Capítulo 6. Introducción al Método de Rigidez Generalidades

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Capítulo 6. Introducción al Método de Rigidez Generalidades"

Transcripción

1 Capítulo 6 Introducción al Método d Rigidz 6.- Gnralidads El disño structural llva implícito dtrminar las proporcions d los lmntos y la configuración d conjunto qu prmitan rsistir conómica y ficintmnt las condicions d carga posibls durant la vida útil d las structuras. El aspcto cntral d sta función s l cálculo d la distribución d furzas (intrnas o sfurzos, y xtrnas o raccions) sobr las structuras, y las dformacions (dsplazamintos, giros, curvaturas, dformacions spcíficas) d las mismas. En st capítulo s prsnta l planto gnral d análisis d structuras d barras prismáticas por l Método d los Dsplazamintos, también conocido como Método d Rigidz. Exist una amplia gama d structuras qu pudn rprsntars satisfactoriamnt, a los fins d su análisis, por un modlo d lmntos d barras; tal s l caso d: dificios d divrsos tipos, part d avions y d barcos, torrs, tc. El critrio d disño qu s aplica n la mayoría d los casos s l rquriminto d comportaminto lástico d la structura bajo la acción d las cargas d ocurrncia normal, pro para cargas xtrmas s habitual acptar qu la structura sufra dformacions prmannts, simpr y cuando no s afct su capacidad d soportar las cargas prmannts a qu s ncuntra somtida. El comportaminto d cualquir tipo d structura d barras, placas, cáscaras o sólidos pud sr rprsntado por mdio d cuacions difrncials al nivl d un lmnto o barra. Sin mbargo, a nivl dl sistma d barras qu conforman una structura, rsulta posibl utilizar las solucions analíticas d las cuacions difrncials d la barra para PRTO, MSS --

2 formular l problma n términos algbraicos sin pérdida d prcisión rspcto a las hipótsis habituals d la toría d vigas. partir d dichas solucions bin conocidas s posibl obtnr rlacions ntr las furzas y los dsplazamintos d los xtrmos d cada barra y combinarlas con las cuacions d quilibrio y compatibilidad d los nudos para obtnr un sistma d cuacions algbraicas qu dscrib l comportaminto d la structura. En los casos d lmntos structurals qu no ncuadran n una dfinición básicamnt unidimnsional dl problma (a lo largo dl j d la barra), s dcir n caso d lmntos bidimnsionals o tridimnsionals, l problma s más complicado porqu raramnt xistn solucions xactas para las cuacions difrncials n drivadas parcials qu las gobirnan. Una manra práctica d obtnr solucions numéricas n tals casos s la aplicación dl método d lmntos finitos. El concpto básico d st método s qu l continuo (toda la structura) pud modlars analíticamnt subdividiéndolo n rgions (lmntos finitos) cuyo comportaminto pud dscribirs por una sri d funcions, propustas d antmano, qu aproximan los dsplazamintos y/o las tnsions n dichas rgions. Est planto también conduc a un sistma d cuacions algbraicas, aunqu stas cuacions introducn aproximacions d tipo numérico qu no son ncsarias n las structuras d barras prismáticas. Todo mimbro o lmnto d una structura d barras pud sr considrado un caso particular, rlativamnt simpl, dntro dl concpto d lmntos finitos, sólo qu dado qu s dispon d la solución analítica d las cuacions qu rign n comportaminto individual d las mismas, no rquirn aproximacions numéricas adicionals a las propias d las torías d vigas. 6.- Tipos d structuras Una structura stá formada por lmntos conctados ntr sí qu pudn agrupars n conjuntos d una, dos o trs dimnsions. En ralidad, todo lmnto tin largo, ancho y spsor, pro si l ancho y l spsor son pquños rspcto a la longitud pud considrars al lmnto como unidimnsional (barra). En l caso d placas y cáscaras, l spsor s pquño rspcto al largo y al ancho por lo qu pudn considrars como lmntos bidimnsionals. Si l spsor, l largo y l ancho posn l mismo ordn d magnitud, dbrá considrars al lmnto como tridimnsional. La dfinición dl caráctr unidimnsional, bidimnsional o tridimnsional dl conjunto dpnd dl critrio d quin tin la rsponsabilidad d fctuar l análisis structural, y srá analizado n más dtall n los capítulos siguints. PRTO, MSS --

3 fin d su studio pud sr d utilidad clasificar las structuras d barras sgún su configuración d la siguint manra: Rticulado Plano Nudos rticulados Rticulado Espacial Pórtico Plano Planas Nudos Rígidos Emparrillado Plano EspacialsPórtico Espacial 6.3- Objto dl análisis structural El análisis structural s un conjunto d hrramintas dl disño para la dtrminación d los dsplazamintos, dformacions, sfurzos intrnos y raccions xtriors d la structura. Una vz dtrminados los dsplazamintos s procd a calcular las tnsions a partir d las rlacions cinmáticas ntr dsplazamintos y dformacions spcíficas, y las rlacions constitutivas dl matrial, y finalmnt valuar los márgns d sguridad rspcto a la fluncia, pando o rotura dl matrial. El análisis structural s raliza sobr una structura pr-dimnsionada qu stá dfinida a través d su configuración gométrica y dimnsions, y a través d las caractrísticas d los matrials. También supon ya dfinidas las accions a considrar, tals como cargas d divrsa naturalza, dfctos d montaj, variacions d tmpratura, tc. El cálculo d tnsions pud indicar la ncsidad d introducir modificacions más o mnos importants n la structura original. En sos casos s db rptir l análisis, dspués d adcuar las dimnsions originals, gnrando un sgundo ciclo d análisis. El procso d análisis y disño d una structura pud squmatizars d la manra indicada n l cuadro mostrado a continuación. PRTO, MSS -3-

4 Datos: a) Caractrísticas funcionals b) ccions xtrnas Disño structural: a) Dfinición d la structura b) Dfinición d las cargas (accions xtrnas, pso propio, tc.) No satisfactorio (rptir l ciclo) nálisis structural: Dtrmina: a) urzas xtrmos d barra b) Dsplazamintos d nudos Cálculo d tnsions: -Utilización d alguna toría d falla Satisfactorio in: Ejcución d planos, tc Solución complta d problmas d mcánica structural S cominza rpasando algunos concptos fundamntals ya vistos antriormnt y qu s vinculan a la dfinición d lo qu normalmnt s intrprta como una solución "complta" d un problma structural. Ésta consist n dtrminar: a) Esfurzos intrnos y raccions xtrnas b) Dsplazamintos Para lograr stos objtivos ncsariamnt dbn utilizars n alguna tapa d cálculo las siguints rlacions: ) Ecuacions d quilibrio ) Condicions d compatibilidad 3) Rlacions constitutivas 4) Condicions d vínculo PRTO, MSS -4-

5 Sustituyndo grupos d stas cuacions n las rstants s posibl llgar a un sistma d cuacions qu satisfacn los cuatro tipos d rlacions nunciadas pro cuyas incógnitas pudn sr xclusivamnt furzas o dsplazamintos. Sgún sa l ordn n qu s sustituyan unas cuacions n otras y las incógnitas qu s adoptan s obtinn las cuacions propias dl método d las furzas o las dl método d los dsplazamintos. Para finalizar st capítulo d introducción s dscribn las caractrísticas fundamntals d ambos métodos a través d un jrcicio qu mustra la forma d oprar n cada uno d sos procdimintos d análisis nálisis compartivo d los dos métodos d análisis structural Método d las urzas I) En primra instancia s plantan y s rsulvn las cuacions d compatibilidad cuyas incógnitas son furzas (incógnitas hiprstáticas). Por sta manra d ncarar l problma también s lo conoc como método d compatibilidad o método d flxibilidad. El númro d cuacions stá asociado al grado d indtrminación stática. II) En una sgunda tapa d cálculo s calcular los dsplazamintos n los distintos puntos d la structura, aunqu st s un subproducto qu no simpr s rquir cuando s slcciona st método d análisis. Método d Rigidz I) En primra instancia s plantan y rsulvn cuacions d quilibrio cuyas incógnitas son dsplazamintos; también s lo conoc como método d quilibrio o método d los dsplazamintos. El númro d cuacions stá asociado al grado d indtrminación gométrica, qu s igual al númro d grados d librtad ncsarios para dfinir la configuración dformada d la structura. II) En una sgunda tapa dl cálculo s procd a dtrminar n forma sucsiva los sfurzos n los distintos puntos d la structura. PRTO, MSS -5-

6 6.6- Ejmplo d aplicación d los dos métodos S propon rsolvr l problma hiprstático simétrico d la igura 6.. Datos: ; l, E, ; l, E, ; P l, E, l, E, l, E, Incógnitas: urzas n las barras:, Elongacions d las barras:, igura 6. El dsplazaminto vrtical dl punto : U Tnmos n total cinco incógnitas: a) Ecuacions d quilibrio: b) Ecuacions constitutivas:..cos( ) P (Ec. 6.) S suponindo qu l matrial s linalmnt lástico (s cumpl la ly d Hook), y s utiliza la nomnclatura K =. E l c) Ecuacions d compatibilidad: qu s conoc como rigidz axial d la barra: (Ec. 6.) K (Ec. 6.3) K Para dsplazamintos pquños s pud calcular l alargaminto d la barra proyctando l dsplazaminto rlativo ntr los xtrmos sobr la dircción original d la barra. P U.cos (Ec. 6.4) PRTO, MSS -6-

7 U (Ec. 6.5) S han obtnido así cinco cuacions qu prmitn dtrminar las cinco incógnitas. Db nfatizars qu l problma no pud rsolvrs a mnos qu s utilicn todas las cuacions. Método d las urzas D las cuacions (Ec. 6.4) y (Ec. 6.5) s llga a una sola cuación d compatibilidad dond no figura l dsplazaminto U como incógnita. cos (Ec. 6.6) Sustituyndo (Ec. 6.) y (Ec. 6.3) n (Ec. 6.6) s tin: K.cos (Ec. 6.7) K Dspjando d (Ec. 6.) y sustituyndo n (Ec. 6.7) rsulta: K.cos P..cos (Ec. 6.8) K Ésta s una cuación d compatibilidad gométrica dond ambos mimbros son dimnsionalmnt longituds. S trata d una vrsión d la (Ec. 6.6) qu cumpl admás quilibrio y qu tin n cunta las caractrísticas mcánicas d las barras. D (Ec. 6.8) s dspja la furza incógnita, s calcula sustituyndo n la (Ec. 6.), lugo s calculan las longacions sgún (Ec. 6.) y (Ec. 6.3) y finalmnt s dtrmina l dsplazaminto Método d Rigidz U sgún (Ec. 6.5). Sustituyndo las cuacions (Ec. 6.4) y (Ec. 6.5) n (Ec. 6.) y (Ec. 6.3) s tinn xprsadas las furzas n función dl dsplazaminto U :..cos K U (Ec. 6.9) K U (Ec. 6.0). Sustituyndo ahora stos valors n la cuación (Ec. 6.) quda:. K. U.cos K. U P..cos. K K U P (Ec. 6.) PRTO, MSS -7-

8 Qu n notación abrviada s xprsa: K. U P (Ec. 6.) La (Ec. 6.) s una cuación d quilibrio (ambos mimbros son furzas) qu satisfacn admás compatibilidad d dformacions y tin n cunta las caractrísticas lásticas d las barras. El dsplazaminto s dtrmina a partir d (Ec. 6.) y lugo por simpl sustitución s calculan las furzas mplando (Ec. 6.9) y (Ec. 6.0). Los métodos qu prmitn plantar sistmáticamnt cuacions d compatibilidad n función d furzas incógnitas, tals como: Trabajos Virtuals, Castigliano, Trs Momntos, tc., son distintas variants dl Método d las urzas. La atnción s concntra ahora n l dsarrollo d un procdiminto qu prmita l planto sistmático d cuacions dl tipo d (Ec. 6.), o sa, cuacions d quilibrio stático n función d los dsplazamintos, dond las furzas lásticas K. U quilibran a las furzas xtriors P conocidas. U : Vctor dsplazaminto gnralizado (corrimintos y giros) P : Vctor d carga gnralizado (furzas y momntos) K : Matriz d rigidz qu dpnd d las propidads lásticas y gométricas d cada barra y admás d la forma n qu s conctan. En l siguint capítulo s cominza l dsarrollo gnral dl Método d Rigidz para l análisis d rticulados planos. PRTO, MSS -8-

Elementos de acero Factores de longitud efectiva para el cálculo de la resistencia de elementos sometidos a compresión.

Elementos de acero Factores de longitud efectiva para el cálculo de la resistencia de elementos sometidos a compresión. Factors d longitud fctiva para l cálculo d la rsistncia d lmntos somtidos a comprsión. Existn difrncias ntr las rcomndacions dl NTCEM-004 y las rcomndacions ISC 005. El rglamnto ISC 005 stablc qu l valor

Más detalles

PRETENSADO. Verificación de Tensiones Normales

PRETENSADO. Verificación de Tensiones Normales Dpartamnto Construccions Clas Nº: 5 Prparó: Fcha: Rv. PRETENSADO rificación d Tnsions Normals ENERALIDADES Analizar una scción d un lmnto prtnsado implica ralizar una sri d vrificacions, tanto n Estado

Más detalles

+ ( + ) ( ) + ( + ) ( ) ( )

+ ( + ) ( ) + ( + ) ( ) ( ) latrals n. iguals. f. La función CONTINUIDAD f () Es continua n l punto?. Calcular los límits ³ ² 5 Para qu la función sa continua n s db cumplir: f f Calculamos por sparado cada mimbro d la igualdad f

Más detalles

Typeset by GMNI & FoilTEX

Typeset by GMNI & FoilTEX Typst by GMNI & FoilTEX CÁLCULO MATRICIAL DE ESTRUCTURAS DE BARRAS (Articuladas 2D-3D) F. Navarrina, I. Colominas, M. Castliro, H. Gómz, J. París GMNI GRUPO DE MÉTODOS NUMÉRICOS EN INGENIERÍA Dpartamnto

Más detalles

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad. Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f

Más detalles

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES Marclo Romo Proaño Escula Politécnica dl Ejército - Ecuador Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES 5. CONDICIONES DE FRONTERA: Dbido a qu muchos problmas

Más detalles

TEMA 10: DERIVADAS. f = = x

TEMA 10: DERIVADAS. f = = x TEMA 0:. DERIVADA DE UNA FUNCIÓN EN UN PUNTO La siguint gráfica rprsnta la tmpratura n l intrior d la Tirra n función d la profundidad. Vmos qu la gráfica s simpr crcint, s dcir, a mdida qu aumnta la profundidad

Más detalles

Como ejemplo se realizará la verificación de las columnas C9 y C11.

Como ejemplo se realizará la verificación de las columnas C9 y C11. 1/14 TRABAJO PRÁCTICO Nº 9 - DIMENSIONAMIENTO DE COLUMNAS Efctuar l análisis d cargas d una columna cntrada y otra d bord y dimnsionar ambas columnas n l nivl d PB. Como jmplo s ralizará la vrificación

Más detalles

División 2b. Mecanismos de cuatro barras Análisis Algebraico Vectorial de Posición, Velocidad y Aceleración

División 2b. Mecanismos de cuatro barras Análisis Algebraico Vectorial de Posición, Velocidad y Aceleración Vrsión 007 PITULO MENISMOS ivisión b Mcanismos d cuatro barras nálisis lgbraico Vctorial d Posición Vlocidad y clración UTN-FR átdra: Elmntos d Máquinas. Profsor: r. Ing. Marclo Tulio Piovan Vrsión 007

Más detalles

CINEMÁTICA (TRAYECTORIA CONOCIDA)

CINEMÁTICA (TRAYECTORIA CONOCIDA) 1º Bachillrato: Cinmática (trayctoria conocida CINEMÁTICA (TRAYECTORIA CONOCIDA (Todos los datos y cuacions, n unidads dl S.I. 1. Un objto tin un moviminto uniform d rapidz 4 m/s. En l instant t=0 s ncuntra

Más detalles

8º CONGRESO IBEROAMERICANO DE INGENIERIA MECANICA Cusco, 23 al 25 de Octubre de 2007

8º CONGRESO IBEROAMERICANO DE INGENIERIA MECANICA Cusco, 23 al 25 de Octubre de 2007 8º CONGRESO IBEROAMERICANO DE INGENIERIA MECANICA Cusco, 3 al 5 d Octubr d 007 MODELO DEL PROCESO DE COMPACACIÓN DE POLVOS MEÁLICOS UILIZANDO EL MÉODO DE LOS ELEMENOS FINIOS *Díaz, Po J. *Grupo d Invstigación

Más detalles

Aplicaciones de las Derivadas

Aplicaciones de las Derivadas www.slctividad-cgranada.com Tma : Aplicacions d las Drivadas..- Crciminto y dcrciminto d una función Sa f una función dfinida n l intrvalo I. Si la función f s drivabl sobr l intrvalo I, s vrifica: f s

Más detalles

I, al tener una ecuación. diferencial de segundo orden de la forma (1)

I, al tener una ecuación. diferencial de segundo orden de la forma (1) .6. Rducción d ordn d una cuación difrncial linal d ordn dos a una d primr ordn, construcción d una sgunda solución a partir d otra a conocida 9.6. Rducción d ordn d una cuación difrncial linal d ordn

Más detalles

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 07 - Problemas 2, 4, 5

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 07 - Problemas 2, 4, 5 página 1/7 Problmas Tma 1 Solución a problmas d Rpaso d 1ºBachillrato - Hoja 07 - Problmas 2, 4, 5 Hoja 7. Problma 2 Rsulto por Luis Sola Ruiz (sptimbr 2014) 1. Los vértics d un triángulo son A( 2, 1),

Más detalles

Una onda es una perturbación que se propaga y transporta energía.

Una onda es una perturbación que se propaga y transporta energía. Onda Una onda s una prturbación qu s propaga y transporta nrgía. La onda qu transmit un látigo llva una nrgía qu s dscarga n su punta al golpar. TIPOS DE ONDAS Si las partículas dl mdio n l qu s propaga

Más detalles

168 Termoquímica y Cinética. Aspectos Teóricos

168 Termoquímica y Cinética. Aspectos Teóricos 168 Trmoquímica y Cinética 3..- Cinética química Aspctos Tóricos Como ya s ha indicado antriormnt, la trmodinámica tin como objtivo conocr n qu condicions una racción s pud producir d forma spontána. Sin

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A IES CASTELAR BADAJOZ PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - (RESUELTOS por Antonio nguiano) ATEÁTICAS II Timpo máimo: horas minutos Contsta d manra clara raonada una d las dos opcions

Más detalles

e 2/x +1 3) (1p) Halla las asíntotas de la siguiente función, estudia su posición relativa y expresa ésta gráficamente: ln f(x)= x+1

e 2/x +1 3) (1p) Halla las asíntotas de la siguiente función, estudia su posición relativa y expresa ésta gráficamente: ln f(x)= x+1 CURSO 7-8. Primra part. d mayo d 8. ) (p) Estudia las discontinuidads d la función: f() / - / + ) (p) Dada la siguint función, s pid: a) La drivada simplificada. b) La cuación d la tangnt d inflión: +

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 65 a 83

SOLUCIONES DE LAS ACTIVIDADES Págs. 65 a 83 TEMA. ECUACIONES SOLUCIONES DE LAS ACTIVIDADES Págs. 6 a 8 Página 6. a) mcm (, ) ( ) + ( ) + 7 + / mcm (6, 0) 0 ( + ) ( ) 0 + 8 0 / c) mcm (7, ) 8 ( ) 7 ( + ) 8 (9 ) 8 97 / 9 d) mcm (8, ) 8 6 (0 ) 8 Página

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta

Más detalles

4.2. Ejemplo de aplicación.

4.2. Ejemplo de aplicación. HEB 8 Dsarrollo dl método d los dsplazamintos 45 4.. Ejmplo d aplicación. ontinuando con l pórtico dscrito n l apartado (3.8), s van a calcular las cargas y, postriormnt, sguir con l cálculo matricial,

Más detalles

TEMA 5. Límites y continuidad de funciones Problemas Resueltos

TEMA 5. Límites y continuidad de funciones Problemas Resueltos Matmáticas Aplicadas a las Cincias Socials II Solucions d los problmas propustos Tma 7 Cálculo d its TEMA Límits y continuidad d funcions Problmas Rsultos Para la función rprsntada n la figura adjunta,

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o

Más detalles

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones Método d los Elmntos Finitos para Análisis Estructural Alisado d tnsions Campo d tnsions Tnsions n cualquir punto dl lmnto, sgún l MEF: = Dε= DBδ Matriz B contin las drivadas d las N: no son continuas

Más detalles

5. Elementos tipo barra

5. Elementos tipo barra Univrsidad Simón Bolívar 5. Elmntos tipo barra En st capítulo s xpon l dsarrollo dl método dl lmnto finito para rsolvr l problma d una barra d scción transvrsal A, módulo d lasticidad E, dnsidad ρ y longitud

Más detalles

LECCIÓN 5: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN DE VARIABLES SEPARABLES

LECCIÓN 5: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN DE VARIABLES SEPARABLES 96 LECCIÓN 5: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN DE VARIABLES SEPARABLES JUSTIFICACIÓN: En sta Lcción s cntrará la atnción n l studio d aqullas cuacions difrncials ordinarias d primr ordn

Más detalles

Guía de Pupitres Módulo de Inventario Séneca v1

Guía de Pupitres Módulo de Inventario Séneca v1 Guía d s Módulo d Invntario Sénca v 27/03/5 d 3 Índic d contnido Antcdnts...3 2Datos ncsarios para idntificar los pupitrs... 3 3Tipos d pupitrs...4 4Sllado d los pupitrs... 8 5Otros mobiliarios d aula...9

Más detalles

Primer Examen Parcial Tema A Cálculo Vectorial Septiembre 26 de 2017

Primer Examen Parcial Tema A Cálculo Vectorial Septiembre 26 de 2017 Primr Examn Parcial Tma A Cálculo Vctorial Sptimbr 6 d 17 Est s un xamn individual, no s prmit l uso d libros, apunts, calculadoras o cualquir otro mdio lctrónico Rcurd apagar y guardar su tléfono clular

Más detalles

INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre:

INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre: INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL TERCERA EVALUACIÓN Sptimbr 7 d Nombr: Parallo: Firma: TEMA ( puntos) Justificando su rspusta, califiqu como vrdadra o falsa, cada proposición: a) La

Más detalles

Por sólo citar algunos ejemplos, a continuación se mencionan las aplicaciones más conocidas de la integral:

Por sólo citar algunos ejemplos, a continuación se mencionan las aplicaciones más conocidas de la integral: APLICACIONES DE LA INTEGRAL UNIDAD VI Eistn muchos campos dl conociminto n qu istn aplicacions d la intgral. Por la naturalza d st concpto, pud aplicars tanto n Gomtría, n Física, n Economía incluso n

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio de 2013 (Modelo 1 Específico 2 ) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala d Granada Junio d 03 (Modlo Espcífico ) Grmán-Jsús Rubio Luna Opción A Ejrcicio opción A, modlo Junio 03, spcífico [ 5 puntos] Halla las dimnsions dl rctángulo d ára máima inscrito n un triangulo

Más detalles

Solución de modelos matemáticos, utilizando el software Derive 6.1 en aplicaciones de ecuaciones diferenciales de primer orden

Solución de modelos matemáticos, utilizando el software Derive 6.1 en aplicaciones de ecuaciones diferenciales de primer orden Solución d modlos matmáticos, utilizando l softwar Driv 6.1 n aplicacions d cuacions difrncials d primr ordn Jhon Franklin Espinosa Castro* RESUMEN Con l avanc d la cincia a través d la tcnología, s utilizan

Más detalles

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a:

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a: EXAMEN DE MATEMÁTICAS II (Eamn Final, Rcupración d Análisis Intgrals) BACHILLERATO EXAMEN FINAL (RMJ5) a) (,5 puntos) Discut l siguint sistma d cuacions n función dl parámtro a: + y + az + ay + z a a +

Más detalles

Prof: Zulay Franco Puerto Ordaz, noviembre

Prof: Zulay Franco Puerto Ordaz, noviembre 56 Monostabls y Astabls 3.1 Introducción 3.2 Monostabl Es un circuito lctrónico qu dispon d una sñal d ntrada, gnralmnt dnominada disparo, al activars sta ntrada n la salida dl circuito (Q s obtin un pulso

Más detalles

V V V { r r ry [ - r r. José Gutierrez Abascal, Madrid. Tfn (91) FAX (91) Figura 2a. Figural. Figura 2b. ...,1 o...,.

V V V { r r ry [ - r r. José Gutierrez Abascal, Madrid. Tfn (91) FAX (91) Figura 2a. Figural. Figura 2b. ...,1 o...,. APUCACIONDEUNEJERCICIODEPRAcriCASDECALCULODINAMICOALPROYECTODEPUENTES AJarcón, E.; Hurta, M C.; Gómz Lra M- S. Cátdra d Estructuras (E. T.5...). Univrsidad Politécnica d Madrid. José Gutirrz Abascal,.

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

Prof: Zulay Franco Puerto Ordaz, noviembre

Prof: Zulay Franco Puerto Ordaz, noviembre 56 Monostabls y Astabls 3.1 Introducción 3.2 Monostabl Es un circuito lctrónico capaz d gnrar un pulso lógico n alto o n bajo a través d su salida (Q. El timpo d duración dl pulso w, stá dtrminado por

Más detalles

1. LÍMITE DE UNA FUNCIÓN REAL

1. LÍMITE DE UNA FUNCIÓN REAL ACTIVIDAD ACADEMICA: CÁLCULO DIFERENCIAL DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD Nº : LÍMITES Y CONTINUIDAD DE FUNCIONES REALES Comptncias Utilizar técnicas d aproimación n procsos numéricos infinitos

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DISEÑO MECÁNICO PRÁCTICA Nº 3

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DISEÑO MECÁNICO PRÁCTICA Nº 3 DEPARAMENO DE INGENIERIA MECÁNICA INGENIERÍA INDUSRIAL DISEÑO MECÁNICO PRÁCICA Nº 3 DEERMINACIÓN DEL COEFICIENE DE ROZAMIENO ENRE CORREAS Y POLEAS Dtrminación dl coficint d rozaminto ntr corras y polas

Más detalles

Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004

Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004 MÁQUNAS LÉCTRCAS, º ngniros ndustrials xamn Ordinario 14 d Fbrro d 004 Problma 1. Un motor drivación consum una corrint d 0 A cuando gira a 1000 r.p.m., sindo la tnsión d alimntación d 00 V. La rsistncia

Más detalles

Modelos Matemáticos para la optimización y reposición de maquinarias: Caso la Empresa Eléctrica de Milagro

Modelos Matemáticos para la optimización y reposición de maquinarias: Caso la Empresa Eléctrica de Milagro Modlos Matmáticos para la optimización y rposición d maquinarias: Caso la Emprsa Eléctrica d Milagro Edwin Lón Plúas, Csar Gurrro Loor 2 Ingniro n Estadística Informática, 2003 2 Dirctor d Tsis, Matmático,

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

TEMA 1: Los números reales. Tema 1: Los números reales 1

TEMA 1: Los números reales. Tema 1: Los números reales 1 TEMA 1: Los númros rals Tma 1: Los númros rals 1 ESQUEMA DE LA UNIDAD 1.- Númros naturals y ntros. 2.- Númros racionals. 3.- Númros irracionals. 4.- Númros rals. 5.- Jrarquía n las opracions combinadas.

Más detalles

TEMA 1: Los números reales. Tema 1: Los números reales 1

TEMA 1: Los números reales. Tema 1: Los números reales 1 TEMA 1: Los númros rals Tma 1: Los númros rals 1 ESQUEMA DE LA UNIDAD 1.- Númros naturals y ntros. 2.- Númros racionals. 3.- Númros irracionals. 4.- Númros rals. 5.- Jrarquía n las opracions combinadas.

Más detalles

PARTE I Parte I Parte II Nota clase Nota Final

PARTE I Parte I Parte II Nota clase Nota Final Ejrcicio 1 2 3 Part I Puntos PARTE I Part I Part II Nota clas Nota Final Univrsidad Carlos III d Madrid Dpartamnto d Economía Eamn Final d Matmáticas I 14 d Enro d 2009 APELLIDOS: NOMBRE: DNI: Titulación:

Más detalles

Energía. Reactivos. Productos. Coordenada de reacción

Energía. Reactivos. Productos. Coordenada de reacción CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III)

Más detalles

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden APITULO 5. EUAIONES DIFERENIALES DE ORDEN N 5.. Introducción Una cuación difrncial d sgundo ordn s una prsión matmática n la qu s rlaciona una función con sus drivadas primra sgunda. Es dcir, una prsión

Más detalles

Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar

Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar M. n C. Víctor Manul Silva García, M. n C. Eduardo Vga

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

lm í d x = lm í ln x + x 1 H = lm í x + e x 2

lm í d x = lm í ln x + x 1 H = lm í x + e x 2 Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg

Más detalles

CAPÍTULO 4 ETAPAS DE SALIDA. La etapa de salida de un amplificador debe tener un cierto número de atributos. Tal

CAPÍTULO 4 ETAPAS DE SALIDA. La etapa de salida de un amplificador debe tener un cierto número de atributos. Tal CAPÍTULO 4 ETAPAS DE SALIDA La tapa d salida d un amplificador d tnr un cirto númro d atriutos. Tal vz l más important d llos s qu ntrgu un nivl a la carga con nivls acptals d distorsión. Otro d los rqurimintos

Más detalles

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,

Más detalles

e CENTRO DE EXCELENCIA MEDICA EN ALTURA Vigente a partir de Sustituye a:

e CENTRO DE EXCELENCIA MEDICA EN ALTURA Vigente a partir de Sustituye a: Clav: Vignt a partir d Sustituy a: Vrsión: rvisión Página 1 d 11 1. OBJETIVO Establcr los linamintos y mtodología qu s db cumplir para llvar a cabo l procso d smaforización n cada uno d los lugars d almacnaminto

Más detalles

CAPITULO 2. Aplicación de la mecánica cuántica a la resolución de problemas físicos sencillos

CAPITULO 2. Aplicación de la mecánica cuántica a la resolución de problemas físicos sencillos CAPITULO. Aplicación d la mcánica cuántica a la rsolución d problmas físicos sncillos 1) Partícula n un foso d potncial infinito (caja d una dimnsión) I I V() V() V() X l d ( ) + m d d ( ) m + ( E V (

Más detalles

MÉTODO PROPUESTO PARA LA OBTENCIÓN DE LÍMITES DE ESBELTEZ

MÉTODO PROPUESTO PARA LA OBTENCIÓN DE LÍMITES DE ESBELTEZ Capítulo 3 MÉTODO PROPUESTO PARA LA OBTENCIÓN DE LÍMITES DE ESBELTEZ 3.1. Obtnción d la capacidad sccional: Exprsions analíticas dl diagrama d intracción M-N El diagrama d intracción d una scción d hormigón

Más detalles

4 M. a) La(s) ecuación(es) diferencial(es) del movimiento del sistema a partir de las ecuaciones de movimiento lineal y angular.

4 M. a) La(s) ecuación(es) diferencial(es) del movimiento del sistema a partir de las ecuaciones de movimiento lineal y angular. Un si-disco unifor d radio asa, ruda sin dslizar sor una suprfici orizontal. Una partícula d asa s ncuntra conctada al disco n su iso plano, por dos varillas rígidas, d asa dprcial, coo s ustra n la figura.

Más detalles

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES Prguntas d dominios curvas d nivl Dtrmina l dominio d las uncions: a) (, ) b) (, sin + + En cada caso indica dos puntos qu no san

Más detalles

CASO DE ESTUDIO N 3. Aplicaciones de los conceptos de interferencia y termoelasticidad para encajar un eje a un núcleo

CASO DE ESTUDIO N 3. Aplicaciones de los conceptos de interferencia y termoelasticidad para encajar un eje a un núcleo CAPITULO 3 TENSIONES Y DEFORMACIONES. REVISIÓN DE PRINCIPIOS FÍSICOS CASO DE ESTUDIO N 3 Aplicacions d los concptos d intrfrncia y trmolasticidad para ncajar un j a un núclo 1. Introducción En la Figura

Más detalles

Espectro de vibración de las moléculas diatómicas

Espectro de vibración de las moléculas diatómicas Espctro d vibración d las moléculas diatómicas Ilana Nivs Martínz QUIM 404 1 Pozo d nrgía potncial y moléculas diatómicas 1 Caractrísticas r la longitud dl nlac n quilibrio. r, V 0 (no hay intracción.

Más detalles

4 ANALISIS DIMENSIONAL Y SIMILITUD FISICA

4 ANALISIS DIMENSIONAL Y SIMILITUD FISICA 4 ANALISIS IENSIONAL Y SIILITU ISICA www.rivra-001.com Contnido 4.1. Introducción 4.. Qué s un parámtro adimnsional? 4.3. Naturalza adimnsional dl flujo fluido 4.4. El torma d Pi d Buckingham 4.5. Cómo

Más detalles

Problemas resueltos. Problema 4.1 R 4 C E L. k i 4 3 R 3

Problemas resueltos. Problema 4.1 R 4 C E L. k i 4 3 R 3 Problmas rsultos. Problma 4. Para la rd d la figura P4., mplar la idntificación para las variabls sgún l diagrama d la drcha, d tal forma qu l producto d las variabls asociadas a un lmnto, sa la potncia

Más detalles

SEPTIEMBRE Opción A

SEPTIEMBRE Opción A Slctividad Sptimbr (Pruba Espcífica) SEPTIEMBRE Opción A ( + ).- Dada la función f () s pid dtrminar: a) El dominio, los puntos d cort con los js y las asíntotas. b) Los intrvalos d crciminto y dcrciminto,

Más detalles

DETERMINACION DE LAS RELACIONES VOLUMÉTRICAS DE LOS SUELOS

DETERMINACION DE LAS RELACIONES VOLUMÉTRICAS DE LOS SUELOS DETERMINACION DE LAS RELACIONES VOLUMÉTRICAS DE LOS SUELOS I. GENERALIDADES: La dtrminación d las rlacions volumétricas d los sulos son importantísimas, para l manjo comprsibl d las propidads mcánicas

Más detalles

INTEGRACIÓN POR PARTES

INTEGRACIÓN POR PARTES UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERA DEPARTAMENTO DE MATEMÁTICA Y ESTADISTICA INTEGRACION INTEGRACIÓN Algunas intgrals qu s nos prsntan nos rsultan un poco compljas, ya por lo

Más detalles

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I Solucions a los jrcicios propustos Unidad. El conjunto d los númros rals Matmáticas aplicadas a las Cincias Socials I NÚMEROS RACIONALES Y NÚMEROS IRRACIONALES. Dtrmina si los siguints númros son o no

Más detalles

Cálculo de Dosis en Braquiterapía Br. Priscila Vargas Chavarría

Cálculo de Dosis en Braquiterapía Br. Priscila Vargas Chavarría Cálculo d Dosis n Braquitrapía Br. Priscila Vargas Chavarría Rsumn S prsnta un compndio matmático d las principals cuacions a partir d las s obtinn los principals cálculos d dosis n Braquitrapía. Braqui

Más detalles

Tabla de contenido. Página

Tabla de contenido. Página Tabla d contnido Página Ecuacions actas linals Ecuacions difrncials actas Torma 4 Solución d una cuación difrncial acta Ecuacions linals 1 Solución d una cuación linal 1 Rsumn 19 Bibliografía rcomndada

Más detalles

2º de Bachillerato. 3. Calcular la variación de entalpía de la reacción de combustión del etanol a partir de la tabla de entalpías de formación

2º de Bachillerato. 3. Calcular la variación de entalpía de la reacción de combustión del etanol a partir de la tabla de entalpías de formación Química TEM 3 º d achillrato Trmoquímica. La ntalpía d combustión dl butano s d º 875,8 /mol. Si qurmos calntar l air d una habitación d xx3 m con una stua d butano, dsd º hasta 5º, qué masa d butano dbrmos

Más detalles

Tabla de contenido. Página

Tabla de contenido. Página Tabla d contnido Página Ecuacions d ordn suprior Ecuacions homogénas d sgundo ordn con coficints constants Caso. Raícs rals distintas 6 Caso. Raícs compljas conjugadas 6 Caso. Raícs rals iguals 7 Rsumn

Más detalles

Representación de Funciones.

Representación de Funciones. T 5 Rprsntación d Funcions EJERCICIOS DE DESARROLLO 1- Elmntos Fundamntals para la Construcción d Curvas 1 Halla l dominio d stas funcions: a 5 + 7 + b d y g + 5 5 + = ln + + 1 ln +1 = y ( ) f ( ) Halla

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: A Día: 24-II-2016 CURSO

Apellidos: Nombre: Curso: 2º Grupo: A Día: 24-II-2016 CURSO EXAMEN DE MATEMATICAS II ª EVALUACIÓN Apllidos: Nombr: Curso: º Grupo: A Día: -II-16 CURSO 15-16 Instruccions: a) Duración: 1 HORA y 3 MINUTOS. b) Dbs lgir ntr ralizar únicamnt los cuatro jrcicios d la

Más detalles

COMPARATIVA ENTRE LOS RESULTADOS OBTENIDOS CON MATLAB Y NASTRAN MEDIANTE EL MÉTODO DE LOS ELEMENTOS FINITOS

COMPARATIVA ENTRE LOS RESULTADOS OBTENIDOS CON MATLAB Y NASTRAN MEDIANTE EL MÉTODO DE LOS ELEMENTOS FINITOS Univrsidad Carlos III d Madrid Dpartamnto d Ingniría Mcánica PROYECTO FIN DE CARRERA COMPARATIVA ENTRE LOS RESULTADOS OBTENIDOS CON MATLAB Y NASTRAN MEDIANTE EL MÉTODO DE LOS ELEMENTOS FINITOS Ingniría

Más detalles

Cálculo de fuerzas y pares de fuerza mediante el principio de los desplazamientos virtuales.

Cálculo de fuerzas y pares de fuerza mediante el principio de los desplazamientos virtuales. c Rafal R. Boix y Francisco Mdina 1 Cálculo d furzas y pars d furza mdiant l principio d los dsplazamintos virtuals. Considrmos un conjunto d N conductors cargados con cargas Q i (i = 1,...,N). San V i

Más detalles

Límites finitos cuando x: ˆ

Límites finitos cuando x: ˆ . Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador

Más detalles

Figura 9.61 Planta de una edificación de varios pisos

Figura 9.61 Planta de una edificación de varios pisos DISEÑO DE COLUNAS BIAXIALES ESTRUCTURAS DE HORIGÓN 2 9.5 Disño d columnas biaxials 9.5.1 Introducción El procdiminto d disño xplicado n l numral antrior s pud ampliar para cubrir l caso gnral d flxión

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÍA DEPARTAMENTO DE CIENCIAS BÁSICAS

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÍA DEPARTAMENTO DE CIENCIAS BÁSICAS NOMBRE DE LA ASIGNATURA FÍSICA TÉRMICA CÓDIGO ASIGNATURA 02112 LABORATORIO No 5 TÍTULO DE LA PRÁCTICA DURACIÓN BIBLIOGRAFÍA SUGERIDA CALORIMETRÍA 2 HORAS. - Sars y Z., Física Univrsitaria, Tomo I, Editorial

Más detalles

6. Elementos tipo viga

6. Elementos tipo viga Univrsidad Simón Bolívar. Elmntos tipo viga En st capítulo s xpon l dsarrollo dl método dl lmnto finito para rsolvr l problma d una viga d scción transvrsal variabl A, módulo d lasticidad E, momnto d inrcia

Más detalles

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

Tema 2 La oferta, la demanda y el mercado

Tema 2 La oferta, la demanda y el mercado Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la

Más detalles

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional.

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional. Sistmas d control: Elmntos componnts, variabls, función d transfrncia y diagrama funcional. Introducción Los sistmas d control automático han jugado un papl vital n l avanc d la cincia y d la ingniría.

Más detalles

tiene por límite L cuando la variable independiente x tiende a x

tiene por límite L cuando la variable independiente x tiende a x UNIDAD (Continuación).- Funcions rals. Límits y continuidad 9. LÍMITES. LÍMITES LATERALES Rcordamos dl año antrior qu una función y f () tin por it L cuando la variabl indpndint tind a, y s notaba por

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Matemáticas II EXAMEN FINAL Junio 2011 APELLIDOS: NOMBRE: D.N.I.

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Matemáticas II EXAMEN FINAL Junio 2011 APELLIDOS: NOMBRE: D.N.I. DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Matmáticas II EXAMEN FINAL Junio APELLIDOS: NOMBRE: D.N.I. CUESTIONARIO DE RESPUESTA MÚLTIPLE % Las rspustas rrónas rstan puntos. Dbn rljars

Más detalles

7 L ímites de funciones. Continuidad

7 L ímites de funciones. Continuidad 7 L ímits d funcions. Continuidad Página 05 f () = + Pinsa y ncuntra límits a) + ; + ; + + ; ; ; ; 9 0; 0; 0 ) 0; 0; 0 f ) + ; + ; 0 g) + ; + h) ; f () = a) 0 0, Página 0 a) a) f () = ; f () = ; f () =

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas. Torma. Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto. Utilizando la dfinición, calcula la drivada d f ( ) n l punto. +. Utilizando la dfinición, halla

Más detalles

ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA AERONÁUTICA DEPARTAMENTO DE MATEMÁTICA APLICADA Y ESTADÍSTICA EXAMEN DE CÁLCULO I 1 de febrero de 2006

ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA AERONÁUTICA DEPARTAMENTO DE MATEMÁTICA APLICADA Y ESTADÍSTICA EXAMEN DE CÁLCULO I 1 de febrero de 2006 ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA AERONÁUTICA DEPARTAMENTO DE MATEMÁTICA APLICADA Y ESTADÍSTICA EXAMEN DE CÁLCULO I 1 d fbrro d 006 Timpo: horas 30 minutos Cada problma db ntrgars n hojas d xamn

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

Capítulo 6 PLASTICIDAD. σ e 6.1. INTRODUCCIÓN

Capítulo 6 PLASTICIDAD. σ e 6.1. INTRODUCCIÓN Capítulo 6. Plasticidad Capítulo 6 PLASTICIDAD 6.. INTRODUCCIÓN n numrosos matrials tras un rango d tnsions n l qu l valor d la dformación qu s produc s unívoca y s rcupra cuando dsaparc la furza actuant,

Más detalles

OPCIÓN A. a) Estudiar si A y B tienen inversa y calcularla cuando sea posible (1 punto)

OPCIÓN A. a) Estudiar si A y B tienen inversa y calcularla cuando sea posible (1 punto) San Blas, 4, ntrplanta. 983 30 70 54 OPCIÓN A 4 E.- San A = 3 y B = a) Estudiar si A y B tinn invrsa y calcularla cuando sa posibl ( punto) 0 b) Dtrminar X tal qu AX = B I sindo I = 0 (.5 puntos) a) Una

Más detalles

ESTUDIO DE UN NUEVO SISTEMA DE REFERENCIA BASADO EN COORDENADAS NODALES ABSOLUTAS

ESTUDIO DE UN NUEVO SISTEMA DE REFERENCIA BASADO EN COORDENADAS NODALES ABSOLUTAS ESCUELA SUPERIOR DE INGENIEROS UNIVERSIDAD DE SEVILLA DEPARAMENO DE INGENIERÍA MECÁNICA ESUDIO DE UN NUEVO SISEMA DE REFERENCIA BASADO EN COORDENADAS NODALES ABSOLUAS Dirctor dl proycto: Danil García Valljo

Más detalles

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO OPERCIONES UNIRIS PROF PEDRO VRGS UNEFM DPO ENERGÉIC Disponibl n: wwwopracionswordprsscom INERCMBIDORES UBO Y CRCZ: NÁLISIS ÉRMICO NÁLISIS ÉRMICO, CONSIDERCIONES GENERLES nts d scribir las cuacions qu

Más detalles

Integrales indefinidas. 2Bach.

Integrales indefinidas. 2Bach. Intgrals indfinidas. Bach..- FUNCIÓN PRIMITIVA. INTEGRAL INDEFINIDA. La intgración s la opración invrsa d la drivación. Dada una función f(), dirmos qu F() s una primitiva suya si F ()f(). Nota: La primitiva

Más detalles

1.- Qué funciones son primitivas de la función cosx: Tachar lo que no proceda

1.- Qué funciones son primitivas de la función cosx: Tachar lo que no proceda .- Qué funcions son primitivas d la función cos: Tachar lo qu no procda.- Hallar + sn() si < cos si si > continua d: f() g() f()+g() f() g() -cos si

Más detalles

COMPUTACIÓN. Práctica nº 2

COMPUTACIÓN. Práctica nº 2 Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros

Más detalles