N I Plegado de planos. Septiembre de 1999 EDICION: 1ª NORMA IBERDROLA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "N I Plegado de planos. Septiembre de 1999 EDICION: 1ª NORMA IBERDROLA"

Transcripción

1 N I Septiembre de 1999 EDICION: 1ª NORMA IBERDROLA Plegdo de plnos DESCRIPTORES: Plegdo de plnos.

2 N O R M A N I Septiembre de 1999 EDICION: 1ª I B E R D R O L A Plegdo de plnos Indice Págin 0 Introducción Objeto Alcnce Norms de consult Plegdo de plnos Plegdo norml Plegdo pr rchivdores DIN A4... 5

3 - 2 - NI Introducción Est norm sustituye y nul l NIDSA Objeto L presente norm tiene por objeto el estblecer los criterios de plegdo de plnos pr los distintos formtos DIN A0, DIN A1, DIN A2, DIN A3 y DIN A4. 2 Alcnce Est norm es de plicción en tods ls Ares y Uniddes de Iberdrol generdors de plnos, y se por medios propios o trvés de terceros. 3 Norms de consult NI : Formtos pr plnos. UNE 1027: Dibujos técnicos: Plegdo de plnos. 4 Plegdo de plnos Hy que distinguir diferentes forms de plegdo de plnos según el fin pr el que se destinen: - plegdo norml - plegdo pr rchivo en libro, cuderno o crpet DIN A4 4.1 Plegdo norml (Vése figur 1) Este tipo de plegdo se puede relizr mno, con plntill o máquin. Est form de plegdo que se indic continución se utilizrá preferentemente cundo los plnos vyn rchivrse sueltos o en sobres. L prte del cudro de rotulción deberá quedr siempre visible. Ddo que los formtos señldos en l Norm NI responden ls fórmuls: x n., n > 1 x n., n > 2 x n., n > 4 x n., n > 4

4 - 3 - NI Se necesitrá en este cso solmente un plntill de x mm. Doblez ) formto DIN A4 ( x mm) b) formto DIN A3 ( x mm) n. c) formto rollo ( x.n mm) d) formto DIN A2 ( x mm) n. e) formto rollo ( x.n mm)

5 - 4 - NI f) formto DIN A1 ( x mm) n. g) formto rollo ( x.n mm) n. 6ª doblez h) formto rollo ( x.n mm)

6 - 5 - NI i) formto DIN A0 ( x 1189 mm) Figur 1. Representción de plegdo norml pr distintos formtos 4.2 Plegdo pr rchivdores DIN A4 (Vése figur 2) Pr rchivr los plnos de formto DIN A0 en crpets o libros DIN A4 se procederá como sigue: - el cudro de rotulción deberá quedr siempre en l prte nterior y ser perfectmente visible. ldo visible c b ) formto DIN A3 ( x mm) b) formto DIN A2 ( x mm)

7 - 6 - NI c b c) formto DIN A1 ( x mm) 105 6ª doblez 7ª doblez c 8ª doblez b Cudro de rotulción d) formto DIN A0 ( x 1189 mm) 25 Cudro de rotulción (ldo visible) x longitud = L L = + 2 x + n L - - n x = 2 n = 2 (pr) el myor posible e) formto DIN A0 plegdo longitudinl (mm)

8 - 7 - NI f) formto DIN A0 plegdo lo lrgo g) formto DIN A0 plegdo lo lto Figur 2. Esquems de plegdo de distintos formtos pr rchivdor DIN A4 - pr el plegdo se mrcrá primero l nchur de mm (doblez 1), preferentemente con el empleo de un plntill x mm y se doblrá hci delnte - prtir de c, se doblrá un trozo tringulr hci trás (doblez 2), con objeto de que l prte superior del plno no se gujered y quede fij en l crpet - comenzndo por, se continurá el plegdo con de mm de ncho (número pr de veces mm), preferentemente por medio de un plntill de x mm. L doblez 3 se hrá hci trás pr que el rótulo se visible. El ncho finl se plegrá simplemente en dos, de tl mner que el cudro de rotulción quede en l prte nterior - los formtos lrgdos, culquier que se su longitud, se plegrán nlógicmente - ls fjs sí obtenids se plegrán lo lto comenzndo por b (en zig-zg) - pr reforzr el gujeredo, se podrá pegr un tir de crtón DIN A5 (148 x mm) en el reverso de l prte del dibujo que se h de tldrr, o tmbién un tir de crtón de 25 x mm - siguiendo ls instrucciones nteriores se podrán plegr los dibujos de todos los tmños. Cundo l prte que qued después de hcer l primer boblez de mm, no se divisible por, con cociente

9 - 8 - NI pr, se dividirá en dos prtes igules l fj finl. (Vése x en plegdo longitudinl y plegdo de los formtos DIN A0 y DIN A1) - en generl no es recomendble rchivr o coser en crpets dibujos de tmño myor que el DIN A1 ( x mm) Plegdo pr rchivdores A. Cso prticulr de plnos de proyectos que lleven portd (vése fig. 3).- Excepto el formto DIN A3 ( x mm) cuyo plegdo se indic continución el resto de los formtos se doblrán nlógicmente lo señldo en el prtdo 4.2 con l diferenci de que l prte visible será l portd y por lo tnto l doblez 1 se plegrá hci trás y l doblez 3 hci delnte. 105 PORTADA c PORTADA b ) formto DIN A3 ( x mm) b) formto DIN A2 ( x mm) 105 c PORTADA b c) formto DIN A1 ( x mm)

10 - 9 - NI ª doblez c 7ª doblez 8ª doblez PORTADA b d) formto DIN A0 ( x 1189 mm) 25 Portd (prte visible) x longitud = L L = + 2 x + n L - - n x = 2 n = 2 (pr) el myor posible e) plegdo longitudinl (mm) Figur 3. Plegdo pr rchivdores DIN A4 de plnos con portd L doblez 2 podrá suprimirse cundo l fj que v encim de l portd (zon en blnco) se recorte, entonces l doblez 3 psrá ser doblez 2, l doblez 4 doblez 3, etc. Los formtos lrgdos de culquier longitud, se doblrán nálogmente lo señldo en el prtdo 4.2 teniendo siempre en cuent que l portd debe quedr siempre en l cr nterior (Vése plegdo longitudinl y plegdo de los formtos DIN A0 y DIN A1, prtdo 4.2.1) Plegdo pr rchivdores A4. Cso en que l ltur se mm.- Cundo l ltur de los plnos se mm o por reducción fotográfic se hy reducido mm, culquier que se su longitud, unque pueden doblrse como y se h indicdo en los prtdos nteriores, es recomendble otr form de plegdo con objeto de dejr un pestñ de 10 mm en su borde

11 NI derecho pr mejorr el mnejo y loclizción de los plnos rchivdos. A continución se indic est form de plegdo en l que hbrá que distinguir dos csos según que los plnos lleven cudro de rotulción o portd Plegdo de plnos que lleven cudro de rotulción.- Cundo los plnos lleven cudro de rotulción l form de plegdo se indic en l figur Cudro de rotulción Cudro de rotulción (prte visible) ) formto DIN A3 ( x mm) b) plegdo longitudinl (mm) L 6ª doblez 200 X X Cudro de rotulción c) formto rollo ( x L mm) Cudro de rotulción (prte visible) x x 10 longitud = L L = x + n L n 175 x = 2 L n 175 x = 2 n = 2 (impr) el myor posible d) plegdo longitudinl (mm) Figur 4. Plegdo de plnos de mm de ltur con rotuldo Plegdo de plnos que lleven portd (vése fig. 5).- Se plegrán nálogmente l cso nterior con l diferenci de que l prte visible será l portd.

12 NI PORTADA Portd (prte visible ) formto DIN A3 ( x mm) b) plegdo longitudinl (mm) L PORTADA 6ª doblez 200 X X c) formto rollo ( x L mm) x x Portd (prte visible) d) plegdo longitudinl (mm) Figur 5. Plegdo de plnos de ltur mm con portd

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

Capítulo 5. Medición de la Distancia por Medio de Triangulación

Capítulo 5. Medición de la Distancia por Medio de Triangulación Cpítulo 5. Medición de l Distnci por Medio de Tringulción 5.1 Introducción Hemos visto cómo medir l distnci de un objeto un cámr cundo dicho objeto es cptdo por un sol cámr; sin embrgo, cundo el objeto

Más detalles

MTG Manual de normas básicas de identificación visual

MTG Manual de normas básicas de identificación visual MTG Mnul de norms básics de identificción visul Logotipo MTG El logotipo con ls sigls de Metlogeni está compuesto con l tipogrfí DIN Blck siempre en cj lt. MTG Tipogrfí Se normliz l fmili tipográfic DIN

Más detalles

La Elipse. Distancia Focal : F 1 F 2 = 2 c Eje mayor o focal : AB = 2 a Focos : F 1 y F 2 Eje menor : CD = 2 b. Además se cumple que a

La Elipse. Distancia Focal : F 1 F 2 = 2 c Eje mayor o focal : AB = 2 a Focos : F 1 y F 2 Eje menor : CD = 2 b. Además se cumple que a L Elipse L elipse es el lugr geométrico de los puntos del plno cuy sum de distncis dos puntos fijos es constnte. Estos dos puntos fijos se llmn focos de l elipse. Elementos de l Elipse Vértices : A, B,

Más detalles

Torres de Hanoi. Descripción del problema. Entrada. Salida

Torres de Hanoi. Descripción del problema. Entrada. Salida Torres de Hnoi Descripción del problem Se tienen tres torres y un conjunto de N discos de diferentes tmños. d uno tiene un perforción en el centro que les permite deslizrse por ls torres. Inicilmente,

Más detalles

* La letra a representa la distancia que hay desde el centro hasta el extremo de la elipse por su parte más alargada. Ver la figura 7.3.

* La letra a representa la distancia que hay desde el centro hasta el extremo de la elipse por su parte más alargada. Ver la figura 7.3. págin 110 7.1 DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 7.1, los focos están representdos por los puntos

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

Si se divide una cuarta parte de un pastel a la mitad se obtiene una octava parte del mismo, lo que escrito en simbología matemática es

Si se divide una cuarta parte de un pastel a la mitad se obtiene una octava parte del mismo, lo que escrito en simbología matemática es págin 8 págin 8 DIVISIÓN DE FRACCIONES Si se divide un curt prte de un pstel l mitd se otiene un octv prte del mismo, lo que escrito en simologí mtemátic es Lo nterior es lo mismo que 4 8 4 4 8 De donde

Más detalles

Ecuación de la circunferencia de centro el origen C(0, 0) y de

Ecuación de la circunferencia de centro el origen C(0, 0) y de CÓNICAS EN EL PLANO. CIRCUNFERENCIA, ELIPSE, HIPÉRBOLA Y PARÁBOLA centrds en el origen CIRCUNFERENCIA Aunque segurmente se sep, recordmos que l circunferenci es el conjunto de puntos que distn un cntidd

Más detalles

3. IDENTIFICADOR (ESCUDO+LOGOTIPO)

3. IDENTIFICADOR (ESCUDO+LOGOTIPO) 3. IDENTIFICADOR (ESCUDO+LOGOTIPO) de Mnul de Identidd Gráfic En este prtdo procederemos unir y estblecer ls relciones entre los dos elementos que compondrán desde hor el conjunto que llmremos Identificdor

Más detalles

manual de normas gráficas

manual de normas gráficas mnul de norms gráfics Normtiv gráfic pr el uso del mrc de certificción de Bioequivlenci en remedios genéricos. mnul de norms gráfics BIenvenido l mnul de mrc del logo Bioequivlente L obtención de l condición

Más detalles

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante. LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág Págin 56 PRACTICA Escribe los seis primeros términos de ls siguientes sucesiones: ) Cd término se obtiene sumndo l nterior El primero es 8 b) El primer término es 6 Los demás se obtienen multiplicndo

Más detalles

Manual gráfico de los descriptores nutricionales ALTO EN

Manual gráfico de los descriptores nutricionales ALTO EN Mnul gráfico de los descriptores nutricionles ALTO EN Ministerio de Slud - 2015 2 Descriptor nutricionl 1 2 3 4 5 Elementos del descriptor Ls crcterístics de este descriptor serán ls siguientes: Símbolo

Más detalles

VECTORES, PLANOS Y RECTAS EN R 2 Y R 3

VECTORES, PLANOS Y RECTAS EN R 2 Y R 3 Profesionl en Técnics de Ingenierí VECTORES, PLANOS Y RECTAS EN R Y R 3 1. Puntos en R y R 3 Un pr ordendo (, ) y un tern ordend (,, c) representn puntos de IR y IR 3, respectivmente.,, c, se denominn

Más detalles

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

MATEMÁTICAS II Tema 4 Vectores en el espacio

MATEMÁTICAS II Tema 4 Vectores en el espacio Geometrí del espcio: Vectores; producto esclr, vectoril y mixto Aplicciones MATEMÁTICAS II Tem 4 Vectores en el espcio Espcios vectoriles Definición de espcio vectoril Un conjunto E es un espcio vectoril

Más detalles

Los Números Racionales

Los Números Racionales Cpítulo 12 Los Números Rcionles El conjunto de los números rcionles constituyen un extesión de los números enteros, en el sentido de que incluyen frcciones que permiten resolver ecuciones del tipo x =

Más detalles

I Concurso de Otoño de Matemáticas SAEM Thales. Prueba de 3 o y 4 o de ESO RESOLUCIÓN

I Concurso de Otoño de Matemáticas SAEM Thales. Prueba de 3 o y 4 o de ESO RESOLUCIÓN OME I Concurso de Otoño de Mtemátics 2010 Prueb de 3 o y 4 o de ESO RESOLUCIÓN SAEM Thles Durción de l prueb: ** Dispones de 1h. 45m. Puntución: ** Cd respuest correct: 5 puntos ** Cd respuest incorrect:

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

Integral de línea de campos escalares.

Integral de línea de campos escalares. Integrl de líne de cmpos esclres. Sen f : R n R un cmpo esclr y un curv prmetrizd por σ : [, b] R n de modo que i) σ (1) [, b]. ii) σ([, b]) D(f). iii) f σ es continu en [, b]. Se define l integrl de f

Más detalles

Sello POIC Manual de aplicación

Sello POIC Manual de aplicación Sello POIC SELLO POIC 1 Grill constructiv Sello POIC El nuevo sello se debe plicr SIEMPRE junto l logo del Ministerio, l ldo izquierdo y cuidndo ls proporciones del ejemplo superior. SELLO POIC 2 Versión

Más detalles

IES Fernando de Herrera 13 de enero de 2014 Primer trimestre Examen de autoevaluación 1º Bach CCSS NOMBRE:

IES Fernando de Herrera 13 de enero de 2014 Primer trimestre Examen de autoevaluación 1º Bach CCSS NOMBRE: IES Fernndo de Herrer de enero de 04 Primer trimestre Exmen de utoevlución º Bch CCSS NOMBRE: 7 ) ) Representr en l rect rel: b) Qué número es el indicdo en el gráfico? 0 ) Clculr el resultdo simplificdo

Más detalles

Identificación de propiedades de triángulos

Identificación de propiedades de triángulos Grdo 10 Mtemtics - Unidd 2 L trigonometrí, un estudio de l medid del ángulo trvés de ls funciones Tem Identificción de propieddes de triángulos Nombre: Curso: Ls ctividdes propuests continución se centrn

Más detalles

Funciones trascendentes

Funciones trascendentes Cálculo 1 _Comisión -3 Año 017 Funciones trscendentes I) Funciones trigonométrics Son quells unciones cuys regls de deinición corresponden relciones trigonométrics (seno, coseno, tngente, cotngente, secnte

Más detalles

MATEMÁTICAS APLICADAS A LAS CC. SS. II

MATEMÁTICAS APLICADAS A LAS CC. SS. II INTEGRLES MTEMÁTIS PLIDS LS. SS. II lfonso González IES Fernndo de Men Dpto. de Mtemátics IES FERNNDO DE MEN. DPTO. DE MTEMÁTIS I) ONEPTO DE INTEGRL INDEFINID (pág. 0 del liro de texto) Dd f(x)=x nos preguntmos

Más detalles

E l d o b l e z m á s l a r g o y e l d o b l e z m á s c o r t o

E l d o b l e z m á s l a r g o y e l d o b l e z m á s c o r t o Universidd de Sn rlos cultd de Ingenierí eprtmento de Mtemátic Mtemátic ásic E l d o l e z m á s l r g o y e l d o l e z m á s c o r t o J. Squimu Guteml, septiemre/011 Prolem. onsidere un hoj rectngulr

Más detalles

ESTRATEGIA DIDÁCTICA Funciones cuadráticas

ESTRATEGIA DIDÁCTICA Funciones cuadráticas I.DATOS GENERALES PROFESORA ASIGNATURA SEMESTRE ESCOLAR PLANTEL Alejndr Georgin Brvo Ortiz Mtemátics II Segundo Semestre Oriente FECHA DE ELABORACIÓN 2 de gosto de 2010 II.PROGRAMA UNIDAD TEMÁTICA PROPÓSITO(S)

Más detalles

1.6 Perímetros y áreas

1.6 Perímetros y áreas 3 1.6 Perímetros y áres Perímetro: es l medid del contorno de un figur. Superficie (pln): es el conjunto de puntos del plno encerrdos por un figur geométric pln. Áre: es l medid de un superficie. Represente

Más detalles

W = 2 B A = B W-a = B h1 = 0.65 B r = 0.25 B h2 = 0.30 B

W = 2 B A = B W-a = B h1 = 0.65 B r = 0.25 B h2 = 0.30 B Progrm de Doctordo en Ingenierí Aeronáutic Cpítulo VIII. Norm ASTM E-399 Medid de l tencidd en régimen elástico-linel según l norm ASTM E-399. En l norm ASTM E-399 se plnte l metodologí pr relizr l medición

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral CAPÍTULO Aplicciones de l integrl. Momentos centro de un ms.. Centro de ms de un sistem unidimensionl Considerr el sistem unidimensionl, tl como se muestr en l siguiente figur, formdo por un vrill (de

Más detalles

04) Vectores. 0402) Operaciones Vectoriales

04) Vectores. 0402) Operaciones Vectoriales Págin 1 04) Vectores 040) Operciones Vectoriles Desrrolldo por el Profesor Rodrigo Vergr Rojs Octubre 007 Octubre 007 Págin A) Notción Vectoril El vector cero o nulo (0 ) es quel vector cuy mgnitud es

Más detalles

01 - ISOTIPO ABOGACÍA ESPAÑOLA Mnul de plicción básic

01 - ISOTIPO ABOGACÍA ESPAÑOLA Mnul de plicción básic 01 - ISOTIPO ABOGACÍA ESPAÑOLA Mnul de plicción básic 01 - ISOTIPO ABOGACÍA ESPAÑOLA Mnul de plicción básic Abogcí Espñol. Mnul de plicción básic Introducción Por su definición, el isotipo de Abogcí Espñol

Más detalles

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE AMPLIACIÓN

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE AMPLIACIÓN Pág. 1 ENUNCIADOS 1 En el punto C hy td un cuerd de 5 m que sujet un cbr. Hll l superficie de l cs y l superficie de hierb que puede comer l cbr. m CASA m 10 m C 45 Investig: Qué relción hy entre ls superficies

Más detalles

a (3, 1, 1), b(1, 7, 2), c (2, 1, 4) = 18,5 u 3

a (3, 1, 1), b(1, 7, 2), c (2, 1, 4) = 18,5 u 3 8 Clcul el volumen del prlelepípedo determindo por u(,, ), v (,, ) y w = u v. Justific por qué el resultdo es u v. w = u Ò v = (,, ) (,, ) = (, 6, 5) [u, v, w] = 6 5 u v = 9 + 6 + 5 = 7 = 7 Volumen = 7

Más detalles

Portal Fuenterrebollo XXXVI OLIMPIADA MATEMÁTICA ESPAÑOLA, PALMA DE MALLORCA (2000)

Portal Fuenterrebollo XXXVI OLIMPIADA MATEMÁTICA ESPAÑOLA, PALMA DE MALLORCA (2000) Portl Fuenterrebollo XXXVI OLIMPIADA MATEMÁTIA ESPAÑOLA, PALMA DE MALLORA (000) Problem. Sen los polinomios: P(x) = x 4 + x + bx + cx + ; Q(x) = x 4 + cx + bx + x +. Hll ls condiciones que deben cumplir

Más detalles

Robot sacapuntas. Materiales suministrados

Robot sacapuntas. Materiales suministrados 108.535 Robot scpunts Mteriles suministrdos Cntidd Medids (mm) Bloque de mder 1 50x50x50 Bloque de mder 1 40x40x40 Listón de mder 1 250x15x15 Contrchpdo de mder 1 200x200x4 Scpunts doble 1 25x25x15 Rueds

Más detalles

PbCl (s) Pb (ac) + 2Cl (ac) K = [Pb ][Cl ] = 1,6 10

PbCl (s) Pb (ac) + 2Cl (ac) K = [Pb ][Cl ] = 1,6 10 UNIDAD 10: Equilibrio de solubilidd y precipitción Problems resueltos selecciondos Problem El PbCl (s) no es un compuesto muy soluble en gu. PbCl (s) Pb (c) Cl (c) = [Pb ][Cl ] = 1,6 10 5 PS Clcule l concentrción

Más detalles

Y f. Para ello procederemos por aproximaciones sucesivas, de modo que cada una de ellas constituya un término de una sucesión G n cuyo límite

Y f. Para ello procederemos por aproximaciones sucesivas, de modo que cada una de ellas constituya un término de una sucesión G n cuyo límite INTEGRALES LECCIÓN Índice: El prolem del áre. Ejemplos. Prolems..- El prolem del áre Se f un función continu y no negtiv en [,]. Queremos clculr el áre S de l región del plno limitd por l gráfic de f,

Más detalles

INTEGRALES MATEMÁTICAS aplicadas a las CC. SS. II Alfonso González IES Fernando de Mena Dpto. de Matemáticas

INTEGRALES MATEMÁTICAS aplicadas a las CC. SS. II Alfonso González IES Fernando de Mena Dpto. de Matemáticas INTEGRLES MTEMÁTIS plicds ls. SS. II lfonso González IES Fernndo de Men Dpto. de Mtemátics MTEMÁTIS plicds ls SS II LFONSO GONZÁLEZ IES FERNNDO DE MEN I) ONEPTO DE INTEGRL INDEFINID Dd f(x)x nos preguntmos

Más detalles

ORBITALES HIBRIDOS sp

ORBITALES HIBRIDOS sp ORBITALES HIBRIDOS sp L enseñnz del tem de orbitles híbridos (OH) en l Químic de Enseñnzs Medis está llen de tópicos que trtremos de resolver y clrr. En primer lugr, l form. Aprecen con un lóbulo muy grnde

Más detalles

1.- Cálculo del coeficiente de autoinducción.

1.- Cálculo del coeficiente de autoinducción. Trbjo Práctico 8 1.- Cálculo del coeficiente de utoinducción. Describ el fenómeno de utoinducción en un bobin. Encuentre l expresión del coeficiente de utoinducción en un solenoide lrgo de N s = 1 espirs

Más detalles

FUNCIONES, LÍMITES Y CONTINUIDAD

FUNCIONES, LÍMITES Y CONTINUIDAD FUNCIONES, LÍMITES Y CONTINUIDAD MATEMÁTICAS APLICADAS A LAS CC. SS. II Alfonso González I.E.S. Fernndo de Men Dpto. de Mtemátics I) CONCEPTO DE FUNCIÓN: Un función es un plicción que hce corresponder

Más detalles

EJERCICI0S PARA ENTRENARSE. Hacemos una tabla de valores y después representamos la función

EJERCICI0S PARA ENTRENARSE. Hacemos una tabla de valores y después representamos la función Unidd 3 Funciones Cudrátics EJERCICI0S PARA ENTRENARSE 4 Represent en los mismos ejes ls siguientes funciones: )) y y -. )) y 0,5 y - 0,5. c)) y 6 y - 6. Hcemos un tl de vlores y después representmos l

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

I Resolución de sistemas de ecuaciones lineales

I Resolución de sistemas de ecuaciones lineales ESCUELA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS I Resolución de sistems de ecuciones lineles Objetivo: El lumno deberá tener

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

Algoritmos matemáticos sobre matrices:

Algoritmos matemáticos sobre matrices: Algoritmos mtemáticos sobre mtrices: Representciones especiles de mtrices, Algoritmo de Strssen, multiplicción y tringulción de mtrices Jose Aguilr Mtriz Mtriz Un mtriz es un rreglo rectngulr de elementos

Más detalles

La integral. En esta sección presentamos algunas propiedades básicas de la integral que facilitan su cálculo. c f.x/ dx C f.

La integral. En esta sección presentamos algunas propiedades básicas de la integral que facilitan su cálculo. c f.x/ dx C f. CAPÍTULO L integrl.6 Propieddes fundmentles de l integrl En est sección presentmos lguns propieddes ásics de l integrl que fcilitn su cálculo. Aditividd respecto del intervlo. Si < < c, entonces: f./ d

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

1 La recta principal, en el plano, mide 44 cm. Cuánto mide en la realidad?

1 La recta principal, en el plano, mide 44 cm. Cuánto mide en la realidad? PÁGIN 164 El director del equipo nliz un plno en el cul 1 cm corresponde 20 m en l relidd. Su mquet de l moto es l décim prte de lrg que l moto rel. L moto de l fotogrfí es l mism que se ve en l mquet.

Más detalles

MOMENTOS Y CENTROS DE MASA

MOMENTOS Y CENTROS DE MASA MOMENTOS Y CENTROS DE MASA El objetivo de ests línes es explicr brevemente otr de ls numeross plicciones que posee el Cálculo Integrl. En este cso, considermos un plc pln y delgd con form culquier, y nos

Más detalles

MATEMATIKA SPANYOL NYELVEN

MATEMATIKA SPANYOL NYELVEN Mtemtik spnyol nyelven középszint 061 ÉRETTSÉGI VIZSGA 007. október 5. MATEMATIKA SPANYOL NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Más detalles

TEMA 1. LOS NÚMEROS REALES

TEMA 1. LOS NÚMEROS REALES TEMA. LOS NÚMEROS REALES. Operciones con números nturles. Los números nturles son los que se utilizn pr contr 0,,,,,, Con los números nturles podemos relizr diferentes operciones, como - Sum + = 8 - Rest

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

Tema 10: Integral definida. Aplicaciones al cálculo de áreas

Tema 10: Integral definida. Aplicaciones al cálculo de áreas Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles nos vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd

Más detalles

Regla de Sarrus: Para recordar con mayor facilidad el desarrollo del determinante de orden 3, podemos usar esta regla:

Regla de Sarrus: Para recordar con mayor facilidad el desarrollo del determinante de orden 3, podemos usar esta regla: UNIDD 8: Determinntes. DETERMINNTES DE ORDEN Y Definición: Pr un mtriz cudrd de orden, por det( ) ó, l siguiente nº rel: det( ) = = = Definición: Pr un mtriz cudrd de orden, not por det( ) ó, l siguiente

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

Soluciones a los ejercicios

Soluciones a los ejercicios Soluciones los ejercicios PROBLEMA : Considérese el grfo G siguiente: b f c d g h j e i ( Es G un grfo simple? Es plno? Es biprtito? Es completo? Es regulr? Es conexo? (b Hllr el número de regiones, vértices

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis

Más detalles

Enunciados y Soluciones

Enunciados y Soluciones L limpid mtemátic Espñol (oncurso Finl) Enuncidos y Soluciones 1. Es posible disponer sobre un circunferenci los números 0, 1, 2,..., 9 de tl mner que l sum de tres números sucesivos culesquier se, como

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 81

INSTITUTO VALLADOLID PREPARATORIA página 81 INSTITUTO VALLADOLID PREPARATORIA págin 81 págin 8 Si se divide un curt prte de un pstel l mitd se otiene un octv prte del mismo, lo que escrito en simologí mtemátic es Lo nterior es lo mismo que 1 1 4

Más detalles

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRIA

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRIA UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SXT SINRI GTRI 0. n l figur, G es prlelo y el áre del prlelogrmo es 8 m. Hlle el áre sombred. ) m ) 8 m ) 9 m ) m ) 6m 0. n un trpecio ( // ), se tom punto

Más detalles

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que: PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:

Más detalles

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS Mtemátic Unidd - UNIDAD N : EXPRESIONES ALGEBRAICAS POLINOMIOS ÍNDICE GENERAL DE LA UNIDAD Epresiones Algebrics Enters...... Polinomios..... Actividdes... 4 Vlor Numérico del polinomio........ 4 Concepto

Más detalles

2do Semestre 2011 AUTOEVALUACIÓN # 3. NOMBRE: RUT: PROFESOR:

2do Semestre 2011 AUTOEVALUACIÓN # 3. NOMBRE: RUT: PROFESOR: 2 do Semestre 211 Físic Generl II FIS12: FÍSICA GENERAL II 2do Semestre 211 AUTOEVALUACIÓN # 3. NOMBRE: RUT: PROFESOR: INSTRUCCIONES: L entreg es opttiv, no tiene not y tmpoco se relizrá un corrección

Más detalles

CAPÍTULO. La integral. 1.3 Cálculo aproximado del área de una región plana bajo una curva

CAPÍTULO. La integral. 1.3 Cálculo aproximado del área de una región plana bajo una curva CAPÍTULO 1 L integrl 1.3 Cálculo proimdo del áre de un región pln jo un curv etommos en est sección el prolem del cálculo de áres, introduciendo lguns simplificciones notciones que nos permitirán resolverlo.

Más detalles

Integrales. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid

Integrales. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid Jesús Grcí de Jlón de l Fuente IES Rmiro de Meztu Mdrid Diferencil de un función Diferencil de un función Definición L diferencil de un función f es igul su derivd por un incremento rbitrrio de l vrible.

Más detalles

Revista digital Matemática, Educación e Internet (www.cidse.itcr.ac.cr/revistamate/). Vol. 12, N o 1. Agosto Febrero 2012.

Revista digital Matemática, Educación e Internet (www.cidse.itcr.ac.cr/revistamate/). Vol. 12, N o 1. Agosto Febrero 2012. Artículo de sección Revist digitl Mtemátic, Educción e Internet www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

5Convivencia. con otras marcas

5Convivencia. con otras marcas 5Convivenci con otrs mrcs Convivenci con otrs mrcs Mnul de Identidd Corportiv 5.1. Criterios de plicción. Convivenci con otros orgnismos públicos dependientes de l Relción de tmños, lineción y posicionmiento.

Más detalles

. Triángulos: clasificación

. Triángulos: clasificación . Triángulos: clsificción Propieddes básics importntes En todo tringulo se verific: 1.- l sum de los ángulos interiores es 180º 2.- l sum de los ángulos exteriores es 360º 3.-un Angulo exterior es siempre

Más detalles

MEDIDA DE LA DISTANCIA FOCAL DE UNA LENTE CONVERGENTE Y UNA LENTE DIVERGENTE

MEDIDA DE LA DISTANCIA FOCAL DE UNA LENTE CONVERGENTE Y UNA LENTE DIVERGENTE MEDIDA DE LA DISTANCIA FCAL DE UNA LENTE CNVERGENTE Y UNA LENTE DIVERGENTE BJETIV El objetivo de l práctic es l medid de l distnci focl de un lente convergente delgd de otr divergente. Se utilizrán distintos

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES Se dice que un función y f() tiene límite "L" cundo l tiende "" y lo representmos por: f() L cundo pr tod sucesión de números reles que se proime "" tnto como quermos, los vlores correspondientes

Más detalles

11 Perímetros y áreas de figuras planas

11 Perímetros y áreas de figuras planas 86464 _ 0371-0384.qxd 1//07 09:4 Págin 371 Perímetros y áres de figurs plns INTRODUCCIÓN En est unidd repsmos ls uniddes de longitud y superficie. Se introducen tmbién lguns uniddes de medid del sistem

Más detalles

22 a OLIMPIADA MEXICANA DE MATEMÁTICAS SOLUCIONES PARA EL EXAMEN FINAL ESTATAL

22 a OLIMPIADA MEXICANA DE MATEMÁTICAS SOLUCIONES PARA EL EXAMEN FINAL ESTATAL 22 OLIMPIAA MEXIANA E MATEMÁTIAS SOLUIONES PARA EL EXAMEN FINAL ESTATAL 1 Sen A, B y los vértices del triángulo, con AB = c, B = y A = b Primer form Sen h A, h B y h ls lturs desde los vértices A, B y,

Más detalles

PROBLEMAS DE ÓPTICA INSTRUMENTAL

PROBLEMAS DE ÓPTICA INSTRUMENTAL Grupos A y B Curso 006/007 ROBEMAS DE ÓTICA INSTRUMENTA. Considérese un sistem óptico ilumindo por un hz de luz monocromátic de longitud de ond λ 550nm. El sistem está compuesto por dos lentes delgds que

Más detalles

CAPÍTULO. Aplicaciones

CAPÍTULO. Aplicaciones CAPÍTULO 3 Aplicciones 3.5 Trbjo de un fuerz 1 Se dice que un fuerz reliz un trbjo cundo cmbi el estdo de reposo o estdo de movimiento de un cuerpo. En este sentido, el trbjo que reliz un fuerz pr llevr

Más detalles

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 5. APLICACIONES (EN UNA BASE ORTONORMAL) 6. EJERCICIOS Y PROBLEMAS Vectores

Más detalles

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco

Más detalles

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRIA

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRIA UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SXT SINRI GTRI ÁR RGINS URNGULRS 0. n l figur, G // y el áre del prlelogrmo es 8. Hlle el áre de l región sombred. ) ) 8 ) 9 ) ) 6 0. n un trpecio ( // ),

Más detalles

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRÍA

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRÍA UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SXT SINRI GTRÍ ÁR RGINS URNGULRS 0. n l figur, G es prlelo y el áre del prlelogrmo es 8. Hlle el áre sombred. ) ) 8 ) 9 ) ) 6 0. n un trpecio ( // ), se

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Deprtmento de Físic Aplicd III Escuel Técnic Superior de Ingenierí Ingenierí de Telecomunicción Cmpos Electromgnéticos Cmpos Electromgnéticos. Boletín. Diciembre de 00.. Un esfer metálic de rdio se encuentr

Más detalles

Tema 11: Integral definida. Aplicaciones al cálculo de áreas

Tema 11: Integral definida. Aplicaciones al cálculo de áreas Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles no vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd

Más detalles

10.- Teoremas de Adición.

10.- Teoremas de Adición. Trigonometrí 10.- Teorems de Adición. Rzones trigonométrics de los ángulos A + B y A B. Hy que tener cuiddo de no confundir l rzón trigonométric de l sum de dos ángulos, con l sum de dos rzones trigonométrics.

Más detalles

SEMEJANZA FIGURAS SEMEJANTES. Dos figuras son semejantes cuando solo difieren en segmentos correspondientes son. a a' = b b' = c c' = k

SEMEJANZA FIGURAS SEMEJANTES. Dos figuras son semejantes cuando solo difieren en segmentos correspondientes son. a a' = b b' = c c' = k 10 Lo fundmentl de l unidd Nombre y pellidos:... Curso:... Fech:... SEMEJNZ FIGURS SEMEJNTES Dos figurs son semejntes cundo solo difieren en segmentos correspondientes son En tl cso, los c b c' b' ' =

Más detalles

La Hipérbola. César Román Martínez García Conalep Aztahuacan. 20 de noviembre de 2005

La Hipérbola. César Román Martínez García  Conalep Aztahuacan. 20 de noviembre de 2005 L Hipérbol Césr Román Mrtínez Grcí cesrom@esfm.ipn.mx, mcrosss666@hotmil.com Conlep Azthucn 20 de noviembre de 2005 Resumen Estudiremos l ecución de l hipérbol 1. Hipérbol Definición 0.1 Un hipébol es

Más detalles

SOLUCIONARIO Poliedros

SOLUCIONARIO Poliedros SOLUCIONARIO Poliedros SGUICES06MT-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Poliedros Ítem Alterntiv 1 D A Comprensión E B 5 D 6 C 7 D 8 B 9 D 10 C 11 E 1 D 1 A 1 C 15 E Comprensión 16 B Comprensión 17

Más detalles

UNIDAD 8.- Determinantes (tema 2 del libro)

UNIDAD 8.- Determinantes (tema 2 del libro) UNIDD 8.- Determinntes (tem del libro). DETERMINNTES DE ORDEN Y Definición: Pr un mtriz cudrd de orden, por det( ) ó, l siguiente nº rel: det( ) Definición: Pr un mtriz cudrd de orden, not por det( ) ó,

Más detalles

SECCIÓN 3 DESCRIPCIÓN DE LOS NÚMEROS REALES

SECCIÓN 3 DESCRIPCIÓN DE LOS NÚMEROS REALES SEMANA I I I Números Positivos y Negtivos Representción gráfic: SECCIÓN DESCRIPCIÓN DE LOS NÚMEROS REALES -5-4 - - - 0 4 5 Sentido izquierdo Sentido derecho El cero represent l usenci de l cntidd, y es

Más detalles

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRÍA

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRÍA UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SXT SINRI GTRÍ ÁR RGINS URNGULRS 0. n l figur, G es prlelo y el áre del prlelogrmo es m. Hlle el áre sombred. ) m ) m ) 9 m ) m ) 6m G 0. n un trpecio (

Más detalles

INTRODUCCIÓN A LA FÍSICA

INTRODUCCIÓN A LA FÍSICA INTRODUCCIÓN A LA FÍSICA TRIGONOMETRÍA: CATETO CATETO ADYACENTE OPUESTO RAZONES TRIGONOMÉTRICAS: EJERCICIOS: SENO: COSENO: TANGENTE: cteto opuesto sen = hipotenus cteto dycente cos = hipotenus tg = cteto

Más detalles

Aplicaciones de la integral.

Aplicaciones de la integral. Cpítulo 6 Aplicciones de l integrl. 6.. Cálculo del áre de un figur pln. En generl, pr clculr el áre de un región pln:. L dividimos en frnjs, infinitmente estrechs, de mner horizontl o verticl,. Suponemos

Más detalles

(Chpter hed:)integrles MULTIPLES El concepto de integrl de un función de un sol vrible sobre un intervlo estudido en el Cálculo I, se extiende de mner nturl primero funciones de dos vribles sobre un región

Más detalles

Árboles. Mediante paréntesis anidados: ( a ( b (e, f), c, d ))

Árboles. Mediante paréntesis anidados: ( a ( b (e, f), c, d )) Árboles Un árbol es un estructur jerárquic, orgnizd y dinámic plicd sobre un colección de objetos llmdos nodos. Jerárquic porque los componentes están distinto nivel. Orgnizd porque import l form en que

Más detalles

TEMA 2: LÍMITES Y CONTINUIDAD

TEMA 2: LÍMITES Y CONTINUIDAD MATEMATICAS TEMA CURSO 4/5 CONCEPTO DE LÍMITE: Límite de un función en un punto: TEMA : LÍMITES Y CONTINUIDAD El símbolo ( y se lee tiende hci ) y signific que elegimos vlores muy próimos l vlor, (tn próimos

Más detalles