CONCEPTOS CLAVE DE LA UNIDAD 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CONCEPTOS CLAVE DE LA UNIDAD 1"

Transcripción

1 CONCEPTOS CLAVE DE LA UNIDAD 1 1. Proeso iterativo. La idea fudametal de u proeso iterativo osiste e lo siguiete: Dada ua o varias situaioes iiiales (etapa 1), se les aplia algua trasformaió iterativa, la ual ovierte a la situaió o situaioes iiiales e otras, que pasa a ser osideradas omo uevas situaioes iiiales e el proeso. 2. Proeso ifiito. La oió de proeso ifiito se etra e u proeso iterativo ilimitado, es deir, que por muy grade que sea el úmero de vees que se realiza el proeso, siempre es posible efetuar uo más, y otro más, y así suesivamete, hasta el ifiito. 3. Suesió. Cuado se tiee u ojuto de térmios formados segú ua ley o regla determiada, se die que diho ojuto es ua suesió. Si el úmero de térmios es limitado, la suesió es fiita, pero si el úmero de térmios es ilimitado, lo ual se idia o putos suspesivos, la suesió reibe el ombre de suesió ifiita. 4. Suesió geométria. a, a, a, a, a,..., a,... represeta a ua suesió, esta será Si a 1 geométria si y sólo si el valor de la razó permaee ostate para toda a. El valor de diha ostate se le deomia razó omú y se represeta o la letra miúsula r. 5. Térmio geeral de ua suesió geométria. a, a, a, a, a,..., a,... es ua suesió geométria o razó omú r Si , etoes su térmio geeral está dado por la expresió 1 a = a1r. Coeptos lave de la Uidad 1 1-1

2 6. Serie geométria. Ua serie es la suma idiada de los térmios de ua suesió. Si la suesió es geométria, etoes la serie es geométria. Si el úmero de térmios es limitado, la serie es fiita, pero si el úmero de térmios es ilimitado, lo ual se idia o putos suspesivos, la serie es ifiita. 7. Suma hasta el eésimo térmio de ua serie geométria. La eésima suma parial de la serie geométria o primer térmio a y razó omú r es S = a ( 1 r ) 1 r, Z y r Serie geométria overgete y serie geométria divergete. a) Si L es u valor ostate y la eésima suma parial de ua serie geométria es tal que S L, etoes la serie es overgete y su suma es igual a L. b) Si la eésima suma parial de ua serie geométria es tal que S, etoes la serie es divergete y su suma se vuelve ifiita. 9. Noió de ite al ifiito. Si la fuió S ( ) es tal que S L, etoes el úmero L es el ite de la fuió S ( ) uado tiede al ifiito y se esribe S = L. Esto último sigifia que oforme tiede al ifiito, los valores de las imágees de S ( ) se aproxima a L más que a ualquier otro úmero. 10. Límites que sugiere reglas para operar o el ifiito. Si es ua ostate y Z, etoes: 1) = 1-2 Coeptos lave de la Uidad 1

3 2) = = 3) 1 1 = = 0 4) 5) [ ] = 0 = = = = 6) [ ] = = 7) [ ] = = 8) [ ] = =, si > 0 9) [ ] = =, si < 0 10) = = 11), si > 0 = =, si < 0 12) = = 0 13) 0 = = 14) = =, si > 0 15) = =, si < 0 16) = =, si > 0 17) = =, si < 0 Coeptos lave de la Uidad 1 1-3

4 11. Priipales reglas para el álulo algebraio de ites al ifiito. Si f = L y g = M, etoes: a) Regla de la suma para ites: f g = L M b) Regla del produto para ites: f g = L M ) Regla del oiete para ites: Si M 0, etoes d) Si es ua ostate, etoes f L = g M = y f = L 12. Límite al ifiito de ua fuió de variable real. Sea f ( x ) ua fuió de variable real, el úmero L es el ite de la fuió f ( x ) uado x se vuelve ifiita o meos ifiita que se esribe respetivamete f ( x) = L o f ( x) = L, si uado x tiede al ifiito o a x meos ifiito, las imágees de f ( x ) se aproxima al valor L más que a ualquier otro úmero. Si f ( x) = o f ( x) =, etoes se dirá que el x ite es ifiito. Si f ( x) = o f ( x) es meos ifiito. x =, etoes se dirá que el ite 13. Límites que sugiere reglas para operar o meos ifiito. Si es ua ostate y Z, etoes: 1) = 2) 3) = =, si es par = =, si es impar 4) 1 1 = = Coeptos lave de la Uidad 1

5 5) 6) [ ] = 0 = = = = 7) [ ] = = 8) [ ] = = = 9) [ ] = =, si > 0 10) [ ] = =, si < 0 11) = = 12), si > 0 y es par = =, si > 0 y es impar = =, si < 0 y es par 13) 14) = = 15) = = 0, si < 0 y es impar 16) 0 = = 17) = =, si > 0 18) 19) 20) 21) = = = =, si < 0 = = = =, si > 0 y es par, si > 0 y es impar, si < 0 y es par Coeptos lave de la Uidad 1 1-5

6 22) = =, si < 0 y es impar 14. Límite de ua fuió de variable real e u puto. Sea f ( x ) ua fuió de variable real y a R, el úmero L es el ite de la fuió f ( x ) uado x tiede a a, que se deota f ( x) = L, si uado x se aproxima al úmero a, las imágees de f ( x ) se aproxima al valor L más que a ualquier otro úmero. Si f ( x) f ( x) =, etoes se die que el ite es ifiito. Si =, etoes se die que el ite es meos ifiito. 15. Existeia y uiidad del ite de ua fuió e u puto. Si f ( x) = L y f ( x) = L, etoes existe f ( x) y Notas: Si existe el ite de ua fuió e u puto, es úio. Este ite tambié puede ser ifiito o meos ifiito. f x = L. 16. Priipales reglas para el álulo algebraio de ites e u puto. Si a R y además f ( x) = L y g x = M, etoes: a) Regla de la suma para ites: f x g x = L M b) Regla del produto para ites: f x g x = L M ) Regla del oiete para ites: Si M 0, etoes d) Si es ua ostate, etoes f x L = g x M = y f ( x) = L 1-6 Coeptos lave de la Uidad 1

Análisis de respuesta en frecuencia

Análisis de respuesta en frecuencia Aálisis de respuesta e freueia Co el térmio respuesta e freueia, os referimos a la respuesta de u sistema e estado estable a ua etrada seoidal. E los métodos de la respuesta e freueia, la freueia de la

Más detalles

LAS SUCESIONES Y SU TENDENCIA AL INFINITO

LAS SUCESIONES Y SU TENDENCIA AL INFINITO LAS SUCESIONES Y SU TENDENCIA AL INFINITO Sugerecias al Profesor: Resaltar que las sucesioes geométricas ifiitas so objetos matemáticos que permite modelar alguos procesos ifiitos, y que a la vez su costrucció

Más detalles

CAPÍTULO III LÍMITES Y CONTINUIDAD. Y decimos que el límite de f(x), al tender x hacia c, es L. 2 lim. 3 x

CAPÍTULO III LÍMITES Y CONTINUIDAD. Y decimos que el límite de f(x), al tender x hacia c, es L. 2 lim. 3 x CAPÍTULO III LÍMITES Y CONTINUIDAD. DEFINICIÓN INTUITIVA DE LÍMITE La idea de límite que teemos e uestro diario vivir, es la que o maor propiedad os puede aerar al oepto de límite, así por ejemplo, hablamos

Más detalles

INTEGRACIÓN POR FRACCIONES PARCIALES

INTEGRACIÓN POR FRACCIONES PARCIALES Profesor: Jaime H. Ramírez Rios Págia INTEGRIÓN POR FRIONES PRILES 8 Hay oasioes dode es eesario ivertir el proeso. Para ver ómo fuioa e geeral el método de fraioes pariales, trabajaremos sobre ua fuió

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc.

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc. Sucesioes Sucesi o. Ua sucesió es u cojuto ifiito de úmeros ordeados de tal forma que se puede decir cuál es el primero, cuál el segudo, el tercero, etc. Los térmios de ua sucesió se desiga mediate a 1,

Más detalles

TABLAS DE CONTINGENCIA. IGNACIO MÉNDEZ GÓMEZ-HUMARÁN

TABLAS DE CONTINGENCIA. IGNACIO MÉNDEZ GÓMEZ-HUMARÁN TABLAS DE CONTINGENCIA IGNACIO MÉNDEZ GÓMEZ-HUMARÁN imgh000@yahoo.om El uso de Tablas de Cotigeia permite estudiar la relaió etre dos variables ategórias o riterios de lasifiaió. E ua Tabla, los regloes

Más detalles

Solución de Recurrencias. Dr. Ivan Olmos Pineda

Solución de Recurrencias. Dr. Ivan Olmos Pineda Soluió de Reurreias Dr. Iva Olmos Pieda Coteido Itroduió a la Soluió de Reurreias Téias para la Soluió de Reurreias Por sustituió Reurreias homogéeas Reurreias o homogéeas Cambio de variable Trasformaió

Más detalles

(finitas o infinitas)

(finitas o infinitas) Series ifiitas. SUCESIONES: Es u cojuto de úmeros: a,a a, dispuestos e u orde defiido y que guarda ua determiada ley de formació, que se expresa por ua formula Sucesió fiita: umero itado de térmios:, 5,8-5.

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

1. Algunas Ideas Generales sobre Métodos Numéricos

1. Algunas Ideas Generales sobre Métodos Numéricos . Alguas Ideas Geerales sobre Métodos Numérios. Itroduió E ieia teología so omues los problemas para los que o es posible hallar ua soluió aalítia. Es freuete etoes reduir el problema a u aso partiular,

Más detalles

MMII_MSV_c1: Problemas de contorno de ecuaciones diferenciales ordinarias lineales

MMII_MSV_c1: Problemas de contorno de ecuaciones diferenciales ordinarias lineales MMII_MSV_: Problemas de otoro de euaioes difereiales ordiarias lieales Guió: Co esta lase iiiamos el estudio del Método de Separaió de Variables (MSV). Su apliaió para resolver problemas de otoro de euaioes

Más detalles

TEOREMAS DE ESPACIO VECTORIAL

TEOREMAS DE ESPACIO VECTORIAL TEOEMAS DE ESPACIO ECTOIAL 1.-Sea u ojuto o vaío y se ( k,, ) u ampo. Se die que es u espaio vetoial sobe k si está defiidas dos leyes de omposiió, llamadas adiió y multipliaió po ua esala, tales que:

Más detalles

8.- LÍMITES DE FUNCIONES

8.- LÍMITES DE FUNCIONES 8.- LÍMITES DE FUNCIONES.- DOMINIO DE DEFINICIÓN. Halla el domiio de defiició de f() = + 5+6 Solució: El domiio es -{,}. Halla el domiio de defiició de f() = 6 Solució: El domiio es (-,-] [, ).. Halla

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad Evaluació NOMBRE APELLIDOS CURSO GRUPO FECHA CALIFICACIÓN Calcula el térmio geeral de ua progresió geométrica que tiee de térmio a y por razó /. a) b) c) El 6 es: a) b) 0 c) / 6 7 El es: a) b) c) 0 El

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

6. SUCESIONES Y SERIES NUMÉRICAS 6.1. SUCESIONES NUMÉRICAS

6. SUCESIONES Y SERIES NUMÉRICAS 6.1. SUCESIONES NUMÉRICAS Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM. 6. SUCESIONES Y SERIES NUMÉRICAS 6... Sucesioes de úmeros reales 6.. SUCESIONES NUMÉRICAS Se llama sucesió de úmeros reales a cualquier

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García TEORÍA DE CÁLCULO I Para Grados e Igeiería Capítulo 3: Sucesioes y series Domigo Pestaa Galvá José Mauel Rodríguez García Figuras realizadas co Arturo de Pablo Martíez TEMA 3. Sucesioes y series 3. Sucesioes

Más detalles

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero ucesioes Ua sucesió es u cojuto de úmeros dados ordeadamete de modo que se pueda umerar: primero, segudo, tercero Ejemplos: a), 3, 5, 7, 9, b), 4, 9, 6, 25, 36 c) 2, 4, 8, 6, 32, 64 e llama térmios a los

Más detalles

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1 AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO / TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como ua fució que asiga

Más detalles

GUÍA Nº 3 Probabilidades y Estadística Teoría de las Probabilidades

GUÍA Nº 3 Probabilidades y Estadística Teoría de las Probabilidades U.T.F.S.M. Departameto de Matemátia GUÍA Nº robabilidades y Estadístia Teoría de las robabilidades rofesor oordiador : Sr. Hétor Allede O. Ayudate oordiador : Rubé arra V. EJERIIO Nº. Ua aja otiee bolitas,

Más detalles

a) Aumento de la temperatura K c b) Adición de I 2 O 5 (s) Cantidad de I 2 c) Aumento de la presión Cantidad de CO

a) Aumento de la temperatura K c b) Adición de I 2 O 5 (s) Cantidad de I 2 c) Aumento de la presión Cantidad de CO 1.- Cosidere el siguiete sistema geeral e equilibrio: a A(g) + b B(g) C(g) + d D(g) H < a) Idique razoadamete e qué aso so iguales los valores de las ostates y. b) Justifique ómo afetará al sistema la

Más detalles

Sesión 8 Series numéricas III

Sesión 8 Series numéricas III Sesió 8 Series uméricas III Defiició Serie de Potecias Si a 0, a, a,, a so úmeros reales y x es ua variable, ua expresió de la forma a x, se llama Serie de Potecias. Lo abreviaremos co SP. Alguos ejemplos

Más detalles

SERIES POTENCIALES. 1.- Hallar el campo de convergencia de la serie potencial: 3 2 n. n n. 2 n = = ( ) ( 1)

SERIES POTENCIALES. 1.- Hallar el campo de convergencia de la serie potencial: 3 2 n. n n. 2 n = = ( ) ( 1) Escuela de Igeieros de Bilbao Departameto Matemática Aplicada SERIES POTENCIALES.- Hallar el campo de covergecia de la serie potecial: ( + ) 3 y Realizado el cambio de variable, + 3 = y, teemos la serie:

Más detalles

Series alternadas. n n. Es decir sus términos son alternadamente positivos y negativos. Se analiza su comportamiento utilizando el siguiente teorema:

Series alternadas. n n. Es decir sus términos son alternadamente positivos y negativos. Se analiza su comportamiento utilizando el siguiente teorema: So series de la forma Series alteradas + ( ) a o ( ) a co a > = =. Es decir sus térmios so alteradamete positivos y egativos. Se aaliza su comportamieto utilizado el siguiete teorema: Teorema de Leibiz

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Series

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Series Programa de Acceso Iclusivo, Equidad y Permaecia PAIEP Uiversidad de Satiago de Chile Series Sea {a } N ua sucesió de úmeros reales, etoces a la expresió a + a 2 + a 3 + + a + se le deomia serie ifiita

Más detalles

ANÁLISIS DE LA EXTENSIÓN DE LA GRÁFICA DE UNA FUNCIÓN

ANÁLISIS DE LA EXTENSIÓN DE LA GRÁFICA DE UNA FUNCIÓN ANÁLISIS DE LA EXTENSIÓN DE LA GRÁFICA DE UNA FUNCIÓN Sugerenias al Profesor: Trabajar úniamente on funiones polinomiales y raionales, alarando que generalmente al bosquejar sus gráfias solo se muestra

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43

SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43 TEMA. SUCESIONES DE NÚMEROS. LOGARITMOS SOLUCIONES DE LAS ACTIVIDADES Págs. a Págia. a) Es la sucesió de los úmeros impares:, 5, 7 b) Se suma al valor absoluto del úmero y se cambia de sigo: 7, 0, c) Se

Más detalles

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE:

Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE: Ua progresió es geométrica, si cada termio después del primero se obtiee multiplicado el aterior por u valor costates Este valor costate se llama razó geométrica (q) E geeral: a a : a......... a ; 3 Si

Más detalles

PROGRESIONES ARITMÉTICAS.-

PROGRESIONES ARITMÉTICAS.- PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió.

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

Límites en el infinito y límites infinitos de funciones.

Límites en el infinito y límites infinitos de funciones. Límites e el ifiito y límites ifiitos de fucioes. 1 Calcula 2 Límite e el ifiito Cuado se calcula el límite de ua fució e el ifiito se trata de determiar la tedecia que tedrá la fució (los valores que

Más detalles

Práctico 2 - Sucesiones y Número e. 1. Sucesiones. Universidad de la República Cprimerálculo 1 Facultad de Ingeniería - IMERL Segundo semestre 2017

Práctico 2 - Sucesiones y Número e. 1. Sucesiones. Universidad de la República Cprimerálculo 1 Facultad de Ingeniería - IMERL Segundo semestre 2017 Uiversidad de la Repúblia Cprimerálulo Faultad de Igeiería - IMERL Segudo semestre 07 Prátio - Suesioes y Número e. Suesioes. Estudiar mootoía, aotaió y overgeia de las siguietes suesioes (a ) N, dode:

Más detalles

Métodos Numéricos 18/10/2014

Métodos Numéricos 18/10/2014 Métodos Numérios 8// Clasifiaió de Métodos De itervalo Aiertos Biseió Regula Falsi Seate Newto Rapso Iteraió de Puto Fijo Gráfio ALGORITMO DE BISECCION ENTRADA: a,, Eps: real; ma: etero SALIDA : p : real

Más detalles

2.3 SISTEMAS DE ECUACIONES (2.3_AL_T_062, Revisión: , C14)

2.3 SISTEMAS DE ECUACIONES (2.3_AL_T_062, Revisión: , C14) .3 SISTEMS DE ECUCIONES (.3_L_T_06, Revisió: 05-04-06, C4) La forma geeral de este problema es: L x (euaió lieal) Cuado L operador matriial SISTEM DE ECUCIONES (SISTEM MTRICIL). Método más simple de soluió:

Más detalles

Materia Calidad Capítulo 9. Gráficos de control por atributos

Materia Calidad Capítulo 9. Gráficos de control por atributos Materia Calidad Capítulo 9 Gráfios de otrol por atributos Coeptos geerales A pesar de que los gráfios de otrol se asoia o mediioes u observaioes por variables, se ha desarrollado versioes por atributos.

Más detalles

MMP. MÉTODOS DE MUESTREO Y PRUEBA DE MATERIALES

MMP. MÉTODOS DE MUESTREO Y PRUEBA DE MATERIALES LIBRO: PARTE: TÍTULO: CAPÍTULO: MMP. MÉTODOS DE MUESTREO Y PRUEBA DE MATERIALES 4. MATERIALES PARA PAVIMENTOS 05. Materiales Asfáltios, Aditivos y Mezlas 010. Pruebas e el Residuo de la Pelíula Delgada

Más detalles

SUCESIONES. Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

SUCESIONES. Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja, que se reproduce

Más detalles

POSIBLE SOLUCIÓN DEL EXAMEN DE INVESTIGACIÓN OPERATIVA DE SISTEMAS DE JUNIO DE 2003.

POSIBLE SOLUCIÓN DEL EXAMEN DE INVESTIGACIÓN OPERATIVA DE SISTEMAS DE JUNIO DE 2003. POSILE SOLUIÓN DEL EXMEN DE INVESTIGIÓN OPERTIV DE SISTEMS DE JUNIO DE. Problema (,5 utos): E ua ivestigaió o ratoes, se usa u laberito o uatro eldas,, y D, segú se muestra e la figura. E ada miuto, u

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

b) a n = n + 1 2n 5 n c) a n = f ) a e n α R g) a n = 3n + ( 2) n b n = 1. Sea c n una sucesión real, probar que si existe lím n n b , mas aun lím n

b) a n = n + 1 2n 5 n c) a n = f ) a e n α R g) a n = 3n + ( 2) n b n = 1. Sea c n una sucesión real, probar que si existe lím n n b , mas aun lím n Uiversidad de la Repúblia Cálulo 1 Faultad de Igeiería - IMERL Segudo semestre 016 Prátio 3 - Suesioes y Series 1. Suesioes 1. Estudiar mootoía, aotaió y overgeia de las siguietes suesioes (a ) N, dode:

Más detalles

Solución de Sistemas de Ecuaciones

Solución de Sistemas de Ecuaciones Métodos Numérios - Cap : Soluió de Euaióes o Lieales 6/9/8 Uidad 4 Soluió de Sistemas de Euaioes Represetaió matriial para sistemas de euaioes U úmero α se die raíz o ero de la euaió f(x) si f (). Los

Más detalles

S6: Series Numéricas (I)

S6: Series Numéricas (I) S6: Series Numéricas (I) Aprederemos como hacer sumas co u úmero ifiito de térmios. U ejemplo de suma ifiita es: 0 + + + + 4 + 5 + Para sumarla primero sumaremos térmios y después haremos +. Notació: S

Más detalles

1. Serie de Potencias

1. Serie de Potencias . Serie de Potecias Recordemos que dada ua sucesió {b } N, podemos defiir ua serie: E el caso particular e que b = a (x c) b la serie tedría la forma b = a (x c) y es llamada serie de potecias cetrada

Más detalles

VARIABLES DE ESTADO EN SISTEMAS LINEALES DE TIEMPO DISCRETO. 1. INTRODUCCIÓN.

VARIABLES DE ESTADO EN SISTEMAS LINEALES DE TIEMPO DISCRETO. 1. INTRODUCCIÓN. NOAS BREVES SUJEAS A REVISIÓN SOBRE: VARIABLES DE ESADO EN SISEMAS LINEALES DE IEMPO DISCREO.. INRODUCCIÓN. Los métodos de variables de estado para el aálisis y diseño de sistemas de tiempo otiuo puede

Más detalles

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18 Los úmeros reales.. Los úmeros reales El cojuto de los úmeros reales está formado por los úmeros racioales y los irracioales. Se represeta por la letra Los úmeros racioales so los úmeros eteros, los decimales

Más detalles

Series de potencias Introducción. Temas Series de potencias. Intervalo y radio de convergencia de una serie de potencias.

Series de potencias Introducción. Temas Series de potencias. Intervalo y radio de convergencia de una serie de potencias. Sesió 27 Series de potecias Temas Series de potecias. Itervalo y radio de covergecia de ua serie de potecias. Capacidades Coocer y compreder el cocepto de serie de potecias. Determiar el itervalo y el

Más detalles

4. Sucesiones de números reales

4. Sucesiones de números reales 4. Sucesioes de úmeros reales Aálisis de Variable Real 2014 2015 Ídice 1. Sucesioes y límites. Coceptos básicos 2 1.1. Defiició de sucesió... 2 1.2. Sucesioes covergetes... 2 1.3. Sucesioes acotadas...

Más detalles

PRÁCTICA POLINOMIOS DE TAYLOR. RESTO DE LAGRANGE CURSO Práctica 6 (5- XI-2014)

PRÁCTICA POLINOMIOS DE TAYLOR. RESTO DE LAGRANGE CURSO Práctica 6 (5- XI-2014) PRÁCTICA POLINOMIOS DE TAYLOR. RESTO DE LAGRANGE CURSO 04-05 Prácticas Matlab Práctica 6 (5- XI-04) Objetivos Represetar ua sucesió de térmios Itroducir el cocepto de serie como suma ifiita de los térmios

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43

SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43 TEMA. SUCESIONES DE NÚMEROS. LOGARITMOS SOLUCIONES DE LAS ACTIVIDADES Págs. a a 8 + ( ); Y fialmete: a 7 8 + (7 ) 86 0 7 + 0. S 0 Págia 7 [ ( 7 + 9 5) ] 95. a) 6 : pero 0 : 6,6 o es PG b) 6 : ( ) : 6 :

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales 38 Matemáticas : Cálculo diferecial e IR Capítulo Sucesioes y series de úmeros reales Sucesioes Defiició 37- Llamaremos sucesió de úmeros reales a cualquier aplicació f: N R y la represetaremos por { a,

Más detalles

Hoja de Problemas Tema 3. (Sucesiones y series)

Hoja de Problemas Tema 3. (Sucesiones y series) Depto. de Matemáticas Cálculo (Ig. de Telecom.) Curso 23-24 Hoja de Problemas Tema 3 (Sucesioes y series) Sucesioes de úmeros reales. Sea {a } N, {b } N sucesioes de úmeros reales. Demostrar o refutar

Más detalles

Dinámica compleja. Conjuntos de Julia y Mandelbrot Método de Newton

Dinámica compleja. Conjuntos de Julia y Mandelbrot Método de Newton Estalmat Madrid Miguel Reyes Diámica compleja Cojutos de Julia y Madelbrot Método de Newto Los úmeros complejos Los úmeros complejos so los úmeros de la forma a dode a y b so úmeros reales e i es la uidad

Más detalles

ACTIVIDADES NO PRESENCIALES

ACTIVIDADES NO PRESENCIALES E.T.S.I. Idustriales y Telecomuicació Asigatura: Cálculo I Grado e Igeiería Mecáica Este documeto cotiee las actividades o preseciales propuestas al termiar la clase del día que se idica. Se sobreetiede

Más detalles

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia 50 PARA EMPEZAR, REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja,

Más detalles

TALLER DEL CENTRO DE APRENDIZAJE DE MATEMÁTICAS

TALLER DEL CENTRO DE APRENDIZAJE DE MATEMÁTICAS TALLER DEL CENTRO DE APRENDIZAJE DE MATEMÁTICAS Series Ifiitas de Números y Fucioes Guillermo Romero Melédez Departameto de Actuaría, Física y Matemáticas ü 1. SERIES DE NÚMEROS ü La serie =0 a = a 0 +

Más detalles

) = Ln(1 + 1 n ) 1 n. Ln( n ) n tiene términos positivos y si 0 < lím n n bn. < entonces ambas series divergen o bien ambas series convergen

) = Ln(1 + 1 n ) 1 n. Ln( n ) n tiene términos positivos y si 0 < lím n n bn. < entonces ambas series divergen o bien ambas series convergen Criterio de Comparació Si a 0 y b 0. Si existe ua costate C > 0 tal que a Cb etoces la covergecia de b implica la covergecia de a. Ejemplo.- Sabemos que la serie coverge a, pero como (+), etoces la serie

Más detalles

Eficiencia de algoritmos. Javier Campos

Eficiencia de algoritmos. Javier Campos Efiieia de algoritmos Javier Campos Efiieia de algoritmos Problema de álulo: espeifiaió de ua relaió existete etre uos valores de etrada datos del problema y otros de salida resultados Eemplo: problema

Más detalles

a se denomina serie a es convergente y SERIES = si r <1 S n La suma de los términos de una sucesión infinita { } n n=1 infinita o simplemente serie

a se denomina serie a es convergente y SERIES = si r <1 S n La suma de los términos de una sucesión infinita { } n n=1 infinita o simplemente serie SERIES L sum de los térmios de u suesió ifiit { } = ifiit o simplemete serie se deomi serie Y se represet o el símbolo = Defiiió: = 4 KK Dd l serie = ésim sum pril = 4 K K, se desigrá S su S = = = 4 K

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO PROBLEMAS RESUELOS SELECIVIDAD ANDALUCÍA 016 QUÍMICA EMA 5: EQUILIBRIO QUÍMICO Juio, Ejeriio 6, Oió A Reserva, Ejeriio 5, Oió B Reserva 3, Ejeriio 3, Oió A Reserva 3, Ejeriio 6, Oió B Setiembre, Ejeriio

Más detalles

SECCIÓN 2: DIMENSIONADO A SECCIÓN LLENA

SECCIÓN 2: DIMENSIONADO A SECCIÓN LLENA álulo de edes de Saeamieto: Hidráulia del Saeamieto SEIÓN : DIMENSIONADO A SEIÓN LLENA DIMENSIONADO Es la obteió del diámetro eesario para trasportar el audal eesario o las veloidades máximas previstas,

Más detalles

Series infinitas de números reales. Series convergentes

Series infinitas de números reales. Series convergentes Series ifiitas de úmeros reales. Series covergetes Series ifiitas de úmeros reales. Series covergetes Las sucesioes de úmeros reales se itrodujero co la iteció de poder cosiderar posteriormete sus sumas

Más detalles

Sucesiones de números reales Sucesiones convergentes: límite de una sucesión

Sucesiones de números reales Sucesiones convergentes: límite de una sucesión Sucesioes de úmeros reales Sucesioes covergetes: límite de ua sucesió Tato e la educació secudaria obligatoria como e el bachillerato se habla poco de las sucesioes de úmeros reales. Si acaso se dedica

Más detalles

OBJETIVO: RESOLVER PROBLEMAS DE PROGRESIÓN ARITMETICA APLICANDO FORMULA ULTIMO TÉRMINO Y DE LA SUMA

OBJETIVO: RESOLVER PROBLEMAS DE PROGRESIÓN ARITMETICA APLICANDO FORMULA ULTIMO TÉRMINO Y DE LA SUMA I. Muicipalidad De Providecia Corporació De Desarrollo Social Liceo Polivalete Arturo Alessadri Palma A Nº Depto. de Matemática Profesor: Pedro Campillay GUÍA MEDIO COEFICIENTE DOS MODULO MATEMATICO NOMBRE:

Más detalles

SUCESIÓN. La colección de números que definen a una sucesión permite clasificar a éstas en:

SUCESIÓN. La colección de números que definen a una sucesión permite clasificar a éstas en: UCEIÓN CPR. JORGE JUAN Xuvia-Naró Ua sucesió, (a ), de úmeros reales es ua fució que hace correspoder a cada úmero atural, excluido el cero, u úmero real, la cual viee defiida segú: f: N* R a a i a Número

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

Sucesiones I Introducción

Sucesiones I Introducción Temas Qué es ua sucesió? Notacioes y coceptos relacioados. Maeras de presetar ua sucesió. Gráfico de sucesioes. Capacidades Coocer y compreder el cocepto de sucesió. Coocer y maejar las diferetes maeras

Más detalles

Unidad 10: LÍMITES DE FUNCIONES

Unidad 10: LÍMITES DE FUNCIONES Uidad 1: LÍMITES DE FUNCIONES LÍMITES 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Ua sucesió de úmeros reales es u cojuto ordeado de iiitos úmeros reales. Los úmeros reales a1, a,..., a,... se llama térmios,

Más detalles

Apuntes de Métodos Estadísticos I

Apuntes de Métodos Estadísticos I Uiversidad de los Ades Faultad de Cieias Eoómias y Soiales Esuela de Estadístia Aputes de Métodos Estadístios I ELEMENTOS BÁSICOS DEL ÁLGEBRA DE CONJUNTOS rof. Gudberto J. Leó R. 23 Coteido TULISTA DE

Más detalles

TEMA 4. Series de números reales. Series de Potencias.

TEMA 4. Series de números reales. Series de Potencias. TEMA 4 Series de úmeros reales. Series de Potecias.. Sucesió de úmeros reales Las sucesioes de úmeros reales so ua buea herramieta para describir la evolució de ua magitud discreta, y el ite surge al estudiar

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

INTRODUCCIÓN A LA PROBABILIDAD

INTRODUCCIÓN A LA PROBABILIDAD INTRODUIÓN L PROBBILIDD EXPERIMENTOS LETORIOS Y DETERMINISTS Los experimetos o feómeos cuyo resultado o puede coocerse hasta haber realizado la experiecia se llama aleatorios o estocásticos. uado el resultado

Más detalles

/ n 0 N / D(f) = {n N / n n 0 }

/ n 0 N / D(f) = {n N / n n 0 } Liceo Nº 10 016 SUCESIONES Primera defiició Ua sucesió de úmeros reales es ua fució cuyo domiio es el cojuto de los úmeros aturales (N) y cuyo recorrido está coteido e el cojuto de los úmeros reales (R).

Más detalles

a n = Ejemplo: Representa las gráficas de las funciones f(x) = 1/x, g(x) = x 2 y h(x) =

a n = Ejemplo: Representa las gráficas de las funciones f(x) = 1/x, g(x) = x 2 y h(x) = TEMA 9: LÍMITE Y CONTINUIDAD DE UNA FUNCIÓN. 9. Cocepto de límite lateral. Límite. 9. Operacioes co fucioes covergetes. 9.3 Cálculo de límites. 9.4 Cotiuidad de ua fució. 9.5 Asítotas: Verticales, horizotales

Más detalles

S7: Series numéricas II

S7: Series numéricas II Dada la serie S = k= a k, si la suma es fiita diremos que es ua serie covergete y e caso cotrario ua serie divergete. A la siguiete sucesió de úmeros la llamaremos la sucesió de sus sumas parciales: S

Más detalles

INSTITUCIÓN EDUCATIVA JAVIERA LONDOÑO SEVILLA. GUIA Nº 3: Sucesiones, Límite de Sucesiones y Límite de Funciones en R

INSTITUCIÓN EDUCATIVA JAVIERA LONDOÑO SEVILLA. GUIA Nº 3: Sucesiones, Límite de Sucesiones y Límite de Funciones en R P á g i a INSTITUCIÓN EDUCATIVA JAVIERA LONDOÑO SEVILLA GUIA Nº 3: Sucesioes, Límite de Sucesioes y Límite de Fucioes e R GRADO: º AREA: MATEMÁTICAS PROFESORA: Ebli Martíez M. ESTUDIANTE: PERIODO: III

Más detalles

UNIDAD 9. PROBABILIDAD Matemáticas II. Ies do Barral.Curso 2017/ Experimentos aleatorios

UNIDAD 9. PROBABILIDAD Matemáticas II. Ies do Barral.Curso 2017/ Experimentos aleatorios 1. Experimetos aleatorios U experimeto se llama aleatorio cuado o se puede predecir su resultado; además, si se repitiese el mismo experimeto e codicioes aálogas, los resultados puede diferir. a) El resultado

Más detalles

valor absoluto de sus términos, se tiene la serie: que si es convergente, entonces también es convergente la serie alternada.

valor absoluto de sus términos, se tiene la serie: que si es convergente, entonces también es convergente la serie alternada. (Aputes e revisió para orietar el apredizaje) CONVERGENCIA ABSOLUTA TEOREMA. Si e la serie alterada ( ) valor absoluto de sus térmios, se tiee la serie: a + a + + a + a se toma el = que si es covergete,

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

Tema 5. Funciones de una variable. Diferenciación y aplicaciones.

Tema 5. Funciones de una variable. Diferenciación y aplicaciones. Tema 5. Fuioes de ua variable. Difereiaió y apliaioes. 5. Fuioes de ua variable: límites y otiuidad. 5. Derivada de ua fuió. Apliaioes. 5. Derivaió implíita. 5.4 Resoluió uméria de euaioes: método de Newto.

Más detalles

TEMA 1 NÚMEROS REALES

TEMA 1 NÚMEROS REALES . Objetivos / Criterios de evaluació TEMA 1 NÚMEROS REALES O.1.1 Coocer e idetificar los cojutos uméricos N, Z, Q, I,R, Im O.1.2 Saber covertir úmeros racioales e fraccioes. O.1.3 Redodeo y aproximació

Más detalles

UNIVERSIDAD DE ANTIOQUIA SEMILLERO DE MATEMÁTICAS NIVEL11 TALLER N o 13 SUCESIONES. Agustín Luis Cauchy

UNIVERSIDAD DE ANTIOQUIA SEMILLERO DE MATEMÁTICAS NIVEL11 TALLER N o 13 SUCESIONES. Agustín Luis Cauchy UNIVERSIDAD DE ANTIOQUIA SEMILLERO DE MATEMÁTICAS NIVEL TALLER N o SUCESIONES Agustí Luis Cauchy Nació: agosto de 789 e París (Fracia) Murió: mayo de 857 e Sceaux (Paris-Fracia) Vida Laplace y Lagrage

Más detalles

Los Conjuntos de Julia y Mandelbrot

Los Conjuntos de Julia y Mandelbrot Los Cojutos de Julia y Madelbrot Ismael Itroduió Tego dos objetivos al realizar este trabajo: ser matemátiamete lo más riguroso posible y que se pueda experimetar si teer que apreder matemátias más avazadas.

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

Utilizando la fórmula que nos proporciona el número de divisores se tiene que:

Utilizando la fórmula que nos proporciona el número de divisores se tiene que: Hoj de Prolems º Alger IV /. Hllr u úmero etero A que o teg ms ftores primos que, y 7, siedo demás que ª tiee divisores más que A y que ª tiee divisores ms que A. Clulr tmié l sum de todos los divisores

Más detalles

La primera y más importante secuencia de números es la de los números naturales: 1, 2, 3, 4, 5, 6,

La primera y más importante secuencia de números es la de los números naturales: 1, 2, 3, 4, 5, 6, 3ª Evaluació Parte II Sucesioes uméricas E umerosas ocasioes aparece secuecias de úmeros que sigue ua pauta o regla de formació, como por ejemplo la pauta seguida para la umeració de los diferetes portales

Más detalles

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos:

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos: T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Variable aleatoria: defiició y tipos: Ua variable aleatoria es ua fució que asiga u úmero real, y sólo uo, a cada uo de los resultados de u eperimeto aleatorio.

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

3.8. Ejercicios resueltos

3.8. Ejercicios resueltos 3.8 Ejercicios resueltos 101 3.8. Ejercicios resueltos 3.8.1 Ua sucesió a ) se dice que es cotractiva si existe 0

Más detalles

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS SECCIONES A. Series de térmios de sigo variable. B. Series depedietes de parámetros. C. Ejercicios propuestos. 193 A. SERIES DE TÉRMINOS DE SIGNO VARIABLE. E

Más detalles

Clase 16. Tema: Racionalización de expresiones. Matemáticas 9. Bimestre: I Número de clase: 16. Tipo 1. Esta clase tiene video.

Clase 16. Tema: Racionalización de expresiones. Matemáticas 9. Bimestre: I Número de clase: 16. Tipo 1. Esta clase tiene video. Bimestre: I Número de lse: 16 Mtemátis Clse 16 Est lse tiee video Tem: Riolizió de expresioes Atividd 46 1 Le l siguiete iformió sore l riolizió. E mtemátis es omú eotrros o expresioes rioles que otiee

Más detalles

α β la cual puede presentar

α β la cual puede presentar 5.4 Covergecia de ua serie de Fourier 8 5.4 Covergecia de ua serie de Fourier Teorema de covergecia de las series de fourier Ua serie de Fourier es ua fució ( ) f x cotiua e [, ] α β la cual puede presetar

Más detalles