FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =
|
|
- María Nieto Camacho
- hace 5 años
- Vistas:
Transcripción
1 Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente. Si llamamos f a la función, a la variable independiente e y a la variable dependiente, escribiremos y f () y leemos «y está en función de». Una función se puede epresar mediante un enunciado, una tabla de valores, una gráfica o una fórmula. Una función está definida a trozos cuando se aplican diferentes fórmulas dependiendo de los valores de. Imagen y antiimagen Dado un valor de la variable independiente a, su imagen es f (a). Puede tener una imagen o no tener ninguna. Dado un valor de la variable dependiente y b, una antiimagen es un valor a tal que f (a) b. Escribiremos a f (b). Puede tener más de una antiimagen o no tener ninguna. Dominio de una función Conjunto de valores de la variable que tienen imagen. El dominio de f () se escribe Dom f (). Ejemplos: Polinómicas, irracionales de índice impar, eponenciales, sen y cos : Dom f (). Racionales: { / Q () 0}, donde Q () es el denominador de la función. Irracionales con índice par: { / g () < 0}, donde g () es el radicando de la función. Logarítmica: (0, ). tg : { / π k π, k } (los puntos que quitamos anulan el coseno). Recorrido de una función Conjunto de valores de la variable y que tienen antiimagen. El recorrido de f () se escribe R(f). Ejemplos: Polinómicas de grado impar, logarítmicas y tg :. Eponencial: (o, ). sen y cos : [, ]. Gráfica de una función Dada una función f (), el conjunto de puntos (a, f (a)), a Dom (f) forman la gráfica de f(). Recíprocamente, si un punto (a, b) es de la gráfica de f (), entonces b f (a).
2 Operaciones con funciones OPERACIÓN NOTACIÓN OPERACIÓN NOTACIÓN Suma y diferencia (f ± g) () f () ± g () Cociente f f ( ) ( ) g g( ) Producto (f g) () f () g () (k f) () k f () Composición (f g) () f (g ()) No es conmutativa Función inversa La función inversa de f () se escribe f () y cumple que (f f ) () (f f)(). La función logarítmica es inversa de la eponencial. Las inversas del seno, coseno y tangente son, respectivamente, arcoseno (arcsen ), arcocoseno (arccos ) y arcotangente (arctg ). La función inversa permite calcular el recorrido de una función, ya que R(f) Dom (f ). Límites de una función Para averiguar qué valores adopta y f (), cuando toma valores cada vez más próimos a 0, 0 {± }, se calcula el límite de f () cuando tiende a 0 y se simboliza f (). Para calcular límites se sustituye por 0 : f () f (0). Esto es válido incluso cuando 0 ±. 0 0 Límite de una función en el infinito El límite de f () en el infinito es el valor al que tienden las imágenes cuando toma valores positivos muy grandes o valores negativos muy pequeños. Si L es el límite en y L es el límite en, se escribe: f () L y f () L con L, L {± } Límites laterales de una función en un punto El límite lateral por la izquierda (o por la derecha) de f () cuando tiende a 0 es el valor al cual se aproiman las imágenes de f () cuando se toman valores a la izquierda (o a la derecha) de 0 tan próimos a éste como se quiera. Si L es el límite por la izquierda y L el límite por la derecha, siendo L y L números reales o ±, se escribe: f () L y f () L 0 0 Eiste el límite de f () en 0 si los límites laterales son finitos e iguales a L, y se escribe: f () L. 0
3 Cálculo con límites Operaciones con límites. Si f () L y g () L, y son finitos: 0 0 f ± g L L f g L L f g L L, si L 0 f g L, si L L 0 Límites infinitos ( ± ) ( ± ) ( ± ) ( ± ) ( ± ) ( ± ) ( ± ) ( ) ( ) k ( ± ) ( ± ) k k ( ± ) ( ± ) ±, k 0 0 k ± 0, k ± ± ± k Ver tabla Indeterminaciones Estudio de la continuidad de una función en un punto Una función es continua en un punto si eiste el límite en él y coincide con el valor que toma la función en ese punto. f () es continua en a a f () f (a) Una función es continua en un intervalo, si es continua en cada uno de sus puntos. Si un función no es continua en un punto, entonces se dice que es discontinua en ese punto. TIPOS DE DISCONTINUIDADES EVITABLE Eiste el límite (y es finito), pero no coincide con el valor de la función, o bien la función no está definida en dicho punto: a f () f (a) o bien no eiste f (a) DE PRIMERA ESPECIE DE SALTO FINITO DE SALTO INFINITO Los límites laterales son finitos, pero diferentes: Los límites laterales son infinitos: f () f () a a DE SEGUNDA ESPECIE Uno o los dos límites laterales no eisten: f () o f () a No eisten f () o f () Todas las funciones elementales son continuas en su dominio, ecepto: a Funciones racionales: Son discontinuas en los puntos que no son del dominio, es decir, donde el denominador se anula. Las discontinuidades son evitables o de salto infinito, en ningún caso pueden ser de salto finito. a a ±
4 Funciones trigonométricas: La tangente presenta discontinuidades de salto infinito en los puntos que no son de su dominio. Funciones a trozos: Se debe estudiar la continuidad de cada fórmula en su dominio de aplicación y la continuidad en el cambio de una fórmula a otra, donde puede aparecer la discontinuidad de salto. Otras características de las funciones Monotonía: Estudio del crecimiento, decrecimiento, máimos y mínimos. Concavidad y conveidad: Si las rectas tangentes en un punto están por debajo de la gráfica, la función es cóncava en ese punto, si están por encima, es convea. Periodicidad: Las imágenes de la función se repiten en intervalos de una cierta longitud T. Puntos de corte con los ejes: Abscisas (a, 0), Ordenadas (0, b) Asíntotas: Son rectas a las cuales se aproima la gráfica. Son de tres tipos: Horizontales, verticales y oblicuas. Teorema de Bolzano Permite encontrar, de manera aproimada, ceros de funciones. Si una función f es continua en el intervalo cerrado [a, b] y el signo de f (a) es distinto del signo de f (b), entonces eiste, al menos, un punto c perteneciente al intervalo abierto (a, b) de modo que f (c) 0. Simbólicamente: [, ] [ ( )] signo[ f ( b) ] f continua en a b signo f a c [ a, b] f() c 0 Teorema de Weierstrass Si una función f es continua en un intervalo cerrado [a, b], alcanza en este intervalo al máimo y el mínimo absolutos.
5 La indeterminación 0 k (k 0) se elimina calculando los límites laterales; si son iguales, la función tiene límite o - ; en caso contrario, no eiste límite. 0 Calculando los límites laterales: Puesto que son distintos, la función no tiene límite en. LIMITES INDETERMINADOS DE FUNCIONES LIMITE DE FUNCIONES RACIONALES LIMITE DE FUNCIONES IRRACIONALES INDETERMINACIÓN La indeterminación 0 0 de funciones racionales desaparece factorizando el y después simplificando Factorizando el numerador y el denominador: 5 6 ( ) ( ); 9 ( ) ( ); Sustituyendo: ( ) ( ) ( ) ( ) ( ) ( ) 6 La indeterminación de funciones racionales desaparece dividiendo por la potencia máima del denominador. 5 6 Como el grado del denominador es, se dividen por. Así: La indeterminación 0 0 de funciones irracionales desaparece multiplicando y dividiendo la función por la epresión radical conjugada. 6 La epresión radical conjugada del denominador es ( 6 ). Así: 6 ( ( ( ) ( 6 ) ( 6 ) 6 ) ( ) ( 6 ) (6 ) ( ) ( 6 ) ( ) 6 ) La indeterminación de funciones irracionales desaparece dividiendo por la potencia máima del denominador. 5 Como el grado del denominador es, se dividen por. Así: La indeterminación se resuelve aplicando la propiedad que figura a continuación: f ( ) 0 g( ) ± 0 e 0 [ f ( ) ] g( ) 0 g( ) [ f ( ) ] Aplicando la propiedad anterior, el límite queda: e e 8 e 0
6 INDETERMINACIONES DEL TIPO Para resolver este tipo de indeterminaciones se emplea el criterio epuesto en la tabla anterior, pero se puede establecer la siguiente regla general; si P() y Q() son polinomios, siempre se cumple que: P( ) - Si grado de P() > grado de Q() entonces ±. El signo depende de los Q( ) signos de los coeficientes de los términos de mayor grado de P() y de Q() y del grado de estos. P( ) a - Si grado de P() grado de Q() entonces, siendo a el coeficiente del Q( ) b término de mayor grado de P() y b el coeficiente del término de mayor grado de Q(). Ejemplos: - Si grado de P() < grado de Q() entonces P( ) 0. Q( ) La regla anterior también es valida cuando en el numerador, en el denominador o en ambos casos hay epresiones con radicales. Por ejemplo: ; Para calcular el grado del 6 denominador nos fijamos únicamente en el término de mayor grado del radicando. INDETERMINACIÓN DEL TIPO En la diferencia de funciones racionales, resta y recalcula el límite. En la diferencia de funciones irracionales de índice, multiplica y divide por la epresión radical conjugada. La indeterminación se transforma en una del tipo : 5 ( 5) ( ) ( ) INDETERMINACIÓN DEL TIPO 0 Se transforma la indeterminación en una del tipo.
f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real
Apuntes de Análisis Curso 18/19 Esther Madera Lastra 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real,, un único número real y = f (. A
LÍMITES Y CONTINUIDAD
LÍMITES Y CONTINUIDAD Tema 4: LÍMITES Y CONTINUIDAD. Índice:. Límite de una función en un punto. Límites laterales.. Límites en el infinito.. Cálculo de límites... Propiedades de los límites... Límites
TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.2. LÍMITES Y CONTINUIDAD
TEMA. FUNCIONES REALES DE VARIABLE REAL.. LÍMITES Y CONTINUIDAD . FUNCIONES REALES DE VARIABLE REAL.. LÍMITES Y CONTINUIDAD... LÍMITE DE UNA FUNCIÓN EN UN PUNTO... LÍMITES INFINITOS... LÍMITES EN EL INFINITO..4.
LÍMITE DE UNA FUNCIÓN EN UN PUNTO
pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO c significa que toma valores cada vez más próimos a c. Se lee tiende a c. Por ejemplo: ; `9; `; `; `; `; `9; `; `999; Es una secuencia de números cada vez más próimos
Límite de una función Funciones continuas
Límite de una función Funciones continuas Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 2014-2015 1 LÍMITE CUANDO LA VARIABLE TIENDE A INFINITO. 3 1. Límite cuando la variable tiende
TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD
MATEMÁTICAS I LÍMITES-CONTINUIDAD TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD 1. LÍMITES EN EL INFINITO En ocasiones interesa estudiar el comportamiento de una función (la tendencia) cuando los valores
Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización.
TEMA 1 Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. Límite finito en un punto: Consideremos una función f definida en las proimidades
LÍMITES Y CONTINUIDAD
LÍMITES Y CONTINUIDAD. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Dada una función f(), diremos que el ite de f() cuando tiende a a es el número real L y lo escribiremos f() = L, si al tomar cada vez valores más
f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real
Apuntes de Análisis Curso 7/8 Esther Madera Lastra. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real,, un único número real y = f (). A la
TEMA 6 : LÍMITES DE FUNCIONES. CONTINUIDAD
TEMA 6 : DE FUNCIONES. CONTINUIDAD. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejercicio: Observa la gráfica siguiente: a) Estudia el dominio, el recorrido y la continuidad de f(). b) Indica si eisten los límites
TEMA 6 LÍMITE Y CONTINUIDAD
TEMA 6 LÍMITE Y CONTINUIDAD 6.. IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN. Dada la función f() = 2, a qué valor se aproima f() cuando se aproima a 2? Dada la función f() =?, a qué valor se aproima f() cuando
5.3 Dominios de funciones: Polinómicas: Dom f(x): R La X puede tomar cualquier valor entre (, + )
Tema 5: Funciones. Dominio, Límites, Asíntotas y Continuidad de Funciones 5.1 Concepto de Dominio de una función Función: es una regla que asigna a cada número real X un único número real Y. X Dom R Dom
TEMA 10.-LÍMITES DE FUNCIONES Y CONTINUIDAD
TEMA.-Límites de funciones y continuidad.- Matemáticas I. SUCESIONES DE NÚMEROS REALES TEMA.-LÍMITES DE FUNCIONES Y CONTINUIDAD Una sucesión de números reales es un conjunto de números (a, a, a 3,...,
1.- CONCEPTO DE LÍMITE. LÍMITE DE UNA FUNCIÓN EN UN PUNTO.
º Bachillerato Matemáticas I Tema 8:Límites y continuidad.- CONCEPTO DE LÍMITE. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. En ocasiones interesa saber hacia qué valor se aproima una función cuando la variable
Alonso Fernández Galián
Alonso Fernández Galián TEMA 3: ESTUDIO Y REPRESENTACIÓN DE FUNCIONES Para representar gráficamente una función deben estudiarse los siguientes aspectos: i) Dominio. ii) Puntos de corte con los ejes de
Funciones, límites y continuidad
8/0/016 Funciones, límites y continuidad C U R S O 0 1 5-0 1 6 Funciones, limites y continuidad Los puntos rojos son los que entran en el eamen de º evaluación 1) Concepto de función. Dominio y recorrido.
el blog de mate de aida CSI: Límites y continuidad. . Se lee x tiende a x por la derecha. , se expresa así: , se expresa así: por la derecha)
pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO gnifica que toma valores cada vez más próimos a. Se lee tiende a. Ejemplo: ;,9;,;,;,8;,;,9;,;,999; Es una secuencia de números cada vez más próimos a. Escribimos.
TEMA 8. FUNCIONES, LÍMITES Y CONTINIDAD.
TEMA 8. FUNCIONES, LÍMITES Y CONTINIDAD. 1. Concepto de función.. Dominio e imagen de una función. 3. Tipos de funciones. 4. Operaciones con funciones. 5. Concepto de límite. 6. Cálculo de límites. 7.
TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R
TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. Concepto de función. Definición Se llama función (real de variable real) a toda aplicación f : R R f() que a cada número le
f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5
IES Padre Poveda (Guadi) UNIDAD : LÍMITES Y CONTINUIDAD.. INTRODUCCIÓN. Fíjate en el comportamiento de la función ( ) f cuando toma valores cercanos a. Si se aproima a, la función toma valores cercanos
f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5
IES Padre Poveda (Guadi) UNIDAD LÍMITES Y CONTINUIDAD.. INTRODUCCIÓN. Fíjate en el comportamiento de la función ( ) f cuando toma valores cercanos a. Si se aproima a, la función toma valores cercanos a
TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS
Estudios J.Concha ( fundado en 00) ESO, BACHILLERATO y UNIVERSIDAD Departamento Bachillerato MATEMATICAS º BACHILLERATO Profesores Javier Concha y Ramiro Froilán Tema 8 Límites de funciones, continuidad
Matemáticas CCSS LÍMITES DE FUNCIONES 1. INTRODUCCIÓN BÁSICA: A) LÍMITES SOBRE GRÁFICAS. Ejercicio nº 1.- Ejercicio nº 2.
LÍMITES DE FUNCIONES. INTRODUCCIÓN BÁSICA: A) LÍMITES SOBRE GRÁFICAS Ejercicio nº.- Ejercicio nº.- Página B) LÍMITES APOYÁNDONOS EN LAS GRÁFICAS B.) FUNCIONES POLINÓMICAS De grado : a ) 3 + b ) 3 + c )
CONTINUIDAD DE FUNCIONES
CONTINUIDAD CONTINUIDAD DE FUNCIONES CONTINUIDAD DE UNA FUNCIÓN EN UN PUNTO Una función f es continua en a si y sólo si se cumplen las tres condiciones siguientes: 1) Existe f(a), es decir, a Dom f. 2)
SOLUCIONES DE LAS ACTIVIDADES Págs. 239 a 257
TEMA. LÍMITES Y CONTINUIDAD SOLUCIONES DE LAS ACTIVIDADES Págs. 9 a 7 Página 9 Página. a) f() 0. a) f() 0, 0,0 0,00 0,000 f(),,9,99,999,9,99,999,9999 f() 00 0.000 0 6 0 8 b) f() 0 0, 0,0 0,00 0,000 f(),,0,00,000
= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x
Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas
UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.
IES Padre Poveda (Guadi) UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.. Límite de una función en un punto... Límites laterales... Límite de una función en un punto.. Límites en el infinito... Comportamiento
LÍMITES Y CONTINUIDAD. 1º Bto. Sociales. CONCEPTO DE LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO CONCEPTO DE LÍMITE DE UNA FUNCIÓN
LÍMITES Y CONTINUIDAD º Bto. Sociales. CONCEPTO DE LÍMITE DE UNA FUNCIÓN Sea f() =. Vamos a darle valores a cercanos a y vamos a ver cómo se comporta f()..9.99.999.9999.99999 f() 4.8 4.98 4.998 4.9998
I.- Representación gráfica de una función polinómica
Los campos a considerar en el estudio de una representación gráfica son; Dominio de la función Continuidad y derivabilidad Simetrías Periodicidad Asíntotas Verticales Horizontales Oblicuas Posición de
Funciones: Límites y continuidad.
Límites finitos de sucesiones. Funciones: límites y continuidad Matemáticas I Funciones: Límites y continuidad. + Decimos que una sucesión numérica ( ) n= tiene por límite r R y se escribe =r o de forma
1. Halla el dominio, el recorrido, las asíntotas y los límites e imágenes que se indican para cada gráfica. y asíntota vertical de:
Identificación gráfica de funciones, límites asíntotas Al observar la gráfica de una función es posible determinar gran cantidad de parámetros características de dicha función aunque no conozcamos su epresión,
CÁLCULO DIFERENCIAL. b) Al darle a x valores suficientemente grandes, los valores de f(x) crecen cada vez más
1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO: CÁLCULO DIFERENCIAL Una función f(x) tiene por límite L en el número real x = c, si para toda sucesión de valores x n c del dominio que tenga por límite c, la sucesión
BLOQUE TEMÁTICO III: ANÁLISIS
BLOQUE TEMÁTICO III: ANÁLISIS 9.- LÍMITES Y CONTINUIDAD 1.- Funciones reales Una función es una relación de dependencia entre dos conjuntos en la que a cada elemento del conjunto inicial le corresponde
TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS
TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 9.1. LÍMITE DE UNA FUNCIÓN
TEMA 9: FUNCIONES, LÍMITES Y CONTINUIDAD
º CONCEPTOS PREVIOS Ejercicio º Valor absoluto a,b, TEMA 9: FUNCIONES, LÍMITES Y CONTINUIDAD º Intervalos: a, b, a, b, a, b Semirrectas:, a, -,a, a,, a, Representa gráficamente las siguientes funciones,
Tema 3. LÍMITES Y CONTINUIDAD DE FUNCIONES
Tema LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) 4 en el punto Para ello, damos a valores próimos
TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL
TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS
Capítulo 1 LÍMITES Y CONTINUIDAD Versión Beta 1.1
Capítulo 1 LÍMITES Y CONTINUIDAD Versión Beta 1.1 www.mathspace.jimdo.com Tabla de contenido Capítulo 1...1 LÍMITES Y CONTINUIDAD...1 1.1. LÍMITES...2 1.1.1 Definición formal...2 1.1.2. Cálculo de límites...2
Tema 3. LÍMITES Y CONTINUIDAD DE FUNCIONES
1 Tema LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g( ) ENT[ ] h ( ) i ( ) 4 en el punto = Para ello, damos a valores
TEMA 8. LÍMITES Y CONTINUIDAD
TEMA 8. LÍMITES Y CONTINUIDAD. IDEA DE LÍMITE. La idea de lmite de una función f() cuando ésta tiende a un punto a, (se escribe f () ), es la del valor al que se acerca la función cuando vamos tomando
Tema 5: Funciones. Límites de funciones
Tema 5: Funciones. Límites de funciones El concepto de función es un elemento fundamental dentro del análisis matemático, así como en sus aplicaciones. Esta idea se introdujo con el objetivo de matematizar
CURSO 2013/2014 RESUMEN LÍMITES Y CONTINUIDAD 2, ,61 2,01 4,0401 1,99 3,9601 2,001 4, ,999 3,
RESUMEN LÍMITES Y CONTINUIDAD Límite de una función en un punto El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan
Tema 6: Límites y continuidad
Tema 6: Límites y continuidad March 25, 217 Contents 1 *Conceptos relativos a funciones 2 1.1 Dominio de funciones usuales........................................ 2 1.2 Funciones periódicas.............................................
Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2
Curso º Bachillerato 16/05/017 Ejercicio 1 a) (1 punto) Calcula las derivadas de las siguientes funciones: f() = 1+3 ; g() = ln(1 5) + e7 b) (1 punto) Estudia la derivabilidad de la función dada por: a)
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES I ) DOMINIO DE DEFINICIÓN DE UNA FUNCIÓN: Es el conjunto de puntos donde tiene sentido realizar las operaciones indicadas en el criterio de definición de la
Unidad 9. Límites, continuidad y asíntotas
Unidad 9. Límites, continuidad y asíntotas. Límite de una función en un punto Piensa y calcula Halla mentalmente y completa la tabla siguiente:,9,99,,00,0, f () =,9,99,,00,0, f () =,9,99 3, 3 3,00 3,0
1) (1,6p) Estudia y clasifica las discontinuidades de la función: x+4-3 x-5. f(x)=
2 de diciembre de 2008. ) (,6p) Estudia y clasifica las discontinuidades de la función: f()= +4-3 -5 2) (,6p) Halla las ecuaciones de las asíntotas de la siguiente función y estudia la posición relativa:
RESUMEN DE ANÁLISIS MATEMÁTICAS II
RESUMEN DE ANÁLISIS MATEMÁTICAS II 1. DOMINIO DE DEFINICIÓN Y CONTINUIDAD 1.1. FUNCIONES ELEMENTALES (No tienen puntos angulosos) Tipo de función f (x) Dom (f) Continuidad Polinómicas P(x) R Racional P(x)/Q(x)
Apuntes de Límites de funciones
Apuntes de Límites de funciones En el tema anterior estudiamos el concepto de función real de variable real y sus principales características. En este tema, introducimos la idea intuitiva de límite de
Apuntes de Límites de funciones
Apuntes de Límites de funciones En el tema anterior estudiamos el concepto de función real de variable real y sus principales características. En este tema, introducimos la idea intuitiva de límite de
RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN:
RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN: Ejemplo: 1 Dominio Representación de en el intervalo [,] Los puntos que no pertenecen al dominio de una función racional, son aquellos que anulan
I.- Límite de una función
I.- Límite de una función a) En un punto En la mayoría de las funciones que vas a encontrarte, el límite, cuando tiende a un número real c, coincide con el valor numérico f(c), siempre que c pertenezca
12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO
INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo
1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}.
6. Estudiar y representar gráficamente las siguientes funciones: a) ( ) f e b) Solución f( ) + 3 + c) f( ) ln + a) Para estudiar la función e se realizan los siguientes pasos: f( ) ) La función no está
TEMA1: CÁLCULO DE LÍMITES DE FUNCIONES.
TEMA: CÁLCULO DE LÍMITES DE FUNCIONES.. Límite en un punto ( a) La condición necesaria y suficiente para que eista el límite de una función en un punto es que eistan los dos límites laterales de la función
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II 2º BACHILLERATO
LÍMITES: OPERACIONES CON INFINITOS LÍMITES: RESOLUCIÓN DE INDETERMINACIONES DEL TIPO 1 Estas indeterminaciones están relacionadas con el número e se calculan de la siguiente forma: 1 DOMINIO E IMAGEN DE
GRÁFICA DE FUNCIONES
GRÁFICA DE FUNCIONES. Función cuadrática. Potencia. Eponencial 4. Logarítmica 5. Potencia de eponente negativo 6. Seno 7. Coseno 8. Tangente 9. Valor absoluto. Dominio. Puntos de corte con los ejes. Simetrías.
Mostrará la convergencia o divergencia de funciones mediante el criterio de límite de una función en un punto.
Un i d a d Lí m i t e s Objetivos Al inalizar la unidad, el alumno: Mostrará la convergencia o divergencia de funciones mediante el criterio de límite de una función en un punto. Calculará límites de funciones
Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales
Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=
SOLUCIÓN. BLOQUE DE FUNCIONES.
SOLUCIÓN. BLOQUE DE FUNCIONES. Análisis de funciones 1. a) y c) son funciones, porque para cada valor de hay un único valor de y. b) no es una función, porque para cada valor de hay dos valores de y. 2.
Parte II. DERIVADAS. APLICACIONES.
Parte II. DERIVADAS. APLICACIONES. DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. f ( a + h ) f ( a ) Se dice que f es derivable en = a si eiste el límite lim. Este número se denomina derivada
Funciones elementales más importantes
º BACHILLERATO (LOMCE) MATEMÁTICAS II TEMA 7.- LÍMITES CONTINUIDAD DE FUNCIONES PROFESOR: RAFAEL NÚÑEZ NOGALES.- FUNCIONES. CARACTERÍSTICAS. FUNCIONES ELEMENTALES Definición de función Una función real
Tema 4: Representación de Funciones
Tema 4: Representación de Funciones.- Dominio y recorrido: Dominio: Valores de para los que está definida (eiste) f () Recorrido: Valores que toma f () Funciones Polinómicas, son de la forma f ( ) ao a...
TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS
Tema 8 Límites de funciones, continuidad y asíntotas Matemáticas II º Bach 1 TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8.1 LÍMITE DE UNA FUNCIÓN 8.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite
CONTINUIDAD DEFINICIÓN CONTINUIDAD LATERAL. es continua en un punto. Una función. si:
CONTINUIDAD DEFINICIÓN Una función 1) l a ) f (a) ) f ( a) a un punto a Si una función no cumple alguna de estas condiciones es discontinua en : a CONTINUIDAD LATERAL Ejemplo a por la izquierda f ( a)
RESUMEN DE FUNCIONES REALES DE VARIABLE REAL. Se dice que una función tiene límite en un punto si los límites laterales toman el mismo valor.
RESUMEN DE FUNCIONES REALES DE VARIABLE REAL LIMITES Se dice que una función tiene límite en un punto si los límites laterales toman el mismo valor. lim f ( x) = L lim f ( x) = lim f ( x) = L x a x a x
1 Elabora una tabla de valores de la función f(x) = x 2-4x + 3 en puntos x próximos a x = 2. Sugiere la tabla
Unidad nº 9 CARACTERÍSTICAS DE LAS GRÁFICAS! 1 PROBLEMAS PROPUESTOS 1 Elabora una tabla de valores de la función f() - + en puntos próimos a. Sugiere la tabla que f() es continua en? 1 9 1 99 1 999 1 01
Tema 10: Funciones racionales y potenciales. Asíntotas.
1 Tema 10: Funciones racionales y potenciales. Asíntotas. 1. Funciones racionales. Una función racional es de la forma =p()/q(), donde p() y q() son polinomios, con q()0. El dominio de una función racional
EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES.
EJERCICIOS RESUELTOS TEMA : DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. Ejercicio 1 Calcula las funciones derivadas de las siguientes funciones y simplifícalas: a) f ( ) sine b)
Dos curvas interesantes: Unidad 10: REPRESENTACIÓN DE FUNCIONES TRACTRIZ INTRODUCCIÓN
Unidad 10: REPRESENTACIÓN DE FUNCIONES INTRODUCCIÓN Concepto de función Una de las ideas más fecundas y brillantes del siglo XVII fue la de la coneión entre el concepto de función y la representación gráfica
f : R R Definición 2. Se llama dominio de una función f (lo denotaremos por Dom f) al conjunto de valores para los que está bien definida f(x) :
Resumen Tema 2: Funciones Concepto de función. Gráficas Definición. Se llama función (real de variable real) a toda aplicación f : R R que a cada número le hace corresponder otro valor f(). f() Definición
Tema 5: Funciones, límites y Continuidad
Tema 5: Funciones, límites y Continuidad 0.- Introducción.- Definición de Función..- Funciones elementales..- Operaciones con funciones...- Composición de funciones...- Función inversa o recíproca 3.-
LÍMITES Y CONTINUIDAD
Límites y Continuidad ºBCCSS LÍMITES Y CONTINUIDAD 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Dada una función f(), diremos que el ite de f() cuando tiende a a es el número real L y lo escribiremos f() L, si
Tema 7. Límites y continuidad. 7.1 Definición de límite de una función
Tema 7 Límites y continuidad 7.1 Definición de límite de una función Sea f : I R, I R yseaa I un punto de acumulación de I, decimos que f() tiene límite l R en el punto a f() =l si ε > 0, η > 0: a < η
L A D E R I V A D A. C Á L C U L O Y A P L I C A C I O N E S
L A D E R I V A D A. C Á L C U L O Y A P L I C A C I O N E S 1. T A S A D E V A R I A C I Ó N M E D I A Definimos la variación media de una función f en un intervalo [, + ], y la designamos por t m o TVM[,
CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD
CONTINUIDAD Y DERIVABILIDAD Continuidad. Derivabilidad. 1.- CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: Lim f( ) = f( a) a Para que una función sea continua en un punto
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES GRÁFICA DE UNA FUNCIÓN: Conjunto de puntos del plano (,y), en los que y = f(), es decir, conjunto de puntos del plano en los que la segunda coordenada es la imagen de la primera.
LÍMITES DE FUNCIONES
LÍMITES DE FUNCIONES IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejemplo : Consideremos la función: f Su gráfica: si < si > Si toma valores próimos a, distintos de y menores que ej.: 9, 99, 999,,
Matemáticas aplicadas a las Ciencias Sociales II. ANAYA
Unidad 5 / Límites de funciones Continuidad! PARA RESOLVER a)) Calcula el límite de la función f() cuando,,,, - : f() (-)/( -5) b)) Representa gráficamente los resultados obtenidos. a))! 5! 5 indeterminado,
TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD.
TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD. 1.LÍMITE DE UNA FUNCIÓN EN UN PUNTO El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes por f de puntos x, cuando los originales
LÍMITES Y CONTINUIDAD
Límites y Continuidad ºBCCSS LÍMITES Y CONTINUIDAD 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Dada una función f(), diremos que el ite de f() cuando tiende a a es el número real L y lo escribiremos f() = L,
Profesor: Fco. Javier del Rey Pulido
FUNCIONES.- DEFINICIÓN DE FUNCIÓN.- Una función es una relación entre dos magnitudes e y (variables), de forma que a cada valor de le corresponde un único valor de y. y Ejemplo: y 5 y 5 4 5. Doy valores
CONCEPTOS QUE DEBES DOMINAR
INTERVALOS CONCEPTOS QUE DEBES DOMINAR Un intervalo es un conjunto infinito de números reales comprendidos entre dos extremos, que pueden estar incluidos en él o no. 1. Intervalo abierto (a, b): Comprende
Matemáticas aplicadas a las CC.SS. II
Tema Nº 8 Aplicaciones de las Derivadas ( 17! Determina las dimensiones de una ventana rectangular que permita pasar la máima cantidad de luz, sabiendo que su marco debe medir 4 m. ---oooo--- La ventana
Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO
EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)
Función es una relación entre dos variables a las que, en general, se les llama x e y. Viene representado por: y f (x)
TEMA 9: :.- CONCEPTO DE FUNCIÓN: Función es una relación entre dos variables a las que, en general, se les llama e y. Viene representado por: y (, donde es la variable independiente e y es la variable
12 Representación de funciones
Representación de funciones ACTIVIDADES INICIALES.I. Factorizando previamente las epresiones, resuelve las siguientes ecuaciones: 3 a) 6 7 4 + 5 = 0 6 4 c) 4 + 4 = 0 7 b) 6 d) + + + + 3 = 0.II. Resuelve
Tema 5: Continuidad de funciones
Tema 5: Continuidad de funciones 1. Continuidad de una función en un punto La idea intuitiva de función continua en un punto es bien sencilla, es aquella que no da saltos ni presenta interrupciones, que
LÍMITES DE FUNCIONES GBG
LÍMITES DE FUNCIONES GBG - 010 1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Sea f una función real de variable real y a un punto de acumulación del dominio de f. de elementos del Decimos que f = L si y sólo si
"""##$##""" !!!""#""!!!
Unidad nº 9 CARACTERÍSTICAS DE LAS GRÁFICAS! 11 AUTTOEEVALLUACI IÓN 1 Eplica qué significan los símbolos 0 y -. 0 ( tiende a 0) significa que tomamos valores ( 0) cuya distancia a 0, dada por, se hace
FUNCIONES. La variable x se denomina variable independiente y la variable y es la variable dependiente. x y
. DEFINICIÓN FUNCIONES Una unción real de variable real es una relación entre dos variables numéricas e y de orma que a cada valor de la variable le corresponde un único valor del la variable y. La variable
COL LECCIÓ DE PROBLEMES RESOLTS
DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES
Problemas de continuidad y límites resueltos
Problemas de continuidad y límites resueltos Razona de manera justificada el dominio de la siguientes funciones. a) f ()=ln( ) b) f ()= ( )( 3) c) f ()= cos( ) a) La raíz cuadrada solo admite discriminantes
MATEMÁTICAS BÁSICAS LÍMITES Y CONTINUIDAD ENTORNOS. a, donde δ es la. = x
MATEMÁTICAS BÁSICAS LÍMITES Y CONTINUIDAD ENTORNOS Se denomina entorno de un punto a en, al intervalo abierto ( δ a δ ) semiamplitud del intervalo. a, donde δ es la El entorno de a, en notación de conjuntos
Apuntes de Funciones
Apuntes de Funciones El concepto de función es un elemento fundamental dentro del análisis matemático, así como en sus aplicaciones. Esta idea se introdujo con el objetivo de matematizar la transformación
3º ESO PMAR FUNCIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa FUNCIONES
FUNCIONES.- CARACTERÍSTICAS DE LAS FUNCIONES Definición: Una función es una relación entre dos variables de tal forma que a cada valor de la primera (variable independiente, ) le corresponde un valor o
Tema 6: Continuidad de funciones
Tema 6: Continuidad de funciones 1. Continuidad de una función en un punto La idea intuitiva de función continua en un punto es bien sencilla, es aquella que no da saltos ni presenta interrupciones, que