Asignatura: Matemática Fundamental [405036M-02] Taller 1 Lenguaje Simbólico y lógica proposicional
|
|
- Julia Toledo Martín
- hace 5 años
- Vistas:
Transcripción
1 Asignatura: Matemática Fundamental [405036M-02] Taller 1 Lenguaje Simbólico y lógica proposicional 1. Responda las siguientes preguntas: a) Qué es un lenguaje formal? b) Qué es lenguaje matemático? c) Qué es lenguaje simbólico? d) Qué es un argumento? e) Qué es una premisa? f ) Qué es una conjetura? g) Qué es un axioma? h) Qué es un teorema? Qué tipos de teoremas existen? i) Qué es lógica? j ) Cuál es el papel de la lógica en la humanidad? k) Qué es lógica proposicional? l) Qué es una proposición? 2. De dos ejemplos de frases que no sean proposiciones. Justifique. 3. Escriba un ejemplo de cada una de las proposiciones compuestas vistas en clase. 4. Respecto el condicional p q, escriba las múltiples formas en que se puede leer esta proposición. 5. Considera la proposicíon p q. Consulta sobre su: a) Recíproca b) Contrarecíproca c) Inversa 6. Escribe la recíproca, contrarecíproca e inversa de las siguientes proposiciones. a) Hoy hago la tarea si duermo bien. b) Si k es un número par entonces k 2 es un número par. 7. De un ejemplo de un enunciado en el cual dudes de su valor de verdad. Es esta una proposición? 8. Juan David siempre dice la verdad, y nos han contado lo siguiente: Me gusta Diana o Marcela pero no ambas. Además, si me gustara Diana, me gustaría también Marcela. Podemos concluir que a Juan David le gusta Diana? Justifique. 9. Simbolice los siguientes enunciados en el lenguaje de la lógica proposicional: a) Juan debe declarar y ser sincero, o no debe declarar. b) x es par o x es impar c) Si x = 5 entonces x 8 = 3. d) ab = 0 si y sólo si a = 0 o b = Simbolice los siguientes enunciados en el lenguaje de la lógica proposicional: a) Juan debe declarar renta o pagar la declaración de renta, y no debe estudiar economía. b) 2 es par o 3 es impar lo cual implica que 2 2 = 4. c) Si x = 5 entonces x 8 = 3.
2 d) ab = 0 si y sólo si a = 0 o b = 0. e) Si 2 es un entero entonces o π es irracional o e no es un real, si y sólo si estudio matemática. f ) Hoy es domingo pero las matemáticas no me gustan. 11. Escriba las siguientes proposiciones en lenguaje natural, teniendo en cuenta lo que representa cada proposición: p: Hay que ir a dormir. q: = 25 r: 2 / {2, 4, 6} (a) (p q) r (b) r (( (p q)) p) (c) (p q) r (d) (p q) (q r) 12. Diga cuáles de las siguientes expresiones son fbf y cuáles no. Justifique su respuesta. Puede asumir que los paréntesis innecesarios se pueden eliminar. a) (p qr s) b) (p q r) (s r) c) ) p q( d) p q p q e) ((((p q) r) t) p) 13. Sean p, q, r, A, B y C letras proposicionales. Si v (p) = v (q) = v (r) = V y v (A) = v (B) = v (C) = F, determine el valor de verdad de los siguientes enunciados: a) p q b) B r c) (A C) ( A C) d) [p (q r)] [(p q) r] e) (A B) (q r) f ) {[( p q) ( A C)] [(p q) ( B C)]} g) [(p q) (q p)] h) (p A) A i) ( ( (p q))) j ) (p q) (r B) k) ((( r q) p) A) 14. Para las fórmulas del ejercicio anterior, determine si son tautologías, contradicciones o contingencias. 15. Sean p, q, r, s, A y B letras proposicionales. Si sabemos que v (p) = v (q) = V y v (r) = v (s) = F, pero no sabemos ni el valor de verdad de A ni el de B, para cuáles de los encunciados que hay a continuación se puede determinar su valor de verdad? a) p A b) (A r) c) (A A) d) A ( p r) e) A ( A r) f ) B [( B A) B] g) [A (q s)] [(A q) (A s)] h) (A B) (B A) i) ( p A) ( A s) j ) [A (B r)] [(A B) (A r)] 16. Muestre que la proposición (p q r) ( p (q r)) es una tautología. No use tablas de verdad. 17. Suponga que la siguiente afirmación es cierta Si Tremebunda gana el primer examen de Lógica, entonces gana el curso
3 Además suponga que la afirmación también es cierta. Tremebunda no gana el primer examen de Lógica De lo anterior, se puede conlcuir que la afirmación, Tremebunda no gana el curso, es cierta? Explique. 18. Es fácil ver que la siguiente fórmula (p p) (r q) es una tautología. Explique por qué. 19. Es fácil ver que la fórmula [(s t w) (p q)] (r r) es una tautología. Explique por qué. 20. Halle la recíproca y la contrarrecíproca de cada proposición y halle su valor de verdad. a) Si a < 0 y b < 0 entonces ab > 0 (a, b R) b) Si a > b y c < 0 entonces ac < bc (a, b, c R) c) Si v (p q) = F entonces v (p) v (q) d) Si n y m son números pares entonces nm es un número par. e) Si A B = entonces A = o B =. f ) Si A B entonces A B = A 21. Verifique que las siguientes fórmulas son lógicamente equivalentes. a) Ley conmutativa: p q q p b) Ley de Morgan: (p q) p q. c) p (q r) (p q) (p r) d) (p q) p q e) (p q) (p q) (q p) 22. Entre los problemas que se proponen en este taller, hay aquellos que involucran conceptos que no se han trabajado aún, por ejemplo el de conjunto o conjunto numérico y cuya notación no es clara para la mayoría de ustedes. La idea es que se haga un esfuerzo por entender todo lo involucrado en este taller. Este esfuerzo se verá reflejado en la compresión de estos conceptos cuando llegue el día de trabajarlos. Exitos en adelante.
4 Asignatura: Matemática Fundamental [405036M-02] Taller 2 Predicados 1. Responde las siguientes preguntas: a) Qué es un predicado? b) Qué son los cuantificadores? c) El conmutar los cuantificadores en un predicado cambia el sentido de la proposición? d) En qué se diferencias las proposiciones de los predicados y por qué los últimos son importantes? 2. Escriba simbólicamente los siguientes enunciados. Recuerda tener en cuenta el número de variables presentes en el enunciado, predicados y evitar la simplicidad al realizar la representación: a) No existen números que sean pares e impares a la vez. b) No todos los números enteros son primos. c) Todo números entero es par si es múltiplo de dos. d) No todas las personas son buenas y honestas. e) Todos los triángulos equiláteros también son isóseceles. f ) Cualquier número impar difiere de un par en una unidad. g) Existe un número entero que satisface x = 0. h) Todos los estudiantes de licenciatura requieren cursos fuerte en matemática. 3. Diga si los siguientes enunciados son verdaderos o falsos. Justifique su respuesta. A continuación escriba su negación. a) ( x R) ( x 2 0 ) ( ) b) ( x R) x 2 = x c) ( y Z) (2y 4 = 6) d) ( y R) (ln y = 2) e) ( x Z) ( x 3 = 64 ) f ) ( x R) ( x > 7 ) 4. Los siguientes constituyen axiomas de los números reales expresados simbólicamente. Exprese en lenguaje ordinario lo que representa y escriba el enunciado negado. Tome como universo de discurso el conjunto de los números reales. a) x y(x + y = 0) b) x y(x + y = y) c) x y(x y = 1 x 0) d) x, y, z(x + (y + z) = (x + y) + z) 5. Determine el valor de verdad de cada uno de los siguientes enunciados,tomando como universo el conjunto de todas las palabras del español y considerando los siguientes predicados: a) G (árbol) b) G (borrador) c) G (grave) G (x) : x es palabra grave y T (x) : x lleva tilde
5 d) G (ecuación) e) T (tablero) f ) T (árbol) g) T (grave) h) G (aguda) i) x (G (x) T (x)) j ) x (G (x) T (x)) k) x (G (x) T (x)) 6. Escriba, en lenguaje natural, la negación de cada enunciado: a) Ningún pájaro es cuadrúpedo. b) Nadie puede ser a la vez militar y escritor. c) No hay grandes sabios que no sean amantes de la música. d) Solo un matemático disfruta del método axiomático. e) El resfriado común nunca es mortal. f ) Las mordeduras de serpiente a veces son mortales. g) No se dijo nada de importancia. h) Un niño senaló con el dedo al emperador. i) No todo lo que brilla es oro. j ) Hay matemáticos interesados en la filosofía. k) Nadie mediocre es un buen profesional. 7. Considere como universo el conjunto de los seres humanos y considere los siguientes predicados: a) M (x) : x es estudiante de Licenciatura en Matemáticas. b) L (x) : x debe aprender lógica clásica. Traduzca al lenguaje natural los siguientes enunciados: (a) x (M (x) L (x)) (b) x (M (x) L (x)) (c) x (M (x) L (x)) (d) x (M (x) L (x)) (e) x (M (x) L (x)) 8. Para cada uno de los siguientes enunciados, simbolícelos en lógica de primer orden, niéguelos y simbolice también dicha negación. a) Todos los estudiantes de matemáticas ganarán el curso de lógica. b) Algunos estudiantes de matemáticas han leído las notas de lógica. c) Algunos estudiantes de matemáticas no saben hallar la recíproca de una implicación. d) No todos los peces son ovíparos. e) Ningún hombre honesto vende sus ideales. f ) Hay filósofos interesados en las matemáticas. g) Existen políticos que venden sus ideales y son honestos. h) Nadie que guste de las matemáticas desprecia la filosofía.
6 9. Suponga que la siguiente frase es verdadera Todos los estudiantes de filosofía ganaron el segundo parcial de lógica Para cada una de las siguientes frases diga si es verdadera, falsa o si no es posible decidir su valor de verdad, a partir del supuesto anterior? a) Algunos estudiantes de filosofía no ganaron el segundo parcial de lógica. b) Algunos estudiantes de filosofía ganaron el segundo parcial de lógica. c) Ningún estudiante de filosofía perdió el segundo parcial de lógica. d) No todos los estudiantes de filosofía perdieron el segundo parcial de lógica. e) Algunos estudiantes de filosofía perdieron el segundo parcial de lógica. f ) Algunos estudiantes de filosofía no perdieron el segundo parcial de lógica. g) Todo aquel que perdió el segundo parcial de lógica no es estudiante de filosofía. h) Nadie que haya perdido el segundo parcial de lógica es estudiante de filosofía. 10. Considere la frase Algunos filósofos son amantes de las matemáticas Suponga que la frase anterior es falsa. Para cada una de las siguientes frases, diga si es verdadera, falsa o si no es posible determinar su valor de verdad. Explique claramente su respuesta. a) Algunos amantes de las matemáticas son filósofos. b) No todos los filósofos son amantes de las matemáticas. c) Todos los filósofos son amantes de las matemáticas. d) Ningún amante de las matemáticas es filósofo. 11. Si la frase Algunos estudiantes de Licenciatura ganaron el examen de lógica es verdadera, se puede conlcuir que la frase Algunos estudiantes de Licenciatura no ganaron el examen de lógica también es verdadera? Simbolícelas en lógica de primer orden y explique.
Benemérita Universidad Autónoma de Puebla
Tarea No. 1 Matemáticas Elementales Profesor Fco. Javier Robles Mendoza Benemérita Universidad Autónoma de Puebla Facultad de Ciencias de la Computación Lógica y Conjuntos 1. Considere las proposiciones
CIENCIAS FORMALES CIENCIAS FÁCTICAS
UNA CLASIFICACIÓN DE LAS CIENCIAS CIENCIAS FORMALES CIENCIAS FÁCTICAS CIENCIAS FORMALES MATEMÁTICA LÓGICA CIENCIAS FÁCTICAS FÍSICA BIOLOGÍA QUÍMICA CIENCIAS SOCIALES OTRAS CIENCIAS FORMALES VOCABULARIO
MATEMÁTICAS BÁSICAS. 23 de febrero de Universidad Nacional de Colombia MATEMÁTICAS BÁSICAS
23 de febrero de 2009 Parte I Lógica Proposiciones Considere las siguientes frases Páseme el lápiz. 2 + 3 = 5 1 2 + 1 3 = 2 5 Qué hora es? En Bogotá todos los días llueve Yo estoy mintiendo Maradona fue
Un poco de lógica. Ramón Espinosa. Departamento de Matemáticas, ITAM
Un poco de lógica Ramón Espinosa Departamento de Matemáticas, ITAM La lógica, como el whisky, pierde sus efectos benéficos cuando se consume en grandes cantidades. Lord Dunsany Uno de los principales propósitos
TEMA 1: LÓGICA. p p Operador conjunción. Se lee y y se representa por. Su tabla de verdad es: p q p q
TEMA 1: LÓGICA. Definición. La lógica es la ciencia que estudia el razonamiento formalmente válido. Para ello tiene un simbolismo que evita las imprecisiones del lenguaje humano y permite comprobar la
Introducción a la Lógica
Tema 0 Introducción a la Lógica En cualquier disciplina científica se necesita distinguir entre argumentos válidos y no válidos. Para ello, se utilizan, a menudo sin saberlo, las reglas de la lógica. Aquí
Lógica Proposicional. Sergio Stive Solano Sabié. Abril de 2013
Lógica Proposicional Sergio Stive Solano Sabié Abril de 2013 Lógica Proposicional Sergio Stive Solano Sabié Abril de 2013 Proposiciones Definición 1.1 Una proposición (o declaración) es una oración declarativa
MÉTODOS DE DEMOSTRACIÓN
2016-1 1 Presentación 2 Métodos de Demostración Sobre métodos de demostración algunas preguntas de interés 1 Qué es una demostración? Sobre métodos de demostración algunas preguntas de interés 1 Qué es
Autora: Jeanneth Galeano Peñaloza. 3 de febrero de Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá 1/ 50
Autora: Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá 3 de febrero de 2013 1/ 50 Parte I 2/ 50 Proposiciones Considere las siguientes frases Guarde
Enunciados Abiertos y Enunciados Cerrados
I n g. L u z A d r i a n a M o n r o y M a r t í n e z L ó g i c a 1 Unidad II lógica proposicional Es probable que en el siglo IV antes de la Era Común, se iniciara con Aristóteles el estudio de la Lógica;
TEMA I INTRODUCCIÓN A LA LÓGICA
TEMA I INTRODUCCIÓN A LA LÓGICA Policarpo Abascal Fuentes TEMA I Introducción a la lógica p. 1/6 TEMA 1 1. INTRODUCCIÓN A LA LÓGICA 1.1 INTRODUCCIÓN 1.2 LÓGICA PROPOSICIONAL 1.2.1 Conexiones lógicas 1.2.2
Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 2: Lógica de Predicados y Métodos de Demostración
Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 2: Lógica de Predicados y Métodos de Demostración Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 1: Fundamentos:
Guía Nº 2 Lógica Simbólica
Guía Nº 2 Lógica Simbólica 1.Construya la tabla de verdad de las siguientes proposiciones: a) p - q, c) ( p - q ) q, e) ( p q) p - q b) ( p - q ), d) ( p q ) ( p q ), f) ( p q ) ( p q) 2. a )Si la proposición
RAZONAMIENTO LÓGICO LECCIÓN 1: ANÁLISIS DEL LENGUAJE ORDINARIO. La lógica se puede clasificar como:
La lógica se puede clasificar como: 1. Lógica tradicional o no formal. 2. Lógica simbólica o formal. En la lógica tradicional o no formal se consideran procesos psicológicos del pensamiento y los métodos
Práctica: Lógica Proposicional (Primera parte)
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE COMPUTACIÓN MATEMÁTICAS DISCRETAS I (6106) Práctica: Lógica Proposicional (Primera parte) Nota Preliminar: Para la realización de esta práctica
ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS 2013 ÁLGEBRA I
ESCUELA MILITAR DE INGENIERÍA Elaborado por: Lic. Bismar Choque Nina MISCELÁNEAS DE PROBLEMAS 2013 ÁLGEBRA I A pesar de que la refutación por ejemplo del contrario es un procedimiento válido, los teoremas
03. Introducción a los circuitos lógicos
03. Introducción a los circuitos lógicos 1. LÓGICA DE PROPOSICIONES...2 PROPOSICIÓN...2 CONECTORES U OPERADORES LÓGICOS...2 Tablas de...2 Tautología...2 Contradicción...2 2. ÁLGEBRA DE BOOLE...3 AXIOMAS
Matemáticas Discretas Lógica
Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas Lógica Cursos Propedéuticos 2010 Ciencias Computacionales INAOE Lógica undamentos de Lógica Cálculo proposicional Cálculo de predicados
CUADERNILLO DE ÍTEMS ÍTEMS DE SELECCIÓN MÚLTIPLE CON ÚNICA RESPUESTA
CUADERNILLO DE ÍTEMS ÍTEMS DE SELECCIÓN MÚLTIPLE CON ÚNICA RESPUESTA A continuación, usted encontrará preguntas que se desarrollan en torno a un enunciado, problema o contexto, frente al cual, usted debe
Lógica Proposicional. Sergio Stive Solano Sabié. Marzo de 2012
Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Proposiciones Definición 1.1 Una proposición (o declaración) es una oración declarativa
ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.
ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo Complementos Contenidos Clase 1: Elementos de lógica: Conectivos, tablas de verdad, tautologías y contingencias.
Capítulo 4. Lógica matemática. Continuar
Capítulo 4. Lógica matemática Continuar Introducción La lógica estudia la forma del razonamiento, es una disciplina que por medio de reglas y técnicas determina si un teorema es falso o verdadero, además
UNIVERSIDAD DE GUADALAJARA PROGRAMA DE ASIGNATURA MT106
UNIVERSIDAD DE GUADALAJARA PROGRAMA DE ASIGNATURA NOMBRE DE MATERIA CÓDIGO DE MATERIA DEPARTAMENTO ÁREA DE FORMACIÓN LOGICA Y CONJUNTOS MT106 CIENCIAS BIOLOGICAS BÁSICA COMUN CENTRO UNIVERSITARIO CENTRO
Definición 2.- Las proposiciones se combinan mediante conectivos lógicos para formar otras proposiciones. Los conectivos lógicos básicos son:
ii Matemática Discreta : Contenidos Capítulo 1 Lógica 1.1 Cálculo proposicional El Cálculo Proposicional se encarga del estudio de las relaciones lógicas entre objetos llamados proposiciones. Definición
Ejercicios de lógica
1. Sistemas formales. Ejercicios de lógica 1. Considere el siguiente sistema formal: Símbolos: M, I, U. Expresiones: cualquier cadena en los símbolos. Axioma: UMUIUU Regla de inferencia: xmyiz xumyuizuu
Elementos básicos del cálculo proposicional y cuantificacional. Nociones preliminares sobre una teoría deductiva. Métodos de demostración.
1.5 EJERCICIOS PROPUESTOS Temas: Elementos básicos del cálculo proposicional y cuantificacional. Nociones preliminares sobre una teoría deductiva. Métodos de demostración. Sean P, Q, R, S proposiciones.
Material diseñado para los estudiantes del NUTULA, alumnos del profesor Álvaro Moreno.01/10/2010 Lógica Proposicional
Lógica Proposicional INTRODUCCIÓN El humano se comunica con sus semejantes a través de un lenguaje determinado (oral, simbólico, escrito, etc.) construido por frases y oraciones. Estas pueden tener diferentes
LÓGICA MATEMÁTICA O FORMAL O SIMBÓLICA
LÓGICA MATEMÁTICA O FORMAL O SIMBÓLICA La lógica formal o simbólica, a diferencia de la lógica clásica, utiliza un lenguaje artificial, es decir, está rigurosamente construido, no admite cambios en el
Proposiciones. Estructuras Discretas. Lógica de proposiciones y de predicados. Tablas de Verdad. Operadores Lógicos.
Estructuras Discretas Proposiciones Lógica de proposiciones y de predicados Claudio Lobos clobos@inf.utfsm.cl Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Definición: proposición
Prueba de control Soluciones
FACULTAD DE MATEMÁTICAS Lenguaje y método matemáticos 30 de septiembre de 011 Prueba de control Soluciones Nombre: 1 Experimente con casos concretos y proponga respuestas para las siguientes preguntas.
El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales.
EL SISTEMA DE LOS NÚMEROS REALES Introducción El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales. Números tales como:,3, 3 5, e, π
Tema de la clase: Lógica Matemática. Introducción
Tema de la clase: Lógica Matemática Instructor: Marcos Villagra Clase # 01 Escriba: Sergio Mercado Fecha 30/10/2017 Introducción Una de las características principales que distinguen a las matemáticas
Lógica Proposicional. Cátedra de Matemática
Lógica Proposicional Cátedra de Matemática Abril 2017 Qué es la lógica proposicional? Es la disciplina que estudia métodos de análisis y razonamiento; utilizando el lenguaje de las matemáticas como un
Guía de estudio Algunos aspectos de lógica matemática Unidad A: Clases 1 y 2
Guía de estudio Algunos aspectos de lógica matemática Unidad A: Clases 1 y 2 Camilo Ernesto Restrepo Estrada, Félix Ruiz de Villalba, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa *. 1. Lógica
Resolución de Problemas y Algoritmos 2016
Ejercicio 1: Dadas las siguientes frases identifique e indique cuáles son proposiciones simples: 2. La cantante triunfa inesperadamente. 5. 35 es un número par. 6. Los senadores debaten con tranquilidad.
Lógica proposicional. 1. Lógica proposicional. 4. Conectivos lógicos. 2. Proposición lógica. 3. Negación de una proposición
Lógica proposicional 1. Lógica proposicional Es una parte de la lógica que estudia las proposiciones y la relación existente entre ellas, así como la función que tienen los conectivos lógicos. 2. Proposición
Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón.
Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón. 0.1. Elementos de lógica Una proposición es una oración declamativa a la cual se le puede asignar un valor verdad: verdadera (V)
Demostración Contraejemplo. Métodos Indirectos
DEMOSTRACION Una demostración de un teorema es una verificación escrita que muestra que el teorema es verdadero. Informalmente, desde el punto de vista de la lógica, una demostración de un teorema es un
Ejemplos de expresiones que no son proposiciones. Teorema 1. Existe una innidad de números primos.
Proposición Es una oración o una expresión matemática que arma o niega algo. s de proposiciones verdaderas 5 es un número impar 2 es un número par s de proposiciones falsas 14 es un número impar 2=5 s
1. LENGUAJE COTIDIANO Y LENGUAJE MATEMÁTICO
. LENGUAJE COTIDIANO Y LENGUAJE MATEMÁTICO Problemas sobre conectores lógicos /NO/. Considera la expresión siguiente /De ninguna manera iré nunca jamás ni contigo ni con tu padre a Berlín/ Construye otra
UNIDAD I: LÓGICA MATEMÁTICA
UNIDAD I: LÓGICA MATEMÁTICA 1.1. Introducción La Lógica Matemática es la rama de las Matemáticas que nos permite comprender sobre la validez o no de razonamientos y demostraciones que se realizan. La lógica
Introducción a la Matemática Discreta
Introducción a la Matemática Discreta Lógica proposicional y Álgebras de Boole Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 25 Introducción a la Matemática Discreta Temario Tema 1.
Módulo 1. Segunda Parte NOCIONES DE LÓGICA SIMBÓLICA
Módulo 1 Segunda Parte NOCIONES DE LÓGICA SIMBÓLICA Qué es una PROPOSICIÓN? ES TODA EXPRESIÓN O ENUNCIADO DE LA CUAL SE PUEDE DECIR SI ES VERDADERA O FALSA Ejemplos: 2 es un número par (Proposición verdadera)
Rudimentos de lógica
Rudimentos de lógica Eugenio Miranda Palacios 1. El método axiomático Matemáticas es el estudio de las relaciones entre ciertos objetos ideales como números, funciones y figuras geométricas. Estos objetos
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Negación e Implicaciones con Cuantificadores Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Negación e Implicaciones con Cuantificadores Matemáticas Discretas
LEYES, ESTRUCTURAS BÁSICAS Y COCIENTES LÓGICA DE PROPOSICIONES
Todos los derechos de propiedad intelectual de esta obra pertenecen en exclusiva a la Universidad Europea de Madrid, S.L.U. Queda terminantemente prohibida la reproducción, puesta a disposición del público
Matemáticas Dicretas LÓGICA MATEMÁTICA
Matemáticas Dicretas LÓGICA MATEMÁTICA Esta pagina fue diseñada como un auxiliar y herramienta para aquellos que esten interesados en reforzar y tener mas conocimientos sobre las matematicas discretas.
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Módulo I: s Válidos Departamento de Matemáticas ITESM Módulo I: s Válidos Matemáticas Discretas - p. 1/50 En matemáticas y en lógica un argumento no es una disputa. Más bien,
Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid
LÓGICA FORMAL Lógica Proposicional: Teorema de Efectividad Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Lógica Proposicional 1 La lógica proposicional
No ~ Si entonces Sí y sólo si
Principios de lógica. Principios de la lógica y o Objetivo general Establecer el valor de verdad de muchos de los enunciados lógicos, utilizando las leyes de la lógica y las de las inferencias, ya sea
Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes
FUNCIONES DE VARIABLE COMPLEJA 1 Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes Lógica Matemática Una prioridad que tiene la enseñanza de la matemática
Cuantificadores y Métodos de Demostración
Cuantificadores y Métodos de Demostración 1. Cuantificadores... 1 1.1. Cuantificador Existencial... 2 1.2. Cuantificador Universal... 3 2. Métodos de Demostración... 4 1. Cuantificadores Hasta ahora habíamos
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Módulo I: Departamento de Matemáticas ITESM Módulo I: Matemáticas Discretas - p. 1/24 La forma proposicional más importante es la condicional. La Módulo I: Matemáticas Discretas
Lógica Proposicional. Guía Lógica Proposicional. Tema III: Cuantificadores
Guía Lógica Proposicional Tema III: Cuantificadores 1.7.2. CUANTIFICADORES Los cuantificadores permiten afirmaciones sobre colecciones enteras de objetos en lugar de tener que enumerar los objetos por
Notas en lógica básica
Notas basadas en el prontuarios de MATE 3325 Notas escritas por Dr. M Notas en lógica básica En estas notas trabajaremos con lógica básica. Empezamos con argumentos. Todos hemos utilizados argumentos en
Tema 6: Teoría Semántica
Tema 6: Teoría Semántica Sintáxis Lenguaje de de las las proposiciones Lenguaje de de los los predicados Semántica Valores Valores de de verdad verdad Tablas Tablas de de verdad verdad Tautologías Satisfacibilidad
Lógica Matemática. Contenido. Definición. Finalidad de la unidad. Proposicional. Primer orden
Contenido Lógica Matemática M.C. Mireya Tovar Vidal Proposicional Definición Sintaxis Proposición Conectivos lógicos Semántica Primer orden cuantificadores Finalidad de la unidad Definición Traducir enunciados
LOGICA MATEMATICA. Utilizando esas definiciones y las leyes de lógica matemática, demostrar las siguientes tautologías:
LOGICA MATEMATICA Utilizando esas definiciones y las leyes de lógica matemática, demostrar las siguientes tautologías: 1 ) q p q p ( q ) p ( Definición ) q p ( Doble Negación ) p q ( Conmutatividad ) (
Lógica proposicional. Ivan Olmos Pineda
Lógica proposicional Ivan Olmos Pineda Introducción Originalmente, la lógica trataba con argumentos en el lenguaje natural es el siguiente argumento válido? Todos los hombres son mortales Sócrates es hombre
Pontificia Universidad Católica del Ecuador
Pontificia Universidad Católica del Ecuador 1. DATOS INFORMATIVOS: MATERIA O MÓDULO: Cálculo Proposicional y de Predicados CÓDIGO: CARRERA: NIVEL: Ingeniería de Sistemas Primero No. CRÉDITOS: 4 CRÉDITOS
EJEMPLO DE PREGU,TAS
EJEMPLO DE PREGU,TAS MATEMÁTICAS PRIMERO, SEGU,DO Y TERCERO DE BACHILLERATO 1. Lógica proposicional Esta competencia se refiere al conocimiento que usted posee sobre el lenguaje de las proposiciones y
Capítulo 1 Lógica Proposicional
Capítulo 1 Lógica Proposicional 1.1 Introducción El ser humano, a través de su vida diaria, se comunica con sus semejantes a través de un lenguaje determinado (oral, escrito, etc.) por medio de frases
FAC. INGENIERÍA ÁLGEBRA UNCuyo
TRABAJO PRÁCTICO Nº 1: LÓGICA - PARTE A Ejercicio 1: Confeccione la tabla de verdad de las siguientes proposiciones compuestas y diga si son tautologías, contradicciones o contingencias. a) p (p q) p b)
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Módulo I: s Válidos Departamento de Matemáticas ITESM Módulo I: s Válidos Matemáticas Discretas - p. 1/50 En matemáticas y en lógica un argumento no es una disputa. Más bien,
Capítulo 3 Cálculo proposicional 3.5 Razonamientos con proposiciones
3.5 Razonamientos con proposiciones Si nos entregan el valor de verdad de las proposiciones simples es posible deducir el valor de verdad de la proposición compuesta. p: Holmes nació antes que Marx, es
Ampliación Matemática Discreta. Justo Peralta López
Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Definición semántica de las proposiciones 3 Diagrama de valores de certeza 4 Evaluación de fórmulas.
[ ] [ ] [ ] [ ] [ ] ( ) ( a c) d ( ) d ( a c) VERSIÓN 1
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS PRIMERA EVALUACIÓN DE MATEMÁTICAS LICENCIATURA EN REDES Y SISTEMAS OPERATIVOS GUAYAQUIL, MARZO 07 DE 2012 Nombre: Paralelo: VERSIÓN
GUÍA DE EJERCICIOS. Área Matemáticas-Bachillerato Módulo Especial Lógica
GUÍA DE EJERCICIOS Área Matemáticas-Bachillerato Módulo Especial Lógica Esta guía de estudio está diseñada con ejercicios, cuyos procedimientos han sido realizados siguiendo etapa por etapa, que se justifican
Facultad de Ingeniería y Tecnología Informática Técnico en Programación de Computadoras Plan de Estudios 2014 Año 2014 Programa Analítico Lógica (1)
1. OBJETIVOS: 1- OBJETIVOS GENERALES: El objetivo principal de esta asignatura es introducir al alumno en el estudio de los sistemas finitos, conforme a los avances en la era de las computadoras. Se pretende
X OLIMPIADA INTERNACIONAL DE LÓGICA, 2013 FASE FINAL NIVEL BACHILLERATO No. de aciertos: Nombre: Institución:
X OLIMPIADA INTERNACIONAL DE LÓGICA, 2013 FASE FINAL NIVEL BACHILLERATO No. de aciertos: Nombre: Institución: INSTRUCCIONES: Todas las preguntas deberán ser respondidas empleando únicamente las herramientas
TRABAJO PRACTICO Nº4 AÑO 2018 CÁLCULO DE PREDICADOS
AC ÓIUT PMOCRÓTIC TRABAJO PRACTICO º4 AÑO 2018 CÁLCULO DE PREDICADOS 1.- Para cada uno de los predicados siguientes, halle un universo de discurso adecuado dentro de la lista siguiente: números reales,
MATEMÁTICA. Módulo Educativo Etapa Presencial Docente Coordinadora: Bioq. y Farm. Marta Marzi
MATEMÁTICA Módulo Educativo Etapa Presencial 2014 Docente Coordinadora: Bioq. y Farm. Marta Marzi Facultad de Ciencias Bioquímicas y Farmacéuticas UNIVERSIDAD NACIONAL DE ROSARIO Suipacha 531 0341-4804592/93/97
MATERIAL DE APOYO PARA EL PRIMER CURSO DE MATEMÁTICAS COMPUTACIONALES.
MATERIAL DE APOYO PARA EL PRIMER CURSO DE MATEMÁTICAS COMPUTACIONALES. Ing. HUGO HUMBERTO MORALES PEÑA MAESTRÍA EN ENSEÑANZA DE LAS MATEMÁTICAS Línea de Matemáticas Computacionales UNIVERSIDAD TECNOLÓGICA
LÓGICA DE PROPOSICIONAL Y PREDICADOS INGENIERÍA DE SISTEMAS
LÓGICA DE PROPOSICIONAL Y PREDICADOS INGENIERÍA DE SISTEMAS Patricia Zamora Villalobos John Alexander Coral Llanos Josué Maleaño Trejos Prof. Francisco Carrera Fecha de entrega: miércoles de setiembre
Introducción. Ejemplos de expresiones que no son proposiciones
Introducción El objetivo de los matemáticos es descubrir y comunicar ciertas verdades. Las matemáticas son el lenguaje de los matemáticos y una demostración, es un método para comunicar una verdad matemática
2. Si P; Q; R son verdaderas y S; T son falsas, determine el valor de verdad de la proposición: [P =) (R =) T )] () [(:P ^ S) =) (Q =) :T )]
Instituto Tecnológico de Costa Rica Escuela de Matemática I semestre 2012 Cálculo Diferencial e Integral. Prof. Juan José fallas. 1 Leyes de la lógica y reglas de inferencia 2 Ejercicios 1 Leyes de la
Ejercicios de Lógica Proposicional *
Ejercicios de Lógica Proposicional * FernandoRVelazquezQ@gmail.com Notación. El lenguaje proposicional que hemos definido, aquel que utiliza los cinco conectivos,,, y, se denota como L {,,,, }. Los términos
Práctica: Lógica de Predicados
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE COMPUTACIÓN MATEMÁTICAS DISCRETAS I (6106) Práctica: Lógica de Predicados Nota Preliminar: Para la realización de esta práctica se requieren
MATEMÁTICAS DISCRETAS. UNIDAD1 Lógica y Demostraciones
MATEMÁTICAS DISCRETAS UNIDAD1 Lógica y Demostraciones Para el estudio de esta unidad debe ubicarse en el Capítulo 1 del texto base, lea atentamente cada uno de los subtemas indicados en el índice de la
Lógica Proposicional. Introducción
Lógica Proposicional Introducción El ser humano, a través de su vida diaria, se comunica con sus semejantes a través de un lenguaje determinado (oral, escrito, etc.) por medio de las denominadas frases
LAS MATEMÁTICAS Y SU LENGUAJE. Entender, demostrar y resolver matemáticas
LAS MATEMÁTICAS Y SU LENGUAJE Entender, demostrar y resolver matemáticas El trabajo matemático Utilización de un lenguaje peculiar de significados precisos. Cuidado! A veces similar al cotidiano pero con
Definición 1.3. La disyunción de dos oraciones p y q es la oración p o q. La
Capítulo 1 Lógica 1.1. Oraciones Definición 1.1. Una oración es un enunciado que podemos clasificar como cierta o falsa, pero no de ambas. Toda oración tiene un bien definido valor de veracidad: es cierta
CORPORACION UNIFICACADA NACIONAL DE EDUCACION SUPERIOR CUN- DEPARTAMENTO DE CIENCIAS BÁSICAS: PENSAMIENTO LOGICO-MATEMATICO
CORPORACION UNIICACADA NACIONAL DE EDUCACION SUPERIOR CUN- DEPARTAMENTO DE CIENCIAS BÁSICAS: PENSAMIENTO LOGICO-MATEMATICO Proposiciones Lógicas DOC. YAMILE MEDINA CASTAÑEDA GUIA N 2: LOGICA Una proposición
13/04/2013 LOGICA MATEMÁTICA
ING ARNALDO ANGULO ASCAMA profearnaldo@hotmail.com ING. ARNALDO ALBERTO ANGULO ASCAMA LOGICA MATEMÁTICA La lógica estudia la forma del razonamiento, es una disciplina que por medio de reglas y técnicas
Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón.
Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón. 0.1. Definiciones básicas: subconjunto, conjunto vacío, complemento, conjunto de partes A lo largo de esta sección consideraremos
LÓGICA Y CONJUNTOS* En este capítulo
LÓGICA Y CONJUNTOS* 1 En este capítulo 1.1 Enunciados y valor de verdad 1.2 Proposiciones simples y compuestas 1.3 Proposiciones lógicamente equivalentes 1.4 Argumentos 1.5 Cuantificadores 1.6 Conjuntos
Forma lógica de enunciados
Forma lógica de enunciados Marisol Miguel Cárdenas Lenguaje natural y lenguaje formal El lenguaje natural es aquel que utilizamos cotidianamente. Surge históricamente dentro de la sociedad y es aprendido
Apuntes de Lógica Proposicional
Apuntes de Lógica Proposicional La lógica proposicional trabaja con expresiones u oraciones a las cuales se les puede asociar un valor de verdad (verdadero o falso); estas sentencias se conocen como sentencias
Sumario Prólogo Unidad didáctica 1. Historia de la lógica Objetivos de la unidad... 10
ÍNDICE SISTEMÁTICO PÁGINA Sumario... 5 Prólogo... 7 Unidad didáctica 1. Historia de la lógica... 9 Objetivos de la unidad... 10 1. Introducción... 11 2. Efemérides... 13 3. La Lógica de Aristóteles...
Matemática Discreta Práctica Nº 1
Cuando te pregunten algo, UsiempreU tienes que argumentar la respuesta Matemática Discreta- 2006 Práctica Nº 1 Ejercicio Nº1: a) Marca con una cruz las oraciones que son proposiciones. La gran vida. Nunca
Lógica Proposicional. Guía Lógica Proposicional. Tema II: Operadores Lógicos
Guía Lógica Proposicional Tema II: Operadores Lógicos LA CONJUNCIÓN DEFINICIÓN. La Conjunción. Sean p y q dos variables proposicionales, entonces la proposición compuesta p y q, que se simboliza como p
Módulo 7 Negación. Negación: Es la contradicción a la proposición afirmativa utilizando el conectivo lógico no
Módulo 7 Negación OBJETIO: Expresará la negación de una proposición dada, graficara el conjunto de verdad de la negación de una proposición, negará conjunciones y disyunciones. Construirá proposiciones
FORMATO DE CONTENIDO DE CURSO PLANEACIÓN DEL CONTENIDO DE CURSO
FACULTAD DE: CIENCIAS DE LA EDUCACIÓN PROGRAMA DE: LICENCIATURA EN MATEMÁTICAS 1. IDENTIFICACIÓN DEL CURSO PLANEACIÓN DEL CONTENIDO DE CURSO NOMBRE : LÓGICA MATEMÁTICA CÓDIGO : 22133 SEMESTRE : SEGUNDO
Matemática I C.F.E. I.N.E.T. Profesorado de Informática Conjuntos
Conjuntos Conceptos primitivos: CONJUNTO, ELEMENTO, PERTENECE. Pertenecer- Elemento Sea el conjunto de los ríos del Uruguay. El Río Negro es un río del Uruguay. Entonces, este río es un elemento del conjunto
U n i v e r s i d a d A u t ó n o m a d e S a n L u i s P o t o s í
A) Nombre del Curso 3 ÁLGEBRA I B) Datos básicos del curso Semestre Horas de teoría por semana Horas de práctica por semana Horas trabajo adicional estudiante Créditos I 3 2 3 8 C) Objetivos del curso
Lógica proposicional. Semántica Lógica 2018
Lógica proposicional. Semántica Lógica 2018 Instituto de Computación 20 de marzo Instituto de Computación (InCo) Lógica proposicional. Semántica Curso 2018 1 / 1 Significado de una fórmula proposicional
2. Introducción a la Lógica proposicional y Teoría de conjuntos
2. Introducción a la Lógica proposicional y Teoría de conjuntos Lenguaje formal La lógica utiliza un lenguaje artificial, que es además un lenguaje formal. Características del lenguaje formal: a) Está
I Al finalizar el curso el estudiante será capaz de:
A) Nombre del Curso ÁLGEBRA I B) Datos básicos del curso Semestre Horas de teoría por semana Horas de práctica por semana Horas trabajo adicional estudiante Créditos I 3 2 3 8 C) Objetivos del curso Objetivos
FACULTAD DE INGENIERÍA DEPARTAMENTO FÍSICO-MATEMÁTICO
FACULTAD DE INGENIERÍA DEPARTAMENTO FÍSICO-MATEMÁTICO Nombre de la materia: ÁLGEBRA A Clave Facultad:... 0041 Clave CACEI: CB Clave U.A.S.L.P.:... 00023 No. de créditos: 8 Nivel del Plan de Estudios:...