ESTADÍSTICA (GRUPO 12)
|
|
- Rubén Suárez Zúñiga
- hace 5 años
- Vistas:
Transcripción
1 ESTADÍSTICA (GRUPO 12) CAPÍTULO II.- ANÁLISIS DE UNA CARACTERÍSTICA (DISTRIBUCIONES UNIDIMENSIONALES) TEMA 7.- MEDIDAS DE CONCENTRACIÓN. DIPLOMATURA EN CIENCIAS EMPRESARIALES UNIVERSIDAD DE SEVILLA
2 1. CONCEPTO DE CONCENTRACIÓN. Concepto Representa el grado de homogenedad en el reparto de las observacones entre los dversos valores de la dstrbucón. Stuacones extremas (Dstrbucón genérca de N observacones) Concentracón máxma.- Todas las observacones se concentran en un solo valor. x 1 = x 2 =... x -1 = x +1 =...= x N =0; x = N Concentracón mínma (equdstrbucón).- Todas las observacones se reparten por gual entre todos los valores. x 1 = x 2 =... = x N-1 = x N Antono Pajares Ruz 2
3 ESTUDIO GRÁFICO DE LA CONCENTRACIÓN Fundamento para el análss Estudar la relacón exstente entre las frecuencas relatvas acumuladas y los totales acumulados, expresados tambén en térmnos relatvos, para los dstntos valores o ntervalos de valores de la varable ( = 1, 2,..., k). n x n N = n N N j= 1 P = Antono Pajares Ruz u = x n j j j= 1 u = Q uk 3
4 ESTUDIO GRÁFICO DE LA CONCENTRACIÓN Análss de Gn y Lorenz Sobre un par de ejes de coordenadas cartesanas representamos en el eje de abscsas las cfras de P y en el eje de ordenadas las cfras de Q. Stuamos en el plano los puntos defndos por la nterseccón entre las correspondentes cfras de P y Q para cada uno de los dstntos valores o ntervalos de valores de la dstrbucón. Unmos medante trazos rectlíneos consecutvos los ctados puntos. La curva de Lorenz es aquella polgonal representada en el plano que establece la relacón entre los puntos P y Q para los dstntos valores o ntervalos de valores de la dstrbucón. Antono Pajares Ruz 4
5 ESTUDIO GRÁFICO DE LA CONCENTRACIÓN Curva de Lorenz B Concentracón mínma OB Q +1 P = Q P = Q Concentracón máxma OAB Q S S S S Curva de Lorenz O A P P +1 Antono Pajares Ruz 5
6 ESTUDIO GRÁFICO DE LA CONCENTRACIÓN Curva de Lorenz: Sus característcas fundamentales 1. Su punto de arranque es el valor de coordenadas (0, 0) y su punto de fnalzacón es el valor de coordenadas (, ). 2. Sempre se encuentra stuada por debajo de la dagonal prncpal. 3. Es crecente. 4. Mentras más cercana esté la curva a la línea de equdstrbucón, menor será la concentracón exstente en la dstrbucón. 5. Mentras más alejada esté la curva de la línea de equdstrbucón, mayor será la concentracón exstente en la dstrbucón. Antono Pajares Ruz 6
7 ÍNDICE DE GINI Concepto Se trata de un índce que cuantfca el grado de aproxmacón exstente entre la curva de Lorenz y la línea de equdstrbucón. Sus valores extremos representarán las stuacones extremas de máxma y mínma concetracón. Se defne matemátcamente como el cocente entre el área comprendda entre la curva de Lorenz y la línea de equdstrbucón y el área comprendda entre la línea de máxma concentracón y la de equdstrbucón: S las dos áreas son concdentes, estaríamos ante una stuacón de máxma concentracón. S la curva de Lorenz se stúa en la línea de equdstrbucón, el área del numerador sería nula, encontrándonos en una stuacón de mínma concentracón. Antono Pajares Ruz 7
8 ÍNDICE DE GINI Su determnacón matemátca Q +1 Q P = Q P = Q S S S S B área rayada I G = área OAB 0 I G < 1 O P P +1 A k 1 k 1 1 I = Q P Q P 00 G = 0 = 0 Antono Pajares Ruz 8
9 ÍNDICE DE GINI Sus característcas 1. Se trata de un valor que no vene expresado en undad de medda alguna, es admensonal. 2. Es nvarante ante cambos de escala en la varable. 3. No es nvarante ante cambos de orgen en la varable. 4. S es nulo, estaríamos ante ausenca de concentracón o equdstrbucón. 5. Cuanto más próxmo esté de la undad, mayor será la concentracón. 6. El índce nunca llega a ser uno. Antono Pajares Ruz 9
10 Ej.: Analzar la concentracón exstente en la dstrbucón del salaro mensual percbdo (10 3 ) por los 150 ejecutvos de una gran empresa. Salaro n ) Determnacón de los totales correspondentes a cada ntervalo. 2) Cálculo de las frecuencas acumuladas y de los totales acumulados. 3) Cálculo de tales valores acumulados en térmnos relatvos del últmo de ellos. Salaro x n x n N u P 20 53,3 86,6 Q 14,36 43,61 80,84 Antono Pajares Ruz 10
11 Ej.: Analzar la concentracón exstente en la dstrbucón del salaro mensual percbdo (10 3 ) por los 150 ejecutvos de una gran empresa. Salaro P Q , ,3 43,61 Q 80,84 P = Q ,6 80,84 43, A partr de los valores de P y Q representamos la curva de Lorenz. 14, ,3 86,6 P CONCENTRACIÓN ESCASA Antono Pajares Ruz 11
12 Ej.: Analzar la concentracón exstente en la dstrbucón del salaro mensual percbdo (10 3 ) por los 150 ejecutvos de una gran empresa. Para cuantfcar la concentracón analítcamente, calculamos el índce de Gn. Salaro TOTAL k 1 k 1 1 I = Q P Q P 00 Antono Pajares Ruz P 20 53,3 86,6 - G = 0 = , IG = = 0, Q 14,36 43,61 80,84 - Q +1 P 872,2 4308, ,9 Q P ,4 3776, CONCENTRACION ESCASA 12
13 OTROS ÍNDICES DE CONCENTRACIÓN Su planteamento Consderar las dstancas, meddas en sentdo vertcal, desde cada uno de los puntos que conforman la curva de Lorenz y la línea de equdstrbucón. S tal dstanca es nula para todos los puntos consderados, la concentracón sería mínma. S la curva de Lorenz se stúa en la línea de máxma concentracón, la concentracón será máxma. Antono Pajares Ruz 13
14 OTROS ÍNDICES DE CONCENTRACIÓN Q P = Q P = Q Q -P S S B Q +1 -P +1 I k 1 =1 c = k 1 ( P Q ) =1 P O Q -1 -P -1 A 0 I 1 c P -1 P P +1 Antono Pajares Ruz 14
15 Ej.: Analzar la concentracón exstente en la dstrbucón del salaro mensual percbdo (10 3 ) por los 150 ejecutvos de una gran empresa. Para cuantfcar la concentracón analítcamente, vamos ahora a determnar el índce de concentracón alternatvo al índce de Gn. I c = k 1 =1 ( Q ) P k 1 P =1 21,09 Ic = = 0, ,9 Salaro TOTAL Antono Pajares Ruz P 20 53,3 86,6 - Q 14,36 43,61 80,84-21,09 I c = 259,9 CONCENTRACION ESCASA P -Q 5,64 9,69 5,76-21,09 15
16 3. MEDIALA. Concepto Es aquel valor de la varable que, una vez ordenados todos los valores de la msma, dvde los totales de la msma en dos partes guales. Su determnacón Habrá que buscar, en general, el valor de la varable cuyo total acumulado relatvo sea el prmero en superar el 50% del total. Se procede de forma análoga a como determnamos la medana, con la únca salvedad de que aquí trabajamos con los valores Q en lugar de con las frecuencas acumuladas. Antono Pajares Ruz 16
17 3. MEDIALA. Su determnacón Dstrbucones de valores sn agrupar en ntervalos. Será aquel valor de la varable cuyo Q sea el prmero en superar el valor de 50. x + x+ 1 = > Ml = ; S x / Q = 50 2 er Ml x /1 Q 50 Dstrbucones de valores agrupadas en ntervalos. El ntervalo que engloba la medala será aquel cuyo Q sea el prmero en superar el valor de 50. En ese ntervalo suponemos que los totales se dstrbuyen unformemente, prorrateándolos, y defnendo así el valor aproxmado de la medala. ( er 1 Ml L,L /1 Q 50 Antono Pajares Ruz 50 Q 1 Ml = L 1+ a Q Q 1 17
18 3. MEDIALA. Su relacón con la medana La medana es sempre superor o gual que la medana. P Q ; = 1, 2,..., k Me Ml En el caso de mínma concentracón (equdstrbucón), medana y medala concden. P = Q Me = Ml Antono Pajares Ruz 18
19 3. MEDIALA. Ej.: Consderando la dstrbucón del salaro mensual percbdo (10 3 ) por los 150 ejecutvos de una gran empresa, determnar aquel valor salaral que dvde la masa salaral total de la empresa. Salaro TOTAL P 20 53,3 86,6 - Q 14,36 43,61 80,84 - Se trata de determnar la medala en esta dstrbucón. er 1 Q 50 Q = 80,84 ( Ml 60, ,61 Ml = ,84 43,61 3 Ml = 63, Antono Pajares Ruz 19
ESTADÍSTICA (GRUPO 12)
ESTADÍSTICA (GRUPO 2) CAPÍTULO II.-ANÁLISIS DE UNA CARACTERÍSTICA (DISTRIBUCIONES UNIDIMENSIONALES) TEMA.- DISTRIBUCIONES DE FRECUENCIAS DIPLOMATURA EN CIENCIAS EMPRESARIALES UNIVERSIDAD DE SEVILLA . DISTRIBUCIÓN
TEMA 5. ANÁLISIS DE UNA VARIABLE (III). MEDIDAS DE ASIMETRÍA, CURTOSIS Y CONCENTRACIÓN
DEPARTAMENTO DE ECONOMÍA GENERAL Y ETADÍTICA UNIDAD DOCENTE DE ETADÍTICA Y ECONOMETRÍA UNIVERIDAD DE HUELVA ANÁLII ETADÍTICO DEL TURIMO I 200-200200 DIPLOMATURA EN TURIMO TEMA 5 ANÁLII DE UNA VARIABLE
Tema 1: Estadística Descriptiva Unidimensional
Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. Fenómeno aleatoro: no es posble predecr el resultado. La estadístca se ocupa de aquellos fenómenos no determnstas donde
Prueba de Evaluación Continua
Estadístca Descrptva y Regresón y Correlacón Prueba de Evaluacón Contnua 1-III-18 1.- Dada la varable x y la nueva varable y=a+bx, ndcar (demostrándolo) la expresón exstente entre las respectvas medas
1. Notación y tabulación
Tema 2: Descrpcón Unvarante. otacón y tabulacón 2. Descrpcón gráfca 3. Descrpcón numérca. Momentos estadístcos. Meddas de poscón. Meddas de dspersón v. Varable tpfcada v. Meddas de forma v. Meddas de concentracón
CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso
CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que
TEMA 1.- CONCEPTOS BÁSICOS
TEMA 1.- CONCEPTOS BÁSICOS 1.1.- Cuestones tpo test 1.- En las encuestas personales puede codfcarse, por ejemplo, con un cero las que son contestadas por una mujer y con un uno las que lo son por un varón.
Medidas de Variabilidad
Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces
COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN
COLEGIO IGLÉS DEPARTAMETO IVEL: CUARTO MEDIO PSU. UIDAD: ESTADISTICA 3 PROFESOR: ATALIA MORALES A. ROLADO SAEZ M. MIGUEL GUTIÉRREZ S. JAVIER FRIGERIO B. MEDIDAS DE DISPERSIÓ Las meddas de dspersón dan
Regresión y Correlación Métodos numéricos
Regresón y Correlacón Métodos numércos Prof. Mguel Hesquo Garduño. Est. Mrla Benavdes Rojas Depto. De Ingenería Químca Petrolera ESIQIE-IPN hesquogm@yahoo.com.mx mbenavdesr5@gmal.com Regresón lneal El
Estas medidas serán más significativas cuanto más homogéneos sean los datos y pueden ser engañosas cuando mezclamos poblaciones distintas.
UIDAD 3: Meddas estadístcas Las meddas estadístcas o parámetros estadístcos son valores representatvos de una coleccón de datos y que resumen en unos pocos valores la normacón del total de datos. Estas
LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA
LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas
Tema 1: Análisis de datos unidimensionales
Tema : Análss de datos undmensonales. Varables estadístcas undmensonales. Representacones gráfcas.. Característcas de las dstrbucones de frecuencas undmensonales.. Varables estadístcas undmensonales. Representacones
Introducción a la Física. Medidas y Errores
Departamento de Físca Unversdad de Jaén Introduccón a la Físca Meddas y Errores J.A.Moleón 1 1- Introduccón La Físca y otras cencas persguen la descrpcón cualtatva y cuanttatva de los fenómenos que ocurren
CAPÍTULO IV. MEDICIÓN. De acuerdo con Székely (2005), existe dentro del período información
IV. Base de Datos CAPÍTULO IV. MEDICIÓN De acuerdo con Székely (2005), exste dentro del período 950-2004 nformacón representatva a nvel naconal que en algún momento se ha utlzado para medr la pobreza.
16/02/2015. Ángel Serrano Sánchez de León
Ángel Serrano Sánchez de León Índce Introduccón Varables estadístcas Dstrbucones de frecuencas Introduccón a la representacón gráfca de datos Meddas de tendenca central: meda (artmétca, geométrca, armónca,
Variables Aleatorias
Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.
17/02/2015. Ángel Serrano Sánchez de León
Ángel Serrano Sánchez de León 1 Índce Introduccón Varables estadístcas Dstrbucones esde frecuencas c Introduccón a la representacón gráfca de datos Meddas de tendenca central: meda (artmétca, geométrca,
Tema 4: Variables aleatorias
Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son
Variables Aleatorias
Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.
Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1
Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para
7ª SESIÓN: Medidas de concentración
Curso 2006-2007 7ª Sesón: Meddas de concentracón 7ª SESIÓN: Meddas de concentracón. Abrr el rograma Excel. 2. Abrr el lbro utlzado en las ráctcas anterores. 3. Insertar la Hoja7 al fnal del lbro. 4. Escrbr
I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez
Problema La sguente tabla epresa la estatura en cm. de soldados: Talla 5 56 60 6 68 6 80 8 88 Soldados 6 86 50 8 95 860 85 6 9 a) Haz un hstograma que represente la estatura en metros de los soldados.
TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1).
TRABAJO 1: Varables Estadístcas Undmensonales (Tema 1). Técncas Cuanttatvas I. Curso 2016/2017. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: En los enuncados de los ejerccos que sguen aparecen
ESTADÍSTICA. Definiciones
ESTADÍSTICA Defncones - La Estadístca es la cenca que se ocupa de recoger, contar, organzar, representar y estudar datos referdos a una muestra para después generalzar y sacar conclusones acerca de una
Operadores por Regiones
Operadores por Regones Fltros por Regones Los fltros por regones ntentan determnar el cambo de valor de un píxel consderando los valores de sus vecnos I[-1,-1] I[-1] I[+1,-1] I[-1, I[ I[+1, I[-1,+1] I[+1]
Licenciatura en Administración y Dirección de Empresas INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL
INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL Relacón de Ejerccos nº 2 ( tema 5) Curso 2002/2003 1) Las cento trenta agencas de una entdad bancara presentaban, en el ejercco 2002, los sguentes datos correspondentes
TEMA 14. ESCALAMIENTO CONJUNTO. INTRODUCCIÓN A LA TEORÍA DE LA RESPUESTA A LOS ITEMS (TRI)
TEMA 14. ESCALAMIENTO CONJUNTO. INTRODUCCIÓN A LA TEORÍA DE LA RESPUESTA A LOS ITEMS (TRI) 14.1. La Curva Característca de los ítems (CCI) 14.. Los errores típcos de medda 14.3. La Funcón de Informacón
Tema 1 Descripción de datos: Estadística descriptiva unidimensional Estadística descriptiva
Descrpcón de datos: Estadístca descrptva undmensonal Estadístca descrptva Objetvos: Ordenar, clasfcar, resumr grandes conjuntos de datos de modo que puedan ser fáclmente nterpretables Defncones báscas:
Cinemática del Brazo articulado PUMA
Cnemátca del Brazo artculado PUMA José Cortés Parejo. Enero 8. Estructura del brazo robótco El robot PUMA de la sere es un brazo artculado con artculacones rotatoras que le proporconan grados de lbertad
SEMANA 5 MEDIDAS DE TENDENCIA CENTRAL Y POSICIÓN
Estadístca SEMANA 5 MEDIDAS DE TENDENCIA CENTRAL Y POSICIÓN LOGRO DE APRENDIZAJE: Al fnalzar la sesón, el estudante estará en la capacdad de calcular e nterpretar meddas de tendenca central y poscón de
Una renta fraccionada se caracteriza porque su frecuencia no coincide con la frecuencia de variación del término de dicha renta.
Rentas Fnanceras. Renta fracconada 6. RETA FRACCIOADA Una renta fracconada se caracterza porque su frecuenca no concde con la frecuenca de varacón del térmno de dcha renta. Las característcas de la renta
CAPÍTULO 4 MARCO TEÓRICO
CAPÍTULO 4 MARCO TEÓRICO Cabe menconar que durante el proceso de medcón, la precsón y la exacttud de cualquer magntud físca está lmtada. Esta lmtacón se debe a que las medcones físcas sempre contenen errores.
EJERCICIOS RESUELTOS TEMA 2
EJERCICIOS RESUELTOS TEMA.1. La Moda, para el grupo de Varones de la Tabla 1, es: A) 4,5; B) 17; C) 60.. Con los datos de la Tabla 1, la meda en para las Mujeres es: A) gual a la meda para los Varones;
5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS.
5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS. Para organzar los datos a medda que el número de observacones crece, es necesaro condensar más los datos en tablas apropadas, a fn de presentar, analzar e nterpretar
2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.
. EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas
Medidas de centralización
1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos
IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas
IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el
Capítulo 2: ANALISIS EXPLORATORIO de DATOS Estadística Computacional 1º Semestre 2003
Unversdad Técnca Federco Santa María Departamento de Informátca ILI-80 Capítulo : ANALISIS EXPLORATORIO de DATOS Estadístca Computaconal º Semestre 003 Profesor :Héctor Allende Págna : www.nf.utfsm.cl/~hallende
EJERCICIOS PROPUESTOS TEMAS 1 Y 2
EJERCICIOS PROPUESTOS TEMAS 1 Y 2 1.- Indca para los sguentes caracteres s son varables (dferencando entre dscretas y contnuas) o atrbutos, y la escala de medda a la que pertenecen: a) Nvel de estudos
Estadística Unidimensional: SOLUCIONES
4ª SesónFecha: Estadístca Undmensonal: SOLUCIOES Varables estadístca dscreta 1 Con los datos del ejercco de Pág 19 nº 3 determna: a) Tabla de Frecuencas b) Dagrama de barras Gráfco acumulado c) Meddas
INTRODUCCIÓN. Técnicas estadísticas
Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad
Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.
Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco
ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística
ESTADISTÍCA. Poblacón, muestra e ndvduo Las característcas de una dstrbucón se pueden estudar drectamente sobre la poblacón o se pueden nferr a partr de l estudo de una muestra. Poblacón estadístca es
Estadística Descriptiva
Estadístca Descrptva ÍDICE ESTADÍSTICA DESCRIPTIVA. Poblacón y Muestra 4. Varables estadístcas 4 3. Frecuencas 5 4. Dstrbucones 7 5. Representacón gráfca 5. De caracteres cuanttatvos 5.. De varables estadístcas
Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma
Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................
EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL
Gestón Aeronáutca: Estadístca Teórca Facultad Cencas Económcas y Empresarales Departamento de Economía Aplcada Profesor: Santago de la Fuente Fernández EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL
Organización y resumen de datos cuantitativos
Organzacón y resumen de datos cuanttatvos Contendos Organzacón de datos cuanttatvos: dagrama de tallos y hojas, tablas de frecuencas. Hstogramas. Polígonos. Ojvas ORGANIZACIÓN Y RESUMEN DE DATOS CUANTITATIVOS
Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de:
Varables Aleatoras Varables Aleatoras Objetvos del tema: Concepto de varable aleatora Al fnal del tema el alumno será capaz de: Varables aleatoras dscretas y contnuas Funcón de probabldad Funcón de dstrbucón
A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa.
MEDIDA DE DIPERIÓ A. Una pregunta muy partcular que se puede hacer a una dstrbucón de datos es de qué magntud es es la heterogenedad que se observa. FICHA º 18 Las meddas de dspersón generalmente acompañan
Cálculo y EstadísTICa. Primer Semestre.
Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado en Geomátca y Topografía Escuela Técnca Superor de Ingeneros en Topografía, Geodesa y Cartografía. Unversdad Poltécnca de Madrd
Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:
VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes
1. Variable aleatoria. Clasificación
Tema 7: Varable Aleatora Undmensonal 1. Varable aleatora. Clasfcacón. Caracterzacón de una varable aleatora. Varable Aleatora dscreta. Varable Aleatora contnua 3. Característcas de una varable aleatora.
Variable Estadística
Varable Estadístca.- Los afconados al bésbol aprenden de memora las estadístcas de este juego. Por ejemplo, cuántos home runs (golpes que envían la pelota fuera del campo de juego) son necesaros para lderar
LECTURA 03: DISTRIBUCIONES DE FRECUENCIAS (PARTE II)
LECTURA 03 DISTRIBUCIONES DE FRECUENCIAS (PARTE II) DISTRIBUCIONES DE FRECUENCIAS EN INTERVALOS DE CLASE Y DISTRIBUCIONES DE FRECUENCIAS POR ATRIBUTOS O CATEGORÍAS TEMA 6 DISTRIBUCIÓN DE FRECUENCIAS EN
ESTADÍSTICA (GRUPO 12)
ESTADÍSTICA (GRUPO ) CAPÍTULO II.- AÁLISIS DE UA CARACTERÍSTICA (DISTRIBUCIOES UIDIMESIOALES) TEMA 6.- MEDIDAS DE FORMA: ASIMETRÍA Y CURTOSIS. MOMETOS. DIPLOMATURA E CIECIAS EMPRESARIALES UIVERSIDAD DE
TEMA 10: ESTADÍSTICA
TEMA 10: La Estadístca es la parte de las matemátcas que se ocupa de recoger, organzar y analzar grandes cantdades de datos para estudar alguna característca de un colectvo. 1. VARIABLES S UIDIMESIOALES
Variable Estadística
Varable Estadístca 1.- Los afconados al bésbol aprenden de memora las estadístcas de este juego. Por ejemplo, cuántos home runs (golpes que envían la pelota fuera del campo de juego) son necesaros para
LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION
Unversdad Católca Los Ángeles de Chmbote LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION 1. DEFINICION: Las meddas estadístcas
Análisis de la varianza de un factor
Análss de la varanza de un factor El test t de muestras se aplca cuando se queren comparar las medas de dos poblacones con dstrbucones normales con varanzas guales y se observan muestras ndependentes para
DEPARTAMENTO DE MATEMÁTICAS
. INTRODUCCIÓN En la socedad de la nformacón en la que vvmos resulta mprescndble dsponer de técncas y conceptos que permtan extraer, de manera fable y senclla, nformacón relevante de dferentes conjuntos
Para construir un diagrama de tallo y hoja seguimos los siguientes pasos:
UNIDAD 2: Gráfcos estadístcos Los gráfcos muestran vsualmente y de forma rápda la dstrbucón de los datos y sus prncpales característcas, consttuyen un mportante complemento en la presentacón de la nformacón.
Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia
MAT-3 Estadístca I Tema : Meddas de Dspersón Facltador: Félx Rondón, MS Insttuto Especalzado de Estudos Superores Loyola Introduccón Las meddas de tendenca central son ndcadores estadístcos que resumen
Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica?
Relacones entre varables cualtatvas Problema: xste relacón entre el estado nutrconal y el rendmento académco de estudantes de enseñanza básca? stado Nutrconal Malo Regular Bueno TOTAL Bajo 13 95 3 55 Rendmento
Práctica 3. Media, mediana y moda.
Práctca 3. Meda, ana y moda. La presente práctca, te permtrá estudar las das de tendenca central menconadas, a partr de los sguentes datos que corresponden a la estatura de estudantes, ncaremos la práctca.
Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.
Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para el conocmento
Descripción de una variable
Descrpcón de una varable Tema. Defncones fundamentales. Tabla de frecuencas. Datos agrupados. Meddas de poscón Meddas de tendenca central: meda, medana, moda Ignaco Cascos Depto. Estadístca, Unversdad
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Unversdad de Cádz Departamento de Matemátcas MATEMÁTICAS para estudantes de prmer curso de facultades y escuelas técncas Tema 13 Dstrbucones bdmensonales. Regresón y correlacón lneal Elaborado por la Profesora
Tema 7: MEDIDAS DE CONCENTRACIÓN
Introduccón a la Econometría. Conceto. Las meddas o índces de concentracón tenen como objetvo fundamental cuantfcar el grado de desgualdad en el rearto o dstrbucón de una magntud económca (rentas, negoco,
Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.
ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 Págna 0 PRACTICA Meda y desvacón típca 1 Las edades de los estudantes de un curso de nformátca son: 17 17 18 19 18 0 0 17 18 18 19 19 1 0 1 19 18 18 19 1 0 18 17 17 1 0 0 19 0 18 a) Haz una tabla
Tema 8: DESIGUALDAD, Xisco Oliver Economía del Bienestar (2º GECO)
Tema 8: DESIGUALDAD, REDISTRIBUCIÓN Y POBREZA Xsco Olver 20610 - Economía del Benestar (2º GECO) Motvacón Benestar: el objetvo últmo del Estado es maxmzar el benestar El benestar se obtene a partr de las
CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso.
CARTAS DE CONTROL Las cartas de control son la herramenta más poderosa para analzar la varacón en la mayoría de los procesos. Han sdo dfunddas extosamente en varos países dentro de una ampla varedad de
Tema 6. Estadística descriptiva bivariable con variables numéricas
Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables
PROBABILIDAD Y ESTADÍSTICA
FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patrca Valdez y Alfaro renev@unam.m Versón revsada: uno 08 T E M A S DEL CURSO. Análss Estadístco de datos muestrales.. Fundamentos de la
Tema 1:Descripción de una variable. Tema 1:Descripción de una variable. 1.1 El método estadístico. 1.1 El método estadístico. Describir el problema
Tema :Descrpcón de una varable Tema :Descrpcón de una varable. El método estadístco. Descrpcón de conjuntos de datos Dstrbucones de frecuencas. Representacón gráfca Dagrama de barras Hstograma. Meddas
Enfoque de la dominancia para el análisis de la evolución de la pobreza entre 1988 y 2004
Enfoque de la domnanca para el análss de la evolucón de la pobreza entre 1988 y 2004 Juan Dego Trejos S. Lus Ángel Ovedo C. Insttuto de Investgacones en Cencas Económcas Unversdad de Costa Rca Hechos 30
Agrupa los datos en intervalos de amplitud 8. Elabora una tabla similar a la anterior !!!""#""!!!
Undad 15 REPASO DE ESTADÍSTICA! 11 Resuelve tú ( Pág "#$ ) sdo: Las puntuacones de una prueba de ntelgenca aplcada a los 75 alumnos anterores han 87 105 88 103 114 15 108 107 118 114 19 100 106 113 105
Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico
Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Tabla de contendos Ap.A Apéndce A: Metodología
PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.
Nombre: Mecansmo: PROYECTO DE TEORIA DE MECANISMOS. Análss cnemátco y dnámco de un mecansmo plano artculado con un grado de lbertad. 10. Análss dnámco del mecansmo medante el método de las tensones en
ESTADÍSTICA. x es el cociente entre la frecuencia absoluta del valor
el blog de mate de ada: ESTADÍSTICA pág. 1 ESTADÍSTICA La estadístca es la cenca que permte acer estudos de grandes poblacones escogendo sólo un pequeño grupo de ndvduos, lo que aorra tempo y dnero. Poblacón
Regresión y Correlación
Regresón Correlacón.- El número de turstas (en mllones) entrados en España mensualmente durante los años 00 00 se epone en la sguente estadístca. Nº Turstas 00,76,6,9 3,8 4,4 4,8 8,93 9,98 5,9 4,34,6 3,65
TEMA2. Dinámica I Capitulo 3. Dinámica del sólido rígido
TEM. Dnámca I Captulo 3. Dnámca del sóldo rígdo TEM : Dnámca I Capítulo 3: Dnámca del sóldo rígdo Eje nstantáneo de rotacón Sóldo con eje fjo Momento de nerca. Teorema de Stener. Conservacón del momento
Figura 1
5 Regresón Lneal Smple 5. Introduccón 90 En muchos problemas centífcos nteresa hallar la relacón entre una varable (Y), llamada varable de respuesta, ó varable de salda, ó varable dependente y un conjunto
Análisis de la varianza de un factor
Análss de la varanza de un factor El test t de muestras se aplca cuando se queren comparar las medas de dos poblacones con dstrbucones normales con varanzas guales y se observan muestras ndependentes para
Métodos cuantitativos de análisis gráfico
Métodos cuanttatvos de análss gráfco Método de cuadrados mínmos Regresón lneal Hemos enfatzado sobre la mportanca de las representacones gráfcas hemos vsto la utldad de las versones lnealzadas de los gráfcos
Slide 1. Slide 2 Organización y Resumen de Datos. Slide 3. Universidad Diego Portales. Tablas de Frecuencia. Estadística I
Slde 1 Unversdad Dego Portales Estadístca I Seccón II: Dstrbucones de Frecuenca y Representacón Gráfca Sgla: EST2500 Nombre Asgnatura: Estadístca I Slde 2 Organzacón y Resumen de Datos Como recordará,
3 - VARIABLES ALEATORIAS
arte Varables aleatoras rof. María B. ntarell - VARIABLES ALEATORIAS.- Generaldades En muchas stuacones epermentales se quere asgnar un número real a cada uno de los elementos del espaco muestral. Al descrbr
Media es la suma de todas las observaciones dividida por el tamaño de la muestra.
Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,
ESTADÍSTICA DESCRIPTIVA
Bachllerato ESTADÍSTICA DESCRIPTIVA Introduccón La estadístca es una rama de las matemátcas que trata de la recogda, ordenacón, análss y presentacón adecuada de datos recogdos sobre certa poblacón (no
Estadísticos muéstrales
Estadístcos muéstrales Hemos estudado dferentes meddas numércas correspondentes a conjuntos de datos, entre otras, estudamos la meda, la desvacón estándar etc. Ahora vamos a dstngur entre meddas numércas
CESMA BUSINESS SCHOOL
CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 4 RENTAS y MÉTODOS DE AMORTIZACIÓN Javer Blbao García 1 1.- Introduccón Defncón: Conjunto de captales con vencmentos equdstantes de tempo. Para que exsta
REGRESION LINEAL SIMPLE
REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una mustra de observacones formadas por pares de varables: (x 1, y 1 ) (x, y ).. (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente
ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales
ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Bajo el térmno Estadístca Descrptva se engloban las técncas que nos permtrán realzar un análss elemental de las observacones
Probabilidad Grupo 23 Semestre Segundo examen parcial
Probabldad Grupo 3 Semestre 015- Segundo examen parcal La tabla sguente presenta 0 postulados, algunos de los cuales son verdaderos y otros son falsos. Analza detendamente cada postulado y elge tu respuesta