lím lím Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en 1: x 1 (3x2 )-lím 8 x 1 =2 x 1 x)2 -lím x 1 8 =

Tamaño: px
Comenzar la demostración a partir de la página:

Download "lím lím Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en 1: x 1 (3x2 )-lím 8 x 1 =2 x 1 x)2 -lím x 1 8 ="

Transcripción

1 LÍMITES LECCIÓN 7 Índice: Cálculo de ites en un punto. Epresión indeterminada L/0. Epresión indeterminada 0/0. Algunos ites de funciones irracionales. Otras técnicas básicas para el cálculo de ites. Problemas..- Cálculo de ites en un punto El cálculo de estos ites se reduce a aplicar sistemáticamente las reglas enunciadas en el apartado de la lección 5, así como la tabla de los ites. Además se utilizan dos resultados ya vistos (problemas y 2 de la lección 4): º) El ite de la función f()k en 0 : kk 0 2º) El ite de la función f() en 0 : 0 0 Veamos como ejemplo el ite de la función polinómica f()3 2-8 en : f() (32-8) (32 ) ( ) Como se ve, todos estos pasos se reducen a sustituir por, lo que se conoce con el nombre de dar el paso al ite. Eso es lo que haremos de ahora en adelante: f() (32-8) A diferencia de lo que sucedía con los ites en el infinito, los ites de las funciones polinómicas en un punto están siempre determinados. Conviene, pues, que no confundas ambos tipos de ites. Sacar aquí factor común la máima potencia de carece de sentido y puede conducirnos a epresiones indeterminadas. Veamos ahora cómo se resuelven algunas de las indeterminaciones que pueden aparecer. El ite de una resta es la resta de los ites (primera regla de las operaciones con ites). 2 El ite del producto de un número por una función es el producto del número por el ite de la función (segunda regla de las operaciones con ites). 3 El ite de un producto ( 2 ) es el producto de los ites (tercera regla de las operaciones con ites). 4 Por los resultados mencionados más arriba (los problemas y 2 de la lección 4). 5 Damos el paso al ite. - -

2 2.- Epresión indeterminada L 0/0 Esta indeterminación solo se refiere al signo, ya que el ite, si eiste, es + o -. Por ejemplo: 2 2 (-2) Para eliminarla, se estudia el signo del 0. El resultado final depende de los signos de numerador y denominador: 2 2 (-2) Si al estudiar el signo del cero observamos que depende de por dónde nos acerquemos al punto, si por la izquierda o por la derecha, calcularemos los ites laterales: Por tanto: 2 < > Esto significa que no eiste el ite de esta función en 2. Otro ejemplo: > (+ ) Epresión indeterminada 0/0 La indeterminación 0/0 se resuelve descomponiendo en factores el numerador y el denominador, y simplificando a continuación: (-3)(+3) 3 (-3) Damos el paso al ite. 2 Como 2 (recuerda la definición de ite), (-2) 2 es siempre positivo. 3 Por la regla de los signos: +/++. 4 El signo del cero depende de si es mayor o menor que 2. 5 Como <2 (recuerda la definición de ite lateral izquierdo), -2 es negativo. 6 Por la regla de los signos: +/--. 7 Como >2 (recuerda la definición de ite lateral derecho), -2 es positivo. 8 Como se trata de una función potencial-eponencial, la base debe ser positiva. Por tanto, solo tiene sentido el ite lateral derecho en, ya que su dominio es (-,0) (,+ ). 9 Aplicamos la tabla de ites. 0 Si diésemos aquí el paso al ite, aparecería la indeterminación 0/0. Por tanto, descomponemos en factores y simplificamos L-7

3 Otro ejemplo: ( 2-6)( -3+) ( -3-)( -3+) ( 2-6)( -3+) 4-3- (-4)(+4)( -3+) 4-4 [(+4)( -3+) ] Algunos ites de funciones irracionales Como se ha visto en la lección anterior y en esta, la transformación de los ites indeterminados en determinados consiste muchas veces en sustituir la función cuyo ite se pretende calcular por otra función distinta, pero con el mismo ite. Pues bien, en los ites de funciones del tipo f/ g que den la indeterminación 0/0, conviene pasar a la función f/g. Observa que el dominio de la primera función está contenido en el de la segunda, ya que la primera solo tiene sentido cuando f es no negativa y g es positiva, mientras que la segunda tiene sentido además cuando f y g son ambas negativas 3. Veamos un ejemplo: (-2) (-) Para eliminar la epresión indeterminada 0/0 necesitamos simplificar el factor que se anula en el numerador y en el denominador, pero no podemos hacerlo porque entonces llegamos a una función en la que no tiene sentido plantear el ite que estamos calculando, ya que su dominio es [2,+ ): -2 - Al llegar aquí quizá pueda alguno empezar a dudar de lo que aprendió sobre las propiedades de las raíces: (-2) (-) Pero estas propiedades no son ciertas cuando los radicandos son Si diésemos aquí el paso al ite, aparecería la indeterminación 0/0. Por tanto, descomponemos en factores y simplificamos. Esto se consigue multiplicando y dividiendo por el conjugado del denominador. 2 Damos el paso al ite. 3 Dicho de otro modo, la primera función es una restricción de la segunda. 4 Si diésemos aquí el paso al ite, aparecería la indeterminación 0/0. Por tanto, descomponemos en factores L-7

4 negativos. Y aquí,, -2 y - son los tres negativos, pues el dominio de la función de partida es (-,0) [2,+ ); y, por tanto, el ite en 0 coincide con el ite lateral izquierdo. El problema desaparece si procedemos como hemos indicado: (-2) (-) (-2) (-) Veamos otro ejemplo: - 2 (-) Pero también en este caso funciona el método anterior: (-) 5-3 Por tanto, puede uno desentenderse de los dominios si en este tipo de problemas se aplica el procedimiento indicado. Aunque se ha considerado aquí el caso particular de un cociente de raíces cuadradas, lo dicho vale también cuando se trata de un cociente de raíces de índice par cualquiera. Si las raíces son de índice impar, no es necesario aplicar lo dicho en este apartado, ya que entonces el radicando puede ser negativo. Sin embargo, también en este caso puede procederse de igual forma. Por último, si las raíces son de distinto índice, se reducen primero a índice común. * * * Por otro lado, dado que pueden aparecer raíces de índice cualquiera, hay que tener especial cuidado a la hora de sacar factores o divisores fuera de un signo radical (o de meterlos) 7. Nos atendremos a la siguiente regla (fácil de ver): n n f n Par Impar + f f f - -f f Pasamos a una función cuyo dominio es (-,0) (0,) [2,+ ) y que coincide con la de partida en el dominio de esta. 2 Después de simplificar la, pasamos a otra función cuyo dominio es (-,) [2,+ ) y que vuelve a coincidir con la de partida en el dominio de esta. 3 Damos el paso al ite. 4 Como el dominio de la función de partida es (0,), las operaciones con radicales son aquí correctas, ya que los radicandos y - son positivos. 5 Hemos pasado a una función cuyo dominio es (-,), pero que se comporta como la de partida en el dominio de esta. 6 Hemos pasado a una función cuyo dominio es (-,0) (0,), pero que se comporta como la de partida en el dominio de esta. 7 Igual que nos sucedía en la lección anterior con algunos ites L-7

5 Veamos un ejemplo: 2-2 (-2) 2 <0 (-2) 3 <0 (-2) (-2) <0 < Otras técnicas básicas para el cálculo de ites Para el cálculo de ciertos ites se requiere conocer las gráficas de algunas funciones: ln 7 >0 ln * * * En algunas ocasiones conviene hacer las operaciones que aparecen indicadas en la función antes de calcular el ite de esta: (-2)(+2) (-)(+2)-2 2 (-2)(+2) (-2)(+2) (-2)(+2) 9 (-2)(+) 2 (-2)(+2) En otras ocasiones, sin embargo, no es necesario: (-2) Problemas ) Calcula los ites de las siguientes funciones en los puntos indicados (E() significa parte entera de ): Como sale la indeterminación 0/0, descomponemos en factores. 2 Como el dominio de la función es (-,0) [2,+ ), el ite coincide con el ite lateral izquierdo. Aunque es fácil el cálculo del dominio, puede sustituirse por el uso de la calculadora. Así, en este caso, vemos que el radicando sale negativo para 0, y positivo para -0,. Si fuese positivo por ambos lados, habría que calcular los dos ites laterales por separado. 3 Ya que <0 y el índice es par. 4 Aplicamos el procedimiento que hemos indicado antes. 5 Damos el paso al ite. 6 Aplicamos la tabla de ites. 7 Ya que el dominio de la función ln es (0,+ ). 8 Antes de sacar denominador común, transformo la primera fracción algebraica multiplicando numerador y denominador por -. 9 Si diésemos aquí el paso al ite, aparecería la indeterminación 0/0. Por tanto, descomponemos en factores y simplificamos L-7

6 0 si <2 a) f() 3- si 2 -/ si <- c) f() 2+3 si >- 2 si <2 e) f() 2 si 2 -/2 si >2 en 2 b) f() 2 +2 si 0 si >0 - si 0 en - d) f() -3 si >0 en 2 f) f()e() en 0 en 0 en 0 2) Halla: a) - - d) (+3)3/ g) 4 5 (-4) j) 2+cos (/) m) b) ln 2+sen c) (2 +) (+3)/2-2 e) 5 (-5) 2 f) 2 (-2) 2 h) i) k) - (2+)/(+) l) n) ñ) o) p) q) r) s) -(e/ +e 2/ ) t) ) Calcula: a a) a-6 3 a 2 -a-6 b) a 2 +a+ 2 - a 2 -a+ 2 a+- a- (a>0) 4) Halla: a) 3 d) a a 2 +a-2a 2 g) 2 -(a+)+a a 2 -a 2 h) a -e - j) m) π/2 >π/2 cos sen cos b) n - - e) k) n) π/2 >π/2 o) (2 -) / p) r) -3 c) a f) 5 -a 5 i) 7 -a 7 +e / l) e tg + e tg q) 3 - a -a ln cos -cos 2 -cos ñ) 2/(3-ln ) s) log 2 /2 t) /(-) 5) Calcula el ite en 0 y en de la función f()log L-7

2º) El límite de la función f(x)=x, tanto en - como en + : Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en + :

2º) El límite de la función f(x)=x, tanto en - como en + : Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en + : LÍMITES LECCIÓN 6 Índice: Cálculo de ites en el infinito. Epresión indeterminada -. Epresión indeterminada /. Epresión indeterminada 0. Epresión indeterminada ±. Límites de sucesiones. Cálculo de ites

Más detalles

Matemáticas CCSS LÍMITES DE FUNCIONES 1. INTRODUCCIÓN BÁSICA: A) LÍMITES SOBRE GRÁFICAS. Ejercicio nº 1.- Ejercicio nº 2.

Matemáticas CCSS LÍMITES DE FUNCIONES 1. INTRODUCCIÓN BÁSICA: A) LÍMITES SOBRE GRÁFICAS. Ejercicio nº 1.- Ejercicio nº 2. LÍMITES DE FUNCIONES. INTRODUCCIÓN BÁSICA: A) LÍMITES SOBRE GRÁFICAS Ejercicio nº.- Ejercicio nº.- Página B) LÍMITES APOYÁNDONOS EN LAS GRÁFICAS B.) FUNCIONES POLINÓMICAS De grado : a ) 3 + b ) 3 + c )

Más detalles

1. Halla el dominio, el recorrido, las asíntotas y los límites e imágenes que se indican para cada gráfica. y asíntota vertical de:

1. Halla el dominio, el recorrido, las asíntotas y los límites e imágenes que se indican para cada gráfica. y asíntota vertical de: Identificación gráfica de funciones, límites asíntotas Al observar la gráfica de una función es posible determinar gran cantidad de parámetros características de dicha función aunque no conozcamos su epresión,

Más detalles

TEMA 6 LÍMITE Y CONTINUIDAD

TEMA 6 LÍMITE Y CONTINUIDAD TEMA 6 LÍMITE Y CONTINUIDAD 6.. IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN. Dada la función f() = 2, a qué valor se aproima f() cuando se aproima a 2? Dada la función f() =?, a qué valor se aproima f() cuando

Más detalles

Cálculo de límites. Continuidad

Cálculo de límites. Continuidad Chapter 8 Cálculo de límites. Continuidad 8. Definición Una función f () tiene límite l en a, siparatodasucesióndevalores n a las imágines correspondientes f ( n ) l. Sediceentoncesque f () f (a) a 8.2

Más detalles

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD. LÍMITE DE UNA FUNCIÓN Diremos que una función y f () tiene por ite L cuando la variable independiente tiende a, y se nota por f ( ) L, cuando al acercarnos

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD LÍMITES Y CONTINUIDAD Tema 4: LÍMITES Y CONTINUIDAD. Índice:. Límite de una función en un punto. Límites laterales.. Límites en el infinito.. Cálculo de límites... Propiedades de los límites... Límites

Más detalles

Límite de una función. Cálculo de límites

Límite de una función. Cálculo de límites 6ª y 7ª Sesión...Fecha:... Límite de una función. Cálculo de ites Límite de una función en un punto. Límites laterales. Ejercicios. Pág. 4 nº. Pág. 55 nº 7 3. Pág. 55 nº4 4. Pág 55 nº 8 5. Pág. 55 nº 9

Más detalles

TEMA1: CÁLCULO DE LÍMITES DE FUNCIONES.

TEMA1: CÁLCULO DE LÍMITES DE FUNCIONES. TEMA: CÁLCULO DE LÍMITES DE FUNCIONES.. Límite en un punto ( a) La condición necesaria y suficiente para que eista el límite de una función en un punto es que eistan los dos límites laterales de la función

Más detalles

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x = Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.

Más detalles

Repartido 4. Profesor Fernando Díaz Matemática A 3ro E.M.T. Iscab 2016

Repartido 4. Profesor Fernando Díaz Matemática A 3ro E.M.T. Iscab 2016 Repartido 4 Profesor Fernando Díaz Matemática A 3ro E.M.T. Iscab 2016 6. Estudiar los límites laterales de las siguientes funciones en los puntos que anulan al denominador: A) B) 7. Estudiar la existencia

Más detalles

1.- CONCEPTO DE LÍMITE. LÍMITE DE UNA FUNCIÓN EN UN PUNTO.

1.- CONCEPTO DE LÍMITE. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. º Bachillerato Matemáticas I Tema 8:Límites y continuidad.- CONCEPTO DE LÍMITE. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. En ocasiones interesa saber hacia qué valor se aproima una función cuando la variable

Más detalles

MATEMÁTICA - 5to. AÑO D - Prof. Sandra Corti

MATEMÁTICA - 5to. AÑO D - Prof. Sandra Corti Límite de una función Idea intuitiva del ite de una función en un punto En numerosas cuestiones relacionadas con la Matemática y sus aplicaciones se presenta un problema que podemos enunciar de este modo:

Más detalles

3 2x +1. 3) Prueba que la ecuación 5 x =8x-2 tiene alguna raíz real. Encuentra un intervalo de amplitud menor que 0,25 donde esté dicha raíz.

3 2x +1. 3) Prueba que la ecuación 5 x =8x-2 tiene alguna raíz real. Encuentra un intervalo de amplitud menor que 0,25 donde esté dicha raíz. 21 de diciembre de 2000. 1 1) Calcula: 0 ln 2) Halla las asíntotas de la función: 5 3 f() 2-2 3 +7 3) Prueba que la ecuación 5 8-2 tiene alguna raíz real. Encuentra un intervalo de amplitud menor que 0,25

Más detalles

LÍMITE DE UNA FUNCIÓN EN UN PUNTO

LÍMITE DE UNA FUNCIÓN EN UN PUNTO pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO c significa que toma valores cada vez más próimos a c. Se lee tiende a c. Por ejemplo: ; `9; `; `; `; `; `9; `; `999; Es una secuencia de números cada vez más próimos

Más detalles

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real Apuntes de Análisis Curso 18/19 Esther Madera Lastra 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real,, un único número real y = f (. A

Más detalles

1) (1,6p) Estudia y clasifica las discontinuidades de la función: x+4-3 x-5. f(x)=

1) (1,6p) Estudia y clasifica las discontinuidades de la función: x+4-3 x-5. f(x)= 2 de diciembre de 2008. ) (,6p) Estudia y clasifica las discontinuidades de la función: f()= +4-3 -5 2) (,6p) Halla las ecuaciones de las asíntotas de la siguiente función y estudia la posición relativa:

Más detalles

Veamos ahora el comportamiento de la función parte entera (f(x) = E(x)). Si x se aproxima a 2, a qué valor tiende f(x)?

Veamos ahora el comportamiento de la función parte entera (f(x) = E(x)). Si x se aproxima a 2, a qué valor tiende f(x)? LÍMITES Y CONTINUIDAD DE FUNCIONES. C O N C E P T O D E L Í M I T E D E U N A F U N C I Ó N E N U N P U N T O Consideremos la función f(x)x², cuya gráfica es una parábola. Si x se aproxima a, a qué valor

Más detalles

TEMA 8. FUNCIONES, LÍMITES Y CONTINIDAD.

TEMA 8. FUNCIONES, LÍMITES Y CONTINIDAD. TEMA 8. FUNCIONES, LÍMITES Y CONTINIDAD. 1. Concepto de función.. Dominio e imagen de una función. 3. Tipos de funciones. 4. Operaciones con funciones. 5. Concepto de límite. 6. Cálculo de límites. 7.

Más detalles

LÍMITES DE FUNCIONES. Sol: Sol: 0. Sol: 1/2 28) Sol: 4 30) Sol: Sol: 13. Sol: + Sol: 2/3. Sol: Sol: 1

LÍMITES DE FUNCIONES. Sol: Sol: 0. Sol: 1/2 28) Sol: 4 30) Sol: Sol: 13. Sol: + Sol: 2/3. Sol: Sol: 1 ) ) ) + 5 + + + + + + + + 5 + ) ( ) + 5) ( + ) + ) ( + ) + LÍMITES DE FUNCIONES ) 7) ( ) + + + / No eiste, porque vale si, y si + 8) ( ) + 9) 5 + 0) 5 + ) 5+ ) 5+ ) + 5+ ) 5) + + + ) + + + + + 7) + + 8)

Más detalles

Teóricas de Análisis Matemático (28) Práctica 6 L Hospital. x x. lim

Teóricas de Análisis Matemático (28) Práctica 6 L Hospital. x x. lim Teóricas de Análisis Matemático (8) Práctica 6 L Hospital Caso cero sobre cero Veamos tres problemas de límites conocidos: Práctica 6 Parte Regla de L Hospital 3 3 3 sen(3) Los límites y se resuelven mediante

Más detalles

Apuntes de Límites de funciones

Apuntes de Límites de funciones Apuntes de Límites de funciones En el tema anterior estudiamos el concepto de función real de variable real y sus principales características. En este tema, introducimos la idea intuitiva de límite de

Más detalles

Tema 9. Limite de funciones. Continuidad

Tema 9. Limite de funciones. Continuidad Tema 9. Limite de funciones. Continuidad 1. Límite de una función. Funciones convergentes La idea intuitiva de límite de una función en un punto es fácil de comprender: es el valor hacia el que se aproxima

Más detalles

Apuntes de Límites de funciones

Apuntes de Límites de funciones Apuntes de Límites de funciones En el tema anterior estudiamos el concepto de función real de variable real y sus principales características. En este tema, introducimos la idea intuitiva de límite de

Más detalles

x f(x) ?

x f(x) ? Idea intuitiva de ite: Sea c R y una función f definida cerca de c aunque no necesariamente en el mismo c. El número L es el ite de f cuando se aproima a c, y se escribe f() = L si y sólo si los valores

Más detalles

UNIDAD 8.- LÍMITES DE FUNCIONES. CONTINUIDAD (tema 11 del libro) tiene por límite L cuando la variable independiente x tiende a x.

UNIDAD 8.- LÍMITES DE FUNCIONES. CONTINUIDAD (tema 11 del libro) tiene por límite L cuando la variable independiente x tiende a x. UNIDAD 8.- ÍMITES DE FUNCIONES. CONTINUIDAD (tema del libro). ÍMITE. ÍMITES ATERAES Diremos que una función y f () tiene por ite cuando la variable independiente tiende a, y se nota por f ( ), cuando al

Más detalles

TEMA 8. LÍMITES Y CONTINUIDAD

TEMA 8. LÍMITES Y CONTINUIDAD TEMA 8. LÍMITES Y CONTINUIDAD. IDEA DE LÍMITE. La idea de lmite de una función f() cuando ésta tiende a un punto a, (se escribe f () ), es la del valor al que se acerca la función cuando vamos tomando

Más detalles

Reglas para el cálculo de límites

Reglas para el cálculo de límites Reglas para el cálculo de ites Pedro González Ruiz Sevilla, diciembre 9. Introducción El objetivo de éste artículo es ofrecer al alumno un conjunto de reglas para tener éito en el cálculo de ites. El profesor,

Más detalles

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales. Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos

Más detalles

TEMA 10.-LÍMITES DE FUNCIONES Y CONTINUIDAD

TEMA 10.-LÍMITES DE FUNCIONES Y CONTINUIDAD TEMA.-Límites de funciones y continuidad.- Matemáticas I. SUCESIONES DE NÚMEROS REALES TEMA.-LÍMITES DE FUNCIONES Y CONTINUIDAD Una sucesión de números reales es un conjunto de números (a, a, a 3,...,

Más detalles

Tema 5. Límites y continuidad de funciones

Tema 5. Límites y continuidad de funciones Matemáticas Aplicadas a las Ciencias Sociales II Análisis: Límites y continuidad 97 Tema 5 Límites y continuidad de funciones Límite de una función en un punto Idea inicial Si una función f está definida

Más detalles

5.3 Dominios de funciones: Polinómicas: Dom f(x): R La X puede tomar cualquier valor entre (, + )

5.3 Dominios de funciones: Polinómicas: Dom f(x): R La X puede tomar cualquier valor entre (, + ) Tema 5: Funciones. Dominio, Límites, Asíntotas y Continuidad de Funciones 5.1 Concepto de Dominio de una función Función: es una regla que asigna a cada número real X un único número real Y. X Dom R Dom

Más detalles

Tema 11: Límites de funciones. Continuidad y ramas infinitas.

Tema 11: Límites de funciones. Continuidad y ramas infinitas. Tema 11: Límites de funciones. Continuidad y ramas infinitas. Ejercicio 1. Hallar los ites siguientes: a) b) 5 5 c) 4 7 d) ( sen ) / 4 a) ( ) 9, pues f ( ) es continua en b) 5 5 5 5 10 10 5 5 Como dicha

Más detalles

UNIDAD DIDÁCTICA 9: Límites y continuidad

UNIDAD DIDÁCTICA 9: Límites y continuidad accés a la universitat dels majors de anys acceso a la universidad de los mayores de años UNIDAD DIDÁCTICA 9: Límites y continuidad ÍNDICE Concepto de límite de una función en un punto. Indeterminaciones.

Más detalles

Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito

Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito OPERACIONES CON INFINITO Sumas con infinito Infinito más un número Infinito más infinito Infinito menos infinito Productos con infinito Infinito por un número Infinito por infinito Infinito por cero Cocientes

Más detalles

Calculo de límites vol.1

Calculo de límites vol.1 Calculo de límites vol.1 Propiedades de los límites Teoría Ejemplos f (x)= p g( x)=q f (x)=2 g( x)= (f (x)+ g(x))= p+q (f (x) g(x))= p q (f (x) g(x))= p q ( f (x) g(x) )= p q si q 0 (k f (x))=k p k R (f

Más detalles

1. Conocimientos previos. 2. Sucesión Progresiones aritméticas. 1 CONOCIMIENTOS PREVIOS. 1

1. Conocimientos previos. 2. Sucesión Progresiones aritméticas. 1 CONOCIMIENTOS PREVIOS. 1 CONOCIMIENTOS PREVIOS. Límites.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Repasar las operaciones básicas con expresiones algebraicas. Repasar

Más detalles

I. Determinar los siguientes límites, aplicando las propiedades. lim =

I. Determinar los siguientes límites, aplicando las propiedades. lim = Ejercicios resueltos I. Determinar los siguientes límites, aplicando las propiedades ) 3 + 2 4 3 + 2 4 = (2) 3 + 2 (2) 2 - (2) - 4 Sustituir la por el 2 = 8 + 8-2 - 4 = 0 Aplicar límite a cada término

Más detalles

x f(x) g(x) h(x) 1/10 1/100 1/1000 3/10 3/100 3/1000 1/10 1/100 1/1000

x f(x) g(x) h(x) 1/10 1/100 1/1000 3/10 3/100 3/1000 1/10 1/100 1/1000 DERIVADAS LECCIÓN 1 Índice: Comparación de infinitésimos. La recta tangente. Eistencia de la recta tangente. Significado geométrico del cociente incremental. Las tangentes laterales. Problemas. 1.- Comparación

Más detalles

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real Apuntes de Análisis Curso 7/8 Esther Madera Lastra. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real,, un único número real y = f (). A la

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y). TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:

Más detalles

Funciones, límites y continuidad

Funciones, límites y continuidad 8/0/016 Funciones, límites y continuidad C U R S O 0 1 5-0 1 6 Funciones, limites y continuidad Los puntos rojos son los que entran en el eamen de º evaluación 1) Concepto de función. Dominio y recorrido.

Más detalles

Límite de una función

Límite de una función Idea intuitiva de límite Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es

Más detalles

Límite Idea intuitiva del significado Representación gráfica

Límite Idea intuitiva del significado Representación gráfica LÍMITES DE FUNCIONES (resumen) LÍMITE DE UNA FUNCIÓN f(x) se lee: límite de la función f(x) cuando x tiende a k x k Límite Idea intuitiva del significado Representación gráfica Cuando x f(x) = l Al aumentar

Más detalles

Segundo trimestre 1º Bach CCSS 10 de febrero de 2014 Primer examen 2ª evaluación NOMBRE: x 6x

Segundo trimestre 1º Bach CCSS 10 de febrero de 2014 Primer examen 2ª evaluación NOMBRE: x 6x Segundo trimestre º Bach CCSS 0 de febrero de 04 Primer eamen ª evaluación NOMBRE: ) Resolver: 3 3 8 ( 3) ) Resolver el sistema siguiente: 3 6 0 0 3) Hallar el dominio de y = 4) Decir si es par, impar

Más detalles

el blog de mate de aida CSI: Límites y continuidad. . Se lee x tiende a x por la derecha. , se expresa así: , se expresa así: por la derecha)

el blog de mate de aida CSI: Límites y continuidad. . Se lee x tiende a x por la derecha. , se expresa así: , se expresa así: por la derecha) pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO gnifica que toma valores cada vez más próimos a. Se lee tiende a. Ejemplo: ;,9;,;,;,8;,;,9;,;,999; Es una secuencia de números cada vez más próimos a. Escribimos.

Más detalles

TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD.

TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD. TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD. 1.LÍMITE DE UNA FUNCIÓN EN UN PUNTO El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes por f de puntos x, cuando los originales

Más detalles

FUNCIONES. entonces:

FUNCIONES. entonces: FUNCIONES. Si f ( ) para y g( ), entonces: + g f ( ), para + B) g f ( ), para + C) g f ( ), para + D) g f ( ), para + (Convocatoria septiembre 00. Eamen tipo B) La composición de funciones es una operación

Más detalles

Límite de una función en una variable

Límite de una función en una variable MATERIA : MATEMÁTICA I CURSO: Ier AÑO EJE ESTRUCTURA : III - ÍMITE Y CONTINUIDAD GRUPOS CONCEPTUAES: ro ímite funcional do Continuidad TEMARIO: - TEMA : ímite - TEMA : Asíntotas - TEMA : Continuidad. Introducción

Más detalles

Tema 3. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 3. LÍMITES Y CONTINUIDAD DE FUNCIONES 1 Tema LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g( ) ENT[ ] h ( ) i ( ) 4 en el punto = Para ello, damos a valores

Más detalles

Capítulo 1 LÍMITES Y CONTINUIDAD Versión Beta 1.1

Capítulo 1 LÍMITES Y CONTINUIDAD Versión Beta 1.1 Capítulo 1 LÍMITES Y CONTINUIDAD Versión Beta 1.1 www.mathspace.jimdo.com Tabla de contenido Capítulo 1...1 LÍMITES Y CONTINUIDAD...1 1.1. LÍMITES...2 1.1.1 Definición formal...2 1.1.2. Cálculo de límites...2

Más detalles

{ 0} - Dominio de. f(x) f(x) g(x) g(x) = f(x) = g(x) x 16. f g. Solución: Para hallar el punto de equilibrio basta resolver el sistema: + =

{ 0} - Dominio de. f(x) f(x) g(x) g(x) = f(x) = g(x) x 16. f g. Solución: Para hallar el punto de equilibrio basta resolver el sistema: + = Funciones Se ha hecho un estudio de mercado en el que la curva de oferta de un determinado producto viene dada por la función,7 8 la curva de demanda por, -. Si el punto de corte de ambas curvas es el

Más detalles

SOLUCIONES A LOS EJERCICIOS BÁSICOS POLINOMIOS. VALOR NUMÉRICO

SOLUCIONES A LOS EJERCICIOS BÁSICOS POLINOMIOS. VALOR NUMÉRICO Unidad : Polinomios y fracciones algebraicas SOLUCIONES A LOS EJERCICIOS BÁSICOS POLINOMIOS. VALOR NUMÉRICO. De las siguientes epresiones indicar las que son polinomios o pueden transformarse en polinomios

Más detalles

1. Idea de aproximación Qué se entiende por aproximación de una cantidad a otra?

1. Idea de aproximación Qué se entiende por aproximación de una cantidad a otra? LÍMITES. Idea de aproimación Qué se entiende por aproimación de una cantidad a otra? Si, por ejemplo, solicitamos un número próimo a,3, podríamos obtener por respuesta,9, pero alguien podría objetar y

Más detalles

Unidad 9. Límites, continuidad y asíntotas

Unidad 9. Límites, continuidad y asíntotas Unidad 9. Límites, continuidad y asíntotas. Límite de una función en un punto Piensa y calcula Halla mentalmente y completa la tabla siguiente:,9,99,,00,0, f () =,9,99,,00,0, f () =,9,99 3, 3 3,00 3,0

Más detalles

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím ( x

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím ( x UNIDAD.- ímite de funciones. Continuidad (tema del libro). ÍMITE DE UNA FUNCIÓN Diremos que una función y f () tiene por ite cuando la variable independiente tiende a, y se nota por f ( ), cuando al acercarnos

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

CURSO 2013/2014 RESUMEN LÍMITES Y CONTINUIDAD 2, ,61 2,01 4,0401 1,99 3,9601 2,001 4, ,999 3,

CURSO 2013/2014 RESUMEN LÍMITES Y CONTINUIDAD 2, ,61 2,01 4,0401 1,99 3,9601 2,001 4, ,999 3, RESUMEN LÍMITES Y CONTINUIDAD Límite de una función en un punto El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 17- III- 15 CURSO

Apellidos: Nombre: Curso: 1º Grupo: C Día: 17- III- 15 CURSO EXAMEN DE MATEMÁTICAS ª EVALUACIÓN Apellidos: Nombre: Curso: º Grupo: C Día: 7- III- 5 CURSO 0-5 Instrucciones para realizar el eamen: Si recuperas una parte has de hacer todos los ejercicios de dicha

Más detalles

Tema 5: Funciones. Límites de funciones

Tema 5: Funciones. Límites de funciones Tema 5: Funciones. Límites de funciones El concepto de función es un elemento fundamental dentro del análisis matemático, así como en sus aplicaciones. Esta idea se introdujo con el objetivo de matematizar

Más detalles

Tema 3. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 3. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) 4 en el punto Para ello, damos a valores próimos

Más detalles

TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD

TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD MATEMÁTICAS I LÍMITES-CONTINUIDAD TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD 1. LÍMITES EN EL INFINITO En ocasiones interesa estudiar el comportamiento de una función (la tendencia) cuando los valores

Más detalles

academiavictorloza.com

academiavictorloza.com 1.- DEFINICIÓN intuitiva de LÍMITE DE UNA FUNCIÓN La idea de límite no es una idea sencilla o que aparezca intuitivamente. La célebre historia de Aquiles y la tortuga estuvo sin solución durante varios

Más detalles

lím lím lím lím f(x) TP N LÍMITES lím "el límite de la función f cuando x tiende al valor a es igual a L" Notación:

lím lím lím lím f(x) TP N LÍMITES lím el límite de la función f cuando x tiende al valor a es igual a L Notación: TP N LÍMITES Notación: f() Se lee: "ite de la función f cuando tiende al valor a por la derecha" f() Se lee: "ite de la función f cuando tiende al valor a por la izquierda" ) Cuando f() f( decimos directamente:

Más detalles

Funciones: Límites y continuidad.

Funciones: Límites y continuidad. Límites finitos de sucesiones. Funciones: límites y continuidad Matemáticas I Funciones: Límites y continuidad. + Decimos que una sucesión numérica ( ) n= tiene por límite r R y se escribe =r o de forma

Más detalles

Estudio de una función. Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo:

Estudio de una función. Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo: Estudio de una función Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo: Una función f () tiene asíntota vertical en asi f () a Una función f () tiene

Más detalles

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS Estudios J.Concha ( fundado en 00) ESO, BACHILLERATO y UNIVERSIDAD Departamento Bachillerato MATEMATICAS º BACHILLERATO Profesores Javier Concha y Ramiro Froilán Tema 8 Límites de funciones, continuidad

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II CEUTA Y MELILLA CONVOCATORIA SEPTIEMBRE 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Opción A Ejercicio Como esta función está definida en el intervalo

Más detalles

TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS

TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 9.1. LÍMITE DE UNA FUNCIÓN

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD LÍMITES Y CONTINUIDAD. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Dada una función f(), diremos que el ite de f() cuando tiende a a es el número real L y lo escribiremos f() = L, si al tomar cada vez valores más

Más detalles

Tema 7. Límites y continuidad. 7.1 Definición de límite de una función

Tema 7. Límites y continuidad. 7.1 Definición de límite de una función Tema 7 Límites y continuidad 7.1 Definición de límite de una función Sea f : I R, I R yseaa I un punto de acumulación de I, decimos que f() tiene límite l R en el punto a f() =l si ε > 0, η > 0: a < η

Más detalles

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1 TEMA : Potencias y raíces Tema : Potencias y raíces ESQUEMA DE LA UNIDAD.- Concepto de potencia..- Potencias de exponente natural..- Potencias de exponente entero negativo..- Operaciones con potencias..-

Más detalles

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1 TEMA : Potencias y raíces Tema : Potencias y raíces ESQUEMA DE LA UNIDAD.- Concepto de potencia..- Potencias de exponente natural..- Potencias de exponente entero negativo..- Operaciones con potencias..-

Más detalles

lím lím lím lím f(x) TP N LÍMITES Notación: lím "el límite de la función f cuando x tiende al valor a es igual a L"

lím lím lím lím f(x) TP N LÍMITES Notación: lím el límite de la función f cuando x tiende al valor a es igual a L TP N LÍMITES Notación: f( Se lee: "ite de la función f cuando tiende al valor a por la derecha" f( Se lee: "ite de la función f cuando tiende al valor a por la izquierda" Cuando f( f( decimos directamente:

Más detalles

Las soluciones son los valores que deben tomar las letras para que la igualdad sea cierta.

Las soluciones son los valores que deben tomar las letras para que la igualdad sea cierta. TEMA ECUACIONES, INECUACIONES Y SISTEMAS- 1. ECUACIONES Una ecuación es una igualdad matemática entre dos epresiones algebraicas, denominadas miembros, en las que aparecen valores conocidos o datos, desconocidos

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.2. LÍMITES Y CONTINUIDAD

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.2. LÍMITES Y CONTINUIDAD TEMA. FUNCIONES REALES DE VARIABLE REAL.. LÍMITES Y CONTINUIDAD . FUNCIONES REALES DE VARIABLE REAL.. LÍMITES Y CONTINUIDAD... LÍMITE DE UNA FUNCIÓN EN UN PUNTO... LÍMITES INFINITOS... LÍMITES EN EL INFINITO..4.

Más detalles

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO. Análisis Matemático

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO. Análisis Matemático Análisis Matemático Unidad 4 - Límite de una función en un punto Límite de una función en un punto El límite de una función para un valor de x es el valor al que la función tiende en los alrededores de

Más detalles

RADICALES. CONCEPTO Y OPERACIONES. Concepto de raíz. - La raíz cuadrada de un número a es otro número b, que al elevarlo al cuadrado te da a

RADICALES. CONCEPTO Y OPERACIONES. Concepto de raíz. - La raíz cuadrada de un número a es otro número b, que al elevarlo al cuadrado te da a UD : Los números reales RADICALES. CONCEPTO Y OPERACIONES. Concepto de raíz. - La raíz cuadrada de un número a es otro número b, que al elevarlo al cuadrado te da a (que es lo mismo que decir que a b si

Más detalles

UNIDAD 2.- Polinomios (tema 2 del libro)

UNIDAD 2.- Polinomios (tema 2 del libro) UNIDAD.- Polinomios tema del libro). OPERACIONES CON POLINOMIOS n Un monomio en la indeterminada es toda epresión de la forma a donde a se llama coeficiente y n grado del monomio. Dos monomios se dicen

Más detalles

Límite de una función Funciones continuas

Límite de una función Funciones continuas Límite de una función Funciones continuas Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 2014-2015 1 LÍMITE CUANDO LA VARIABLE TIENDE A INFINITO. 3 1. Límite cuando la variable tiende

Más detalles

Matemáticas aplicadas a las Ciencias Sociales II. ANAYA

Matemáticas aplicadas a las Ciencias Sociales II. ANAYA Unidad 5 / Límites de funciones Continuidad! PARA RESOLVER a)) Calcula el límite de la función f() cuando,,,, - : f() (-)/( -5) b)) Representa gráficamente los resultados obtenidos. a))! 5! 5 indeterminado,

Más detalles

Apellidos: Nombre: para x 1, determina sus asíntotas. 4. Halla el valor de los parámetros m y n para que la función f sea continua en todo.

Apellidos: Nombre: para x 1, determina sus asíntotas. 4. Halla el valor de los parámetros m y n para que la función f sea continua en todo. EXAMEN DE MATEMÁTICAS CONTINUIDAD Y DERIVABILIDAD Apellidos: Nombre: Curso: º Grupo: C Día: 3- II- 6 CURSO 05-6. Halla el dominio de definición y recorrido de las funciones a) f(x)= 9 b) g(x)= 4. Calcula

Más detalles

Teoría Tema 8 Indeterminaciones

Teoría Tema 8 Indeterminaciones página /7 Teoría Tema 8 Indeterminaciones Índice de contenido Qué es una indeterminación?...2 Tipos de indeterminaciones y ejemplos...3 página 2/7 Qué es una indeterminación? Hasta ahora hemos calculado

Más detalles

K = número ; 0 = número muy pequeño ; = número muy grande ; 1 = número próximo a 1

K = número ; 0 = número muy pequeño ; = número muy grande ; 1 = número próximo a 1 OPERACIONES ÁSICAS TEORÍA DE CÁLCULO DE LÍMITES CCNN K número ; 0 número muy pequeño ; número muy grande ; número próimo a ) ) k ) - k 4) k - - ) - ind. 6) 0k 0 ) 0 ind. 8) k 9) 0) k 0 0 ) 0 0 ind. ) 0

Más detalles

Sean dos funciones f(x) y g(x), para las que existe límite en un punto o en el infinito. Entonces:

Sean dos funciones f(x) y g(x), para las que existe límite en un punto o en el infinito. Entonces: Límite de funciones. Cálculo Propiedades. Sean dos funciones f(x) y g(x), para las que existe límite en un punto o en el infinito. Entonces: En general calcular el límite de una función "normal", cuando

Más detalles

Límite de una sucesión

Límite de una sucesión Límite de una sucesión Idea intuitiva del límite de una sucesión En la sucesión a n = 1/n, observamos que los términos se van acercando a cero. Consideremos que 0 es el límite de la sucesión porque: 1

Más detalles

INDETERMINACIONES, 0,,, 0, 1

INDETERMINACIONES, 0,,, 0, 1 INDETERMINACIONES Hay siete tipos distintos de indeterminaciones cuando calculamos límites y las debemos conocer y aprender a solucionar. De algunas hay métodos directos para solucionarlas, mientras que

Más detalles

Prueba º Bach C Análisis. Nombre:... 17/05/10. Elige una de las dos opciones y contesta a todas sus preguntas. Tiempo disponible 1 h. 30 min.

Prueba º Bach C Análisis. Nombre:... 17/05/10. Elige una de las dos opciones y contesta a todas sus preguntas. Tiempo disponible 1 h. 30 min. Nota Prueba 3.04 º Bach C Análisis Nombre:... 7/05/0 Elige una de las dos opciones y contesta a todas sus preguntas. Tiempo disponible h. 30 min. OPCIÓN A. a) Calcula los siguientes límites: ln( + ) sen

Más detalles

Tema 3. Cálculo de primitivas Conceptos generales.

Tema 3. Cálculo de primitivas Conceptos generales. Tema Cálculo de primitivas... Conceptos generales. Una primitiva de una función es otra función que la tiene como derivada y la operación que permite obtener esta primitiva a partir de la función original

Más detalles

Tema 5: Funciones. Límites de funciones

Tema 5: Funciones. Límites de funciones Tema 5: Funciones. Límites de funciones 1. Concepto de función Una aplicación entre dos conjuntos y es una transformación que asocia a cada elemento del conjunto un único elemento del conjunto. Una función

Más detalles

GUIA DE MATEMATICAS I, CAPITULO III

GUIA DE MATEMATICAS I, CAPITULO III UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICE-RECTORADO ACADEMICO DEPARTAMENTO DE CIENCIA Y TECNOLOGIA AREA DE MATEMATICAS GUIA DE MATEMATICAS I, CAPITULO III Prof. Orlando Baisdem Pérez Puerto Ordaz,

Más detalles

Actividades resueltas

Actividades resueltas 9 CAPÍTULO 7: LÍMITES Y CONTINUIDAD. CONCEPTO DE LÍMITE Qué es un ite? Límite: lo podemos definir como aquel lugar al que, si no llegamos, seremos capaces de acercarnos todo lo que queramos. En sentido

Más detalles

Límites y continuidad de funciones reales de variable real

Límites y continuidad de funciones reales de variable real Límites y continuidad de funciones reales de variable real Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Definiciones 3 2. Herramientas 10 2.1. Funciones

Más detalles

tiene una rama infinita cuando x, f(x) o ambas al mismo tiempo crecen infinitamente. De esta manera el punto ( x, f ( x))

tiene una rama infinita cuando x, f(x) o ambas al mismo tiempo crecen infinitamente. De esta manera el punto ( x, f ( x)) Matemáticas II Curso 03-04 6. Asíntotas Se dice que una función y f ( tiene una rama infinita cuando, f( o ambas al mismo tiempo crecen infinitamente. De esta manera el punto (, f ( ) se aleja infinitamente

Más detalles

Control Global de la 2ª Evaluación Matemáticas Aplicadas a las Ciencias Sociales. 1º de Bachillerato

Control Global de la 2ª Evaluación Matemáticas Aplicadas a las Ciencias Sociales. 1º de Bachillerato Control Global de la ª Evaluación Matemáticas Aplicadas a las Ciencias Sociales. º de Bachillerato. (4 puntos). Dada la función f( ) se pide: 4 a) Su dominio. b) Los puntos de corte con los ejes de coordenadas.

Más detalles

Tema 8 Representación de funciones

Tema 8 Representación de funciones Tema 8 Representación de funciones 8.1 Dominio y recorrido Página 17 Ejercicios 1. Obtén el dominio de las siguientes funciones. 3 d) f 6 Como se trata de una fracción, tendremos problemas si el denominador

Más detalles

De los tres conceptos que se estudian es este tema, funciones, límites y continuidad, el primero y el último son muy sencillos de comprender.

De los tres conceptos que se estudian es este tema, funciones, límites y continuidad, el primero y el último son muy sencillos de comprender. INTRODUCCIÓN. FUNCIONES. LÍMITES. Este tema lo iniciamos recordando el concepto de función y dando algunas nociones básicas sobre funciones, para dar paso al estudio del límite de una función, cálculo

Más detalles