y senu ; u f( ) = =. Entonces: du = cosu d d

22 Teorema. Sea la función y cos u ; u f( ) = =. Entonces: du = senu d d Teorema. Sea la función y tan u ; u f( ) = =. Entonces: du = sec u d d Teorema. Sea la función y cot u ; u f( ) = =. Entonces: du = csc u d d

23 Teorema. Sea la función y sec u ; u f( ) = =. Entonces: du = secutanu d d 3 Teorema. Sea la función y csc u ; u f( ) = =. Entonces: du = cscucotu d d Ejemplo. Derivar las siguientes funciones: 1 cos i) f ( ) = ; ii) y = sen ( 1 5 ) ; iii) f ( ) = tan 1+ cos 1 3 iv) y = sec + csc ; v) f ( ) = cot( sen ) ( ) 1 3 vi) y = sec 6

24 4

25 5 DERIVADA DE LAS FUNCIONES CIRCULARES INVERSAS Teorema. Sea la función y angsenu ; u f( ) = d = =. Entonces: du d 1 u

26 Teorema. Sea la función y angcos u ; u f( ) = d = =. Entonces: du d 1 u 6 Teorema. Sea la función y angtan u ; u f( ) = =. Entonces: du = d d 1 + u

27 Teorema. Sea la función y angcot u ; u f( ) = =. Entonces: du = d d 1 + u 7 Teorema. Sea la función y angsec u ; u f( ) du = d d u u 1 = =. Entonces:

28 Teorema. Sea la función y angcsc u ; u f( ) du = d d u u 1 = =. Entonces: 8 Ejemplo. Calcular la derivada de las siguientes funciones: ( ) = = ( ) = = ( ) if ) angsen1 ; iiy ) angsec iii) f angcot ; iv) y angcos 1 1 v) f = angtan ; vi) y = angcsc 8 ( ) ( )

29 9

30 30 Resumen de las fórmulas para derivar funciones circulares directas e inversas: Sea u f( ) =. Entonces: du Du Dsenu = cosu Dangsenu = d 1 u du Du D cosu= senu Dang cosu= d 1 u du Du D tanu= sec u Dang tanu= d 1 + u du Du D cotu= csc u D cot d u= 1+ u du Du D secu= secutanu D secu= d u u 1 du Du D cscu= cscucotu Du = d u u 1

RELACIONES Y FUNCIONES

RELACIONES Y FUNCIONES RELACIONES Y FUNCIONES Variables Independiente: Aquella que puede tomar cualquier valor. Dependiente: Depende del valor que tome la variable independiente. Pares ordenados Se representan (a,b) donde: a:

Más detalles

= x x x. v p Este cociente indica cómo desciende las ventas al aumentar el precio en una unidad.

= x x x. v p Este cociente indica cómo desciende las ventas al aumentar el precio en una unidad. TASA DE VARIACIÓN MEDIA La tasa de variación media de una función nos da una idea de la rapidez con que crece o decrece en un intervalo. Sea y f() una función que relaciona la variable dependiente (y)

Más detalles

Longitud, áreas y volúmenes. Trigonometría. Circunferencia de radio R Círculo de radio R. 1 Triángulo de base B y altura H A = (BH ) 2

Longitud, áreas y volúmenes. Trigonometría. Circunferencia de radio R Círculo de radio R. 1 Triángulo de base B y altura H A = (BH ) 2 Longitud, áreas y volúmenes Circunferencia de radio R Círculo de radio R A πr L πr Triángulo de base B y altura H A (BH ) Cuadrado de lado L A L Rectángulo de base B y altura H Superficie esférica A 4πR

Más detalles

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto.

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. DERIVADAS Tema: La derivada como pendiente de una curva Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. La pendiente de la curva en el punto

Más detalles

Tasa de variación. Tasa de variación media

Tasa de variación. Tasa de variación media Tasa de variación Consideremos una función y = f(x) y consideremos dos puntos próximos sobre el eje de abscisas "a" y "a+h", siendo "h" un número real que corresponde al incremento de x (Δx). Se llama

Más detalles

Sea f una función numérica cualquiera, definida en un intervalo abierto (a,b) que contiene al punto x. y x, se define como

Sea f una función numérica cualquiera, definida en un intervalo abierto (a,b) que contiene al punto x. y x, se define como Modulo 3 La derivada 1. Variación promedio Sea f una función numérica cualquiera, definida en un intervalo abierto (a,b) que contiene al punto. Consideremos un pequeño incremento,, de la variable independiente,

Más detalles

ANTES DE COMENZAR RECUERDA

ANTES DE COMENZAR RECUERDA ANTES DE COMENZAR RECUERDA 00 Determina cuáles de estos vectores son paralelos y cuáles son perpendiculares a v (, ). a) v ( 6, ) b) v (, ) c) v (, ) a) v v Los vectores son paralelos. b) v v 0 Los vectores

Más detalles

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno:

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno: UNIDAD La derivada Objetivos Al terminar la unidad, el alumno: Calculará la derivada de funciones utilizando el álgebra de derivadas. Determinará la relación entre derivación y continuidad. Aplicará la

Más detalles

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente:

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente: INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Crecimiento de una Función en un Intervalo Tasa de Variación Media (T.V.M.) Se llama tasa de variación media (T.V.M.) de una función y f() en un intervalo

Más detalles

Interpretación geométrica de la derivada

Interpretación geométrica de la derivada Interpretación geométrica de la derivada El matemático francés ierre de Fermat (60 665) al estudiar máimos mínimos de ciertas funciones observó que en aquellos puntos en los que la curva presenta un máimo

Más detalles

Derivada. 1. Pendiente de la recta tangente a una curva

Derivada. 1. Pendiente de la recta tangente a una curva Nivelación de Matemática MTHA UNLP Derivada Pendiente de la recta tangente a una curva Definiciones básicas Dada una curva que es la gráfica de una función y = f() y sea P un punto sobre la curva La pendiente

Más detalles

MATEMÁTICAS VI (ÁREA1)

MATEMÁTICAS VI (ÁREA1) MATEMÁTICAS VI (ÁREA) VERSIÓN Unidad I. Funciones..- El dibujo de la gráfica de... 8 9 9 0.- El Lim 0 cuando tiende a 0 es :....- La función es continua en :...,,, 0,, 0.- El lim Sen 0....- El dominio

Más detalles

Derivada de una función MATEMÁTICAS II 1

Derivada de una función MATEMÁTICAS II 1 Derivada de una función MATEMÁTICAS II TASA DE VARIACIÓN MEDIA La tasa de variación media de una función nos da una idea de la rapidez con que crece o decrece en un intervalo. Sea y = f() una función que

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS APLICACIONES DE LA DERIVADA M. en E.M. MARGARITA RAMÍREZ GALINDO INTRODUCCIÓN A lo largo de la historia, la importancia

Más detalles

Bienvenidos al Maravilloso mundo de los Principia. Philosophiae naturalis Principia mathematica DERIVADAS

Bienvenidos al Maravilloso mundo de los Principia. Philosophiae naturalis Principia mathematica DERIVADAS UNIVERSIDAD SIMÓN BOLÍVAR Enero-Marzo 00 DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS MATEMÁTICA I (MA-) Fecha de publicación: 0-0-00 Bienvenidos al Maravilloso mundo de los Principia Contenido Tercer

Más detalles

3.3 Propiedades locales de una función derivable: continuidad, crecimiento y decrecimiento.

3.3 Propiedades locales de una función derivable: continuidad, crecimiento y decrecimiento. DERIVADAS. Función derivable en un punto. laterales. Interpretación geométrica de la derivada. Ecuaciones de las rectas tangente normal a la gráfica de una función en un punto.. Concepto de función derivada.

Más detalles

DERIVADAS DE FUNCIONES DE UNA VARIABLE

DERIVADAS DE FUNCIONES DE UNA VARIABLE DERIVADAS DE FUNCIONES DE UNA VARIABLE DERIVADAS DE FUNCIONES DE UNA VARIABLE [4.] Estudiar la derivabilidad de la función los puntos en los que esté definida. 3 f( ) y obtener f ( ) en En primer lugar

Más detalles

3.1 INTERPRETACION GEOMETRICA 3.2 DEFINICIÓN

3.1 INTERPRETACION GEOMETRICA 3.2 DEFINICIÓN Cap. La derivada. INTERPRETACION GEOMETRICA. DEFINICIÓN. NOTACIÓN. FORMA ALTERNATIVA.5 DIFERENCIABILIDAD.6 DERIVACIÓN.6. FORMULAS DE DERIVACIÓN..6. REGLAS DE DERIVACIÓN.6. DERIVADAS DE ORDEN SUPERIOR.6.

Más detalles

Fundamentos matemáticos. Tema 5 Derivación de funciones de una y varias variables

Fundamentos matemáticos. Tema 5 Derivación de funciones de una y varias variables Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 5 Derivación de funciones de una y varias variables José Barrios García Departamento de Análisis Matemático Universidad de La

Más detalles

DERIVADAS DERIVADAS. La siguiente tabla muestra el número de nacimientos en cada mes a lo largo de un año en una determinada población:

DERIVADAS DERIVADAS. La siguiente tabla muestra el número de nacimientos en cada mes a lo largo de un año en una determinada población: DERIVADAS INTRODUCCIÓN Una recta es tangente a una curva en un punto si solo tiene en común con la curva dicho punto. y 5 4 Recta tangente en (,) La pendiente de una recta es la tangente del ángulo que

Más detalles

tema09 24/6/04 09:35 Página CÁLCULO DE DERIVADAS

tema09 24/6/04 09:35 Página CÁLCULO DE DERIVADAS tema09 24/6/04 09:35 Página 166 9 CÁLCULO DE DERIVADAS tema09 24/6/04 09:35 Página 167 Introducción En muchas ocasiones se realizan cálculos de valores medios; por ejemplo, la velocidad media ha sido de

Más detalles

Módulo de Revisión Anual. Matemática 6 año A y C

Módulo de Revisión Anual. Matemática 6 año A y C Módulo de Revisión Anual Matemática 6 año A y C Función Homográfica ) Hallar las ecuaciones de las asíntotas verticales y horizontales de las siguientes funciones homográficas. a) f() +6 b) f() + c) f()

Más detalles

DERIVADAS DERIVADAS. La siguiente tabla muestra el número de nacimientos en cada mes a lo largo de un año en una determinada población:

DERIVADAS DERIVADAS. La siguiente tabla muestra el número de nacimientos en cada mes a lo largo de un año en una determinada población: DERIVADAS INTRODUCCIÓN Una recta es tangente a una curva en un punto si solo tiene en común con la curva dicho punto. y 5 4 Recta tangente en (,) La pendiente de una recta es la tangente del ángulo que

Más detalles

Diferencial de una función 1

Diferencial de una función 1 Cálculo _Comisión y Año 7 Diferencial de una función Dada una función y f (, derivable en x, se define: Diferencial de f, en x, al producto de la derivada de la función en dicho punto, por el incremento

Más detalles

Teoría y ejercicios de Matemáticas II. Análisis

Teoría y ejercicios de Matemáticas II. Análisis 9.DERIVADAS 9.. VARIACIÓN DE UNA VARIABLE Las propiedades estudiadas en los temas anteriores, límites, continuidad, etc., nos aportan inormación puntual sobre las unciones; pero no nos dicen nada sobre

Más detalles

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( ) Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 3 (DERIVADAS) Profesora: Yulimar Matute Febrero 2012 DERIVADAS POR DEFINICIÓN

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.2. DERIVADA DE

5. ANÁLISIS MATEMÁTICO // 5.2. DERIVADA DE 5. ANÁLISIS MATEMÁTICO // 5.2. DERIVADA DE UNA FUNCIÓN EN UN PUNTO Y APLICACIONES. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.2.1. El problema de la tangente. Derivada.

Más detalles

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo

Más detalles

(Apuntes en revisión para orientar el aprendizaje) INTEGRALES IMPROPIAS

(Apuntes en revisión para orientar el aprendizaje) INTEGRALES IMPROPIAS (Apuntes en revisión para orientar el aprendizaje) INTEGRALES IMPROPIAS En integración se pide que la función sea continua en el intervalo considerado que además éste sea finito. En este tema se pretende

Más detalles

Razonar si son ciertas o falsas las siguientes igualdades: Asociar cada función con su gráfica. (19) Si x 2 > 0, entonces x > 0.

Razonar si son ciertas o falsas las siguientes igualdades: Asociar cada función con su gráfica. (19) Si x 2 > 0, entonces x > 0. Razonar si son ciertas o falsas las siguientes igualdades: ) a + b) = a + b ) ) a + b = a + b e = e 4) a + ab b + a = a 5) 8 + = 6) a ) = a 5 7) 8) a = a 4 = 4 9) 9 = 0) ) e ) = e + = ) e ln = ) ln 0 =

Más detalles

Cálculo diferencial. Se dice que una función es diferenciable o derivable cuando es posible hallar su derivada.

Cálculo diferencial. Se dice que una función es diferenciable o derivable cuando es posible hallar su derivada. Cálculo diferencial I n t r o d u c c i ó n Cuando surgen cuestiones concernientes a la razón entre dos cantidades variables, entramos en los dominios del Cálculo Diferencial. Son por tanto objeto de estudio

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.1. DERIVADAS Y

5. ANÁLISIS MATEMÁTICO // 5.1. DERIVADAS Y 5. ANÁLISIS MATEMÁTICO // 5.1. DERIVADAS Y APLICACIONES. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2017-2018 5.1.1. El problema de la tangente. Derivada. Pierre de Fermat tenía una

Más detalles

Tema 7: Derivada de una función

Tema 7: Derivada de una función Tema 7: Derivada de una función Antes de dar la definición de derivada de una función en un punto, vamos a introducir dos ejemplos o motivaciones iniciales que nos van a dar la medida de la importancia

Más detalles

Unidad IV. 4.1 Conceptos de incremento y de razón de cambio. La derivada de una función.

Unidad IV. 4.1 Conceptos de incremento y de razón de cambio. La derivada de una función. Unidad IV Derivadas 4.1 Conceptos de incremento y de razón de cambio. La derivada de una función. Derivada de una función en un punto. Dada la función f(x) continúa en el intervalo abierto I, se define

Más detalles

VERSIÓN 31 1, 1. 12y 24 0 es: MATEMÁTICAS V. 1.- La gráfica de la ecuación. 3.- El dominio de la función f x. es: A) B) B), 1 A) 1, E) 1, C) D)

VERSIÓN 31 1, 1. 12y 24 0 es: MATEMÁTICAS V. 1.- La gráfica de la ecuación. 3.- El dominio de la función f x. es: A) B) B), 1 A) 1, E) 1, C) D) 1.- La gráfica de la ecuación MATEMÁTICAS V B) 1y 4 0 es:.- El dominio de la función f 1, B), 1 4 es: 1 1, 1 VERSIÓN 1 C), 1 1, C) 4.- Determina el rango de la función y. y B) y C) 1 y y y 0, 0.- Para

Más detalles

DERIVADAS 1.- TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN. Antes de dar la definición veamos unos ejemplos:

DERIVADAS 1.- TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN. Antes de dar la definición veamos unos ejemplos: DERIVADAS 1.- TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN. Antes de dar la definición veamos unos ejemplos: Definición: 2.- TASA DE VARIACIÓN INSTANTÁNEA. DEFINICIÓN DE DERIVADA DE UNA FUNCIÓN EN UN PUNTO.

Más detalles

Tema 7 (II). FUNCIONES DE UNA VARIABLE. DERIVADAS

Tema 7 (II). FUNCIONES DE UNA VARIABLE. DERIVADAS Tema 7 (II) FUNCIONES DE UNA VARIABLE DERIVADAS Derivada de una función en un punto La función f () es derivable en el punto a f ( a + ) f ( a) si eiste el límite: lím Este límite recibe el nombre de f

Más detalles

= en los puntos (0;1) y (1;0,5) Determine la razón de cambio promedio de la función en cada intervalo: x

= en los puntos (0;1) y (1;0,5) Determine la razón de cambio promedio de la función en cada intervalo: x Trabajo Práctico N : DERIVADA Y DIFERENCIAL Ejercicio : Halle la pendiente de la gráfica de la función en los puntos dados aplicando la definición de derivada de una función en un punto. Después halle

Más detalles

Se define la derivada de una función f(x) en un punto "a" como el resultado, del siguiente límite:

Se define la derivada de una función f(x) en un punto a como el resultado, del siguiente límite: TEMA: DERIVADAS. Derivada de una función en un punto Se define la derivada de una función f() en un punto "a" como el resultado, del siguiente límite: f ( a + ) f ( a) f '( a) lim Si el límite eiste es

Más detalles

1.-Tasa de variación.-

1.-Tasa de variación.- TEMA 3: DERIVADAS 1.-Tasa de variación.- Consideremos una función y = f(x) y consideremos dos puntos próximos sobre el eje de abscisas "a" y "a+h", siendo "h" un número real que corresponde al incremento

Más detalles

Universidad Nacional de La Plata

Universidad Nacional de La Plata 1 Universidad Nacional de La Plata Facultad de Ciencias Naturales Museo Cátedra de Matemática Elementos de Matemática Asignatura: Matemática Contenidos de la Unidad Temática nº 7 Diferencial: definición,

Más detalles

Ejercicios propuestos Cálculo 20. Sem-A10

Ejercicios propuestos Cálculo 20. Sem-A10 Ejercicios propuestos Cálculo 0. Sem-A10 Prof. José Luis Herrera 1. Dibuje la gráfica de la función f para la cual f(0) = 0, f (0) = 3, f (1) = 0 y f () = 1.. Dibuje la gráfica de la función g para la

Más detalles

Derivada y diferencial

Derivada y diferencial Derivada y diferencial Una cuestión, que aparece en cualquier disciplina científica, es la necesidad de obtener información sobre el cambio o la variación de determinadas cantidades con respecto al tiempo

Más detalles

4.2 Tasas de Variación. Sea la función f: Se llama tasa de variación media de la función f en el intervalo [a, b] al cociente:

4.2 Tasas de Variación. Sea la función f: Se llama tasa de variación media de la función f en el intervalo [a, b] al cociente: U.D.4: DERIVADAS 4.1 Ecuaciones de una recta. Pendiente de una recta La pendiente de una recta es una medida de la inclinación de la recta. Es el cociente del crecimiento en vertical entre el crecimiento

Más detalles

Solución: 2 3 6) Calcule el límite. n n n n n. 0,1 en subintervalos mediante la partición P y el conjunto de puntos de partición es:

Solución: 2 3 6) Calcule el límite. n n n n n. 0,1 en subintervalos mediante la partición P y el conjunto de puntos de partición es: SERIE DE ÁLULO INTEGRAL PROFESOR: PEDRO RAMÍREZ MANNY TEMA ) alcule la suma ) Determine n tal que ) Determine n tal que i i ( ) ( ) 0 i= i+ i n i = 9 n=6 i= n i = 78 n=7 i= ) Determine el valor del siguiente

Más detalles

El proceso de calcular la derivada se denomina derivación. Se dice que ( ) es derivable en c si existe ( ), es decir, lim. existe

El proceso de calcular la derivada se denomina derivación. Se dice que ( ) es derivable en c si existe ( ), es decir, lim. existe DEFINICIÓN DE LA DERIVADA DE UNA FUNCIÓN La derivada de una función () respecto de (x) es la función () (se lee f prima de (x) y está dada por: ()=lim (+h) () h El proceso de calcular la derivada se denomina

Más detalles

Derivadas y razones de cambio. Tangentes. Derivadas Relaciones de cambio Velocidades. Derivadas y razones de cambio

Derivadas y razones de cambio. Tangentes. Derivadas Relaciones de cambio Velocidades. Derivadas y razones de cambio y razones de cambio y razones de cambio Tangentes Notas de clase Resumen Cálculo I - A1234 1/5 y razones de cambio y razones de cambio Tangentes Si una curva C tiene la ecuación y = f (x) y quiere hallar

Más detalles

en dicho intervalo y si f ( x 1

en dicho intervalo y si f ( x 1 Tema 7 (III) Teoremas de Rolle y del valor medio Aplicaciones al cálculo de ites: regla de L Hòpital Teorema del máimo Teorema de Rolle Se dice que f () tiene un máimo local (o relativo) en un punto si

Más detalles

MATEMÁTICA - 6 A C y D - Prof. Sandra M. Corti

MATEMÁTICA - 6 A C y D - Prof. Sandra M. Corti TEMA: Derivada La derivada de una función es una medida de la rapidez con la que cambia el valor de dicha función matemática, según cambie el valor de su variable independiente Sea f(x) una función continua

Más detalles

Un i d a d 2. Co n t i n U i da d. Objetivos. Al inalizar la unidad, el alumno:

Un i d a d 2. Co n t i n U i da d. Objetivos. Al inalizar la unidad, el alumno: Un i d a d Co n t i n U i da d Objetivos Al inalizar la unidad, el alumno: Identificará cuándo una función es continua en un punto y en un intervalo. Aplicará las operaciones de las funciones continuas

Más detalles

Tema 6 Funciones reales de varias variables

Tema 6 Funciones reales de varias variables Tema 6 Funciones reales de varias variables 6.1 Continuidad y límites 6.1.1 Introducción. Existen muchos procesos en la naturaleza que dependen de dos o más variables. Por ejemplo, el volumen de un sólido

Más detalles

Cociente incremental. Mide la variación media de f(x) en (x 0, x 0 + x)

Cociente incremental. Mide la variación media de f(x) en (x 0, x 0 + x) Derivadas Cociente incremental Sea y= f(x) continua en x=x 0 x: incremento de la variable independiente y: incremento de la variable dependiente Se llama cociente incremental al cociente y f ( x x f xo

Más detalles

2 = 1, de manera semejante a

2 = 1, de manera semejante a INTRODUCCIÓN (Apuntes en revisión para orientar el aprendizaje) FUNCIONES HIPERBÓLICAS En el campo de las unciones escalares, conocidas como unciones trascendentes, hubo quienes observaron que determinadas

Más detalles

Mostrará la convergencia o divergencia de funciones mediante el criterio de límite de una función en un punto.

Mostrará la convergencia o divergencia de funciones mediante el criterio de límite de una función en un punto. Un i d a d Lí m i t e s Objetivos Al inalizar la unidad, el alumno: Mostrará la convergencia o divergencia de funciones mediante el criterio de límite de una función en un punto. Calculará límites de funciones

Más detalles

TRABAJO DE SEPTIEMBRE Matemáticas 1º Bachillerato

TRABAJO DE SEPTIEMBRE Matemáticas 1º Bachillerato Trabajo de Verano 04 º BACHILLERATO TRABAJO DE SEPTIEMBRE Matemáticas º Bachillerato. Página Trabajo de Verano 04 º BACHILLERATO BLOQUE I: CÁLCULO TEMA (UNIDAD DIDÁCTICA 9): Propiedades globales de las

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 1 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A Reserva 1, Ejercicio, Opción B Reserva,

Más detalles

DERIV. DE UNA FUNC. EN UN PUNTO

DERIV. DE UNA FUNC. EN UN PUNTO DERIVADA DE UNA FUNCIÓN Se abre aquí el estudio de uno de los conceptos fundamentales del cálculo diferencial: la derivada de una función. En este tema, además de definir tal concepto, se mostrará su significado

Más detalles

Análisis Matemático I (Lic. en Cs. Biológicas)

Análisis Matemático I (Lic. en Cs. Biológicas) Análisis Matemático I (Lic. en Cs. Biológicas) Segundo cuatrimestre 2017 Práctica 4: Derivadas Notaciones: Dada una función f : R R, un punto a R y un número R que llamaremos incremento en, se define el

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN 1.- Derivada de una función en un punto. El estudio de la derivada de una función en un punto surge con el problema geométrico

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 001 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A Reserva 1, Ejercicio, Opción B Reserva,

Más detalles

Cálculo diferencial. 2. f(x)= x+3. a) f(6), f(-6). b) f(c), f(x + Δx). f (x) = x a) f( 2 ). f (x+δx) f (x) b) 4. f(x) = 3x 1. f (x) f ( 1 ) a) = 3x

Cálculo diferencial. 2. f(x)= x+3. a) f(6), f(-6). b) f(c), f(x + Δx). f (x) = x a) f( 2 ). f (x+δx) f (x) b) 4. f(x) = 3x 1. f (x) f ( 1 ) a) = 3x Cálculo diferencial. Funciones y gráficas En los ejercicios -5 evaluar la función (si está definida) en los valores de la variable independiente indicados. Simplificar los resultados.. f() =. a) f(0),

Más detalles

Cálculo Integral Enero 2016

Cálculo Integral Enero 2016 Cálculo Integral Enero 6 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) ( + + ) ) ( + ) ( ) ) ( w + ) (w ) dw ) ( + ) 5) (y ) dy 6) ( +)( 5) 6 7) + 8) ( +) 5 y+ dy ) (y+5

Más detalles

Tema 6. Cálculo diferencial de funciones de una variable

Tema 6. Cálculo diferencial de funciones de una variable Tema 6 Cálculo diferencial de funciones de una variable Índice Esquema 3 Ideas clave 4 6.1. Introducción y objetivos 4 6.2. Conceptos previos 5 6.3. Función derivada 8 6.4. Cálculo de derivadas 12 6.5.

Más detalles

Capítulo 4: Derivada de una función

Capítulo 4: Derivada de una función Capítulo 4: Derivada de una función Geovany Sanabria Contenido Razones de cambio 57 Definición de derivada 59 3 Cálculo de derivadas 64 3. Propiedadesdederivadas... 64 3.. Ejercicios... 68 3. Derivadasdefuncionestrigonométricas...

Más detalles

Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización.

Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. TEMA 1 Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. Límite finito en un punto: Consideremos una función f definida en las proimidades

Más detalles

INSTITUTO FRANCISCO POSSENTI A.C. Per crucem ad lucem PREPARATORIA (1085) GUÍA DE MATEMÁTICAS VI (1600) I. RELACIONES Y FUNCIONES

INSTITUTO FRANCISCO POSSENTI A.C. Per crucem ad lucem PREPARATORIA (1085) GUÍA DE MATEMÁTICAS VI (1600) I. RELACIONES Y FUNCIONES INSTITUTO FRANCISCO POSSENTI A.C. Per crucem ad lucem PREPARATORIA (085) GUÍA DE MATEMÁTICAS VI (600) I. RELACIONES Y FUNCIONES Funciones y relaciones. Dominio y rango. Determinar si es función o relación

Más detalles

L A D E R I V A D A. C Á L C U L O Y A P L I C A C I O N E S

L A D E R I V A D A. C Á L C U L O Y A P L I C A C I O N E S L A D E R I V A D A. C Á L C U L O Y A P L I C A C I O N E S 1. T A S A D E V A R I A C I Ó N M E D I A Definimos la variación media de una función f en un intervalo [, + ], y la designamos por t m o TVM[,

Más detalles

B la representación. 3.- El dominio de la función f x BLOQUE I. Unidad I. Relaciones y funciones. 4.- Determina el rango de la función y 2

B la representación. 3.- El dominio de la función f x BLOQUE I. Unidad I. Relaciones y funciones. 4.- Determina el rango de la función y 2 INSTRUCCIONES: Selecciona la respuesta correcta realizando todas tus operaciones en el espacio reservado para éstas, ya que serán revisadas para considerar buena o mala tu respuesta..- El dominio de la

Más detalles

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 3 EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS.

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 3 EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS. INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES Tema EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS. C.- Qué es cómo se representa un sistema de coordenadas cartesianas rectangulares

Más detalles

( ) ( x) ( ) LA DERIVADA UNIDAD III. = 5 y con la semiamplitud EJERCICIOS ABIERTOS. lim. x 2

( ) ( x) ( ) LA DERIVADA UNIDAD III. = 5 y con la semiamplitud EJERCICIOS ABIERTOS. lim. x 2 LA DERIVADA UNIDAD III EJERCICIOS ABIERTOS Cuál es la diferencia entre entorno entorno reducido? Obtener el entorno del punto a con la semiamplitud δ 0.. Obtener el entorno reducido del punto a con la

Más detalles

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS Potencias de la unidad imaginaria i 0 = 1 i 1 = i i 2 = 1 i 3 = i i 4 = 1 Los valores se repiten de cuatro en cuatro, por eso, para saber cuánto

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas

UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas a t e a t i c a s PROBLEMAS, CÁLCULO I, er CURSO. FUNCIONES DE VARIABLE REAL GRADO EN INGENIERÍA EN: SISTEMAS AUDIOVISUALES

Más detalles

Álgebra Enero I.-Resolver las ecuaciones dadas por factorización y si no es posible, hacerlo usado formula general.

Álgebra Enero I.-Resolver las ecuaciones dadas por factorización y si no es posible, hacerlo usado formula general. Laboratorio # 1 Ecuaciones Cuadráticas I I.-Resolver las ecuaciones dadas por factorización y si no es posible, hacerlo usado formula general. 1) x 2 3x + 2 = 0 2) x 2 x 12 = 0 3) 3y 2 + 2y 1 = 0 4) 6z

Más detalles

LA DERIVADA DEFINICIÓN

LA DERIVADA DEFINICIÓN LA DERIVADA DEFINICIÓN La definición más común hace referencia a que la derivada es el límite del cociente entre el incremento de una función y el de la variable cuando este último tiende a cero. Definición

Más detalles

Instituto Politécnico Superior General San Martín A U S. Análisis Matemático II. Derivada y algunas aplicaciones. D Agostini Viviana

Instituto Politécnico Superior General San Martín A U S. Análisis Matemático II. Derivada y algunas aplicaciones. D Agostini Viviana Instituto Politécnico Superior General San Martín A U S Análisis Matemático II Derivada y algunas aplicaciones. Pro. D Agostini Viviana Derivada Recta tangente Si es una unción deinida en un intervalo

Más detalles

en un punto determinado. Esto es, qué le pasa a f (x) cuando varía x en los alrededores de un punto a. , su derivada en el punto x = 3 es

en un punto determinado. Esto es, qué le pasa a f (x) cuando varía x en los alrededores de un punto a. , su derivada en el punto x = 3 es UAH Actualización de Conocimientos de Matemáticas para Tema 08 DERIVADAS Derivada de una función en un punto Una función f () es derivable en el punto a si f ( a + ) f ( a) eiste el límite: lím Este límite

Más detalles

Tema 12. Derivabilidad de funciones.

Tema 12. Derivabilidad de funciones. Tema. Derivabilidad de funciones.. Tasa de Variación media. Derivada en un punto. Interpretación.... Tasa de variación Media.... Definición de derivada de una función en un punto.... Interpretación geométrica

Más detalles

Si la variable independiente x con un valor inicial a que le da un valor final b a la diferencia b-a se le llama incremento de la variable y se

Si la variable independiente x con un valor inicial a que le da un valor final b a la diferencia b-a se le llama incremento de la variable y se Si la variable independiente x con un valor inicial a que le da un valor final b a la diferencia b-a se le llama incremento de la variable y se simboliza con la letra delta. La derivada de la función con

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL II

CÁLCULO DIFERENCIAL E INTEGRAL II CÁLCULO DIFERENCIAL E INTEGRAL II UNIDAD : DERIVADAS DE FUNCIONES TRASCENDENTES- Propósitos de la unidad: Reforzar y etender el conocimiento de la derivada a través del estudio de la variación de las funciones

Más detalles

Introducción a las derivadas

Introducción a las derivadas Introducción a las derivadas Esquema Tasa de variación media en un intervalo Para una función f(x) se define la tasa de variación media de f en un intervalo [a, b], contenido en el dominio f(x), mediante

Más detalles

BLOQUE I Unidad I Progresiones y series

BLOQUE I Unidad I Progresiones y series INSTRUCCIONES: Selecciona la respuesta correcta realizando todas tus operaciones en el espacio reservado para éstas, ya que serán revisadas para considerar buena o mala tu respuesta..- Un concursante obtendrá

Más detalles

1.3. BREVE REPASO DE TRIGONOMETRÍA.

1.3. BREVE REPASO DE TRIGONOMETRÍA. .3. BREVE REPASO DE TRIGONOMETRÍA. Las funciones trigonométricas nos permiten el estudio de muchos fenómenos de la naturaleza que son periódicos. Cuando un ángulo ϕ se sitúa en posición normal en el centro

Más detalles

Propedéutico de Matemáticas

Propedéutico de Matemáticas Propedéutico de Matemáticas TEMARIO DEL MODULO I, ARITMÉTICA Y ALGEBRA CAPÍTULO 1: CONCEPTOS ELEMENTALES DE ARITMÉTICA Número primo absoluto o simple. Número compuesto. Múltiplo. Submúltiplo, factor o

Más detalles

TEMA 3. Funciones. Cálculo diferencial

TEMA 3. Funciones. Cálculo diferencial TEMA 3. Funciones. Cálculo diferencial En este tema vamos a hacer un estudio preliminar de las funciones de una variable real y el importante concepto de derivada. Comenzaremos recordando las funciones

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

derivable en x = 0. b) Para los valores encontrados, calcula la ecuación de la recta tangente a la gráfica de f(x) en el punto de abscisa x = 0.

derivable en x = 0. b) Para los valores encontrados, calcula la ecuación de la recta tangente a la gráfica de f(x) en el punto de abscisa x = 0. . [04] [EXT-A] a) Calcula los intervalos de concavidad y conveidad de la función f() = - +. Estudia si tiene puntos de infleión. b) En qué puntos de la gráfica de f() la recta tengente es paralela a la

Más detalles

S E) 10 S B) S D) S C) o D) o 1 B) , x 2x 1. , D) x, 1, 5 MATEMÁTICAS VI (AREAS 3 Y 4) VERSIÓN 31

S E) 10 S B) S D) S C) o D) o 1 B) , x 2x 1. , D) x, 1, 5 MATEMÁTICAS VI (AREAS 3 Y 4) VERSIÓN 31 MATEMÁTICAS VI (AREAS Y ). Una suma de $ se deposita en una casa de bolsa con una tasa de interés compuesto anual de % En cuánto se convertirá esta suma al inal del quinto año?.. Encuentra la suma de la

Más detalles

Álgebra Agosto I.-Resolver las ecuaciones siguientes usando el método de factorización.

Álgebra Agosto I.-Resolver las ecuaciones siguientes usando el método de factorización. Laboratorio # 1 Ecuaciones Cuadráticas I I.-Resolver las ecuaciones siguientes usando el método de factorización. 1) x 2 40 = 3x 5) x 2 11x + 12 = 4x 2) 15x 10 = 3x 2 2x 6) 8x 2 6x + 3 = 0 3) x 3 2x 2

Más detalles

Capitulo I. Trigonometría

Capitulo I. Trigonometría Capitulo I. Trigonometría Objetivo. El alumno reforzará los conceptos de trigonometría para lograr una mejor comprensión del álgebra. Contenido: 1.1 Definición de las funciones trigonométricas para un

Más detalles

Cinemática del sólido rígido

Cinemática del sólido rígido Cinemática del sólido rígido Teoría básica para el curso Cinemática del sólido rígido, ejercicios comentados α δ ω B B A A P r B AB A ω α O Ramírez López-Para, Pilar Loizaga Garmendia, Maider López Soto,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Funciones. 1. Funciones. Ecuaciones. Curvas. 2. Función lineal. La recta

Funciones. 1. Funciones. Ecuaciones. Curvas. 2. Función lineal. La recta Funciones 1 Funciones Ecuaciones Curvas Una función es una correspondencia entre números Mediante la función f a cada número x se le hace corresponder un solo número que se representa por f(x) Puesto que

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS APLICACIONES DE LAS DERIVADAS Apuntes de A. Cabañó. Calcula la tasa de variación media de la función +- en los intervalos: a) [-,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación

Más detalles

Universidad Politécnica de Cartagena Departamento de Matemática Aplicada y Estadística. Cálculo diferencial de una variable

Universidad Politécnica de Cartagena Departamento de Matemática Aplicada y Estadística. Cálculo diferencial de una variable Universidad Politécnica de Cartagena Departamento de Matemática Aplicada y Estadística Cálculo diferencial de una variable. Calcula el dominio máimo de las siguientes funciones. Determina en cada caso

Más detalles

Ingeniería Civil Matemática Universidad de Valparaíso.

Ingeniería Civil Matemática Universidad de Valparaíso. * Ejercicios Álgebra Ingeniería Civil Matemática Universidad de Valparaíso. Prof: Gerardo Honorato CIRCUNFERENCIA. PREGUNTAS 1. 1) Escribir la ecuación de la circunferencia de centro C = ( 3, 7) y radio

Más detalles