1. Teoría: a) Forma polar; b) Producto de números complejos; c) Ley de Moivre.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Teoría: a) Forma polar; b) Producto de números complejos; c) Ley de Moivre."

Transcripción

1 1. Teoría: a) Forma polar; b) Producto de números complejos; c) Ley de Moivre. 2. Si el senx=0,6 y ð/2<x<ð. Halla por la ley de Moivre cos3x. 3. Construye una ecuación que tenga de raíces los números complejos 2 45, y z +1+3i 4. Halla el número complejo z si =1+ i z +i 5. Halla los resultados de la siguiente ecuación: x 2-6x+10=0. 2. cos3x=0, x 2-2x+2=0 4. z=2-2i 5. 3"i

2 EXAMEN COMPLEJOS 1. Calcula en forma binómica y polar (1+i) 4 a+4i 2. Encuentra a y b para que = 2 3+b i 3. En forma polar o trigonométrica se pide: Hallar el número complejo cuyo cuadrado es un número imaginario, sabiendo que la componente real del mismo es superior en una unidad a la componente imaginaria. 4. Escribe una ecuación de segundo grado cuyas raíces sean 260º y 2300º Siendo z=8i. Se pide calcular z 6. Representa las raíces anteriores y calcula la longitud del lado del triángulo = a=2, b=1 3. 1/2-1/2i 4. x 2-2x º+120k 6. L = 12 45

3 1. Calcula en forma binómica y polar (1+2i) 4 a+2i 2. Encuentra a y b para que = 2 3+bi Realiza la siguiente operación i 19 i - 37 i Escribe una ecuación de segundo grado cuyas raíces sean 3+2i, 3-2i 3 5. Siendo z=4 3+4i. Se pide calcular z i; 25253,74 2. a=8, b= i 4. x 2-6x , 2130, 2250

4 EXAMEN COMPLEJOS 1. Calcula en forma binómica y polar (3-3i) 4 2. Encuentra a y b para que (a-6i)/(3+bi) = Escribe una ecuación de segundo grado cuyas raíces sean 1+2i y 1-2i Siendo z= i. Se pide calcular z 5. Si sená=1/2 y 0<á<ð/2, halla sen(3á) = a=0, b=-3 3. x 2-2x º, 2135º, 2255º 5. sen(3á) = 1

5 1. División de complejos en forma polar. Radicación de números complejos. 2. Resolver Expresa las soluciones en forma binómica. Haz la representación gráfica. 3. Calcular (- 3+i) Resolver x 2-4x+5=0. 5. Resolver (x+2i)(y-3i) = 8+i / x,y 0 œ º, 290º, 2150º, 2270º, 2330º; 3+i, 2i, - 3+i, - 3-i, -2i, 3-i º= "i 5. x=1, y=2; x=-4/3, y=-3/2

6 1. Hallar "a" para que el complejo (2a-3i)/(-3-2i) sea: a) imaginario puro. b) un número real. 2. Calcula el complejo: i i 2 i y pásalo a forma polar. 3. Resuelve: x = 3i 4. Siendo z = 1-3i y w = 2+2i. Calcula: a) z-zw b) (zaw) 4 c) z 3 /2w 2 1. a) a=-1; b) a=-9/ /2 = (1/2)180º k 4. a) ( 3-2)i; b) ; c) (1/2)90 = i/2

7 z puro. 1. Dados los complejos: z = -2+2i y u = 2-2i. Calcula: a) uaz, b) z/u, c) u 4 y d) 3 % 2x - y i 2. Dado el cociente 2+ i Calcular el lugar geométrico de los puntos (x,y) tal que el cociente sea imaginario 3. Dado el complejo: z = 3-4i. Calcula: a) Su opuesto, b) su conjugado, c) su inverso, d) el conjugado del opuesto y e) el opuesto del conjugado. 4. A qué es igual el cociente de dos números complejos en forma polar?. Dedúcelo. 5. Un vértice de un hexágono regular centrado en el origen es (0,2), halla el resto de sus vértices. 1. a) 8i; b) -1; c) -64; d) 2 45, 2 165, y=4x 3. a) -3+4i; b) 3+4i; c) 3/25+4/25 i; d) 3-4i; e) -3-4i , 2150, 2210, 2270, 2330, 230

8 1. Determinar el valor de a para que el módulo del cociente (a+i)/(2-i) sea: Utilizar la fórmula de Moivre para deducir las fórmulas trigonométricas del ángulo triple: cos3á, sen3á. 3. Halla los números complejos z y z' verificando las siguientes condiciones: a) z+z' = 1-7i; b) z/z' sea imaginario puro; c) la parte real de z' sea Hallar un número complejo z tal que z 2 = z', siendo z' el conjugado de z. 5. Calcular: i 1. a="3 2. sen3á=3cos 2 ásená - sen 3 á; cos3á=cos 3 á-3sen 2 ácosá 3. z=-2-6i, z'=3-i ó z=-2-i, z'=3-6i 4. -1/2" 3/2i 5. z1=215º, z2=2105º, z3=2195º, z4=2285º

9 1. Dados los números complejos z=3-2i y u=-1+3i. Halla: a) z/u, b) z 3, c) z.u 2. Calcula a para que el módulo del cociente a+2i 1- i sea igual a Dados los vértices de un triángulo equilátero z, u y w. Halla los afijos (vértices) y sus coordenadas, sabiendo que z=2. 4. Dada la ecuación z 2-3z+4=0, halla las raíces. 5. a) Calcula: (i 35 -i -5 )/(i 13 ); b) zaz'= z 2. Razónalo. (z' = conjugado de z); c) Si se multiplica un número complejo z por i, qué pasa geométricamente?. 1. a) -9/10-7/10 i; b) -9-46i; c) 3+11i 2. a="2 3. u=-1+ 3i, w=-1-3i 4. 3/2" 7 /2 i 5. a) 0; b) rá.r-á=r 2 0; c) gira 90º

10 1. Escribe en forma cartesiana los complejos: a) z1 = 230; z2 = 8135; z3 = Escribe en forma polar los números complejos: z1 = 5; z2 = (1,-1); z3 = (0,3); z4 = 3i; z5 = (1+ 3i); z6 = 3-i. 3. Resuelve la ecuación: x2+3x+3 = Escribe una ecuación de segundo grado cuyas raíces sean (1+3i) y (1-3i). 5. Halla el conjugado y el opuesto en las formas binómica y polar del número complejo z = (-2,2). 6. Calcula el valor de a para que el cociente (12-ai)/(3-4i) sea a) imaginario puro; b) real puro; c) tenga su afijo en la bisectriz del primer cuadrante. 7. Calcula 2 3 i + i 2 i y escribe el resultado en forma binómica y polar. 1. z1=( 3,1); z2=(-4 2,4 2 ); z3=(1,- 3) 2. z1=50; z2= 2-45º; z3=390º; z4=390º; z5=260º; z6= /2" 3/2 i 4. x 2-2x+10= i= 8 225º; 2-2i, 8-45º 6. a=-9; b) a=16; c) a=12/ / i; 1135º

11 1. Resuelve la ecuación x 3-2x 2 +10x=0 4+ x i 2. Calcula los números reales x e y de modo que se cumpla que = y - 2 i 2+i 3. Determina el valor de x para que imaginario puro. x+2 i 1-2 i sea: a) un número real; b) un número 4. Halla las raíces cúbicas del complejo z=i Resuelve: a) (1+i)Az 2 + i = 7; b) z 3 +4z = 0 (z = número complejo) 5. Escribe en forma binómica, trigonométrica y polar el número complejo: 2 % 3-2i 7. Halla los vértices de un pentágono regular inscrito en una circunferencia de centro el origen de coordenadas. Sabiendo que uno de sus vértices se encuentra en el afijo del número complejo (1+ % 3i). 1. x=0; x=1"3i 2. x=-3, y=1 3. a) x=-1; b) x= , , a) 2-i, -2+i; b) z=0, z="2i ; 40(cos(-30)+isen(-30)); (2 3,-2) , 2132, 2204, 2276, 2348

12 1. Teoría: a) Forma polar; b) Producto de números complejos; c) Ley de Moivre. 2. Si el senx=0,6 y ð/2<x<ð. Halla por la ley de Moivre sen3x+sen2x. 3. Construye una ecuación que tenga de raíces los números complejos 2 30, y Halla el número complejo z si z - 2 2z - 4 i 1+2 i = 6 5. Halla los resultados de la siguiente ecuación: x 2-2x+4= , x 2-2 3x+4=0 4. z=3+2i 5. 1" 3i

13 1. Teoría: a) Forma polar; b) Producto de números complejos; c) Ley de Moivre. 2. Si el senx=5/13 y ð/2<x<ð. Halla por la ley de Moivre sen4x. 3. Construye una ecuación que tenga de raíces los números complejos 245, y z +i 4. Halla el número complejo z si =1+ i z - i 5. Halla los resultados de la siguiente ecuación: x 2-2x+5=0. 2. sen4x-1 3. x 2-4i=0 4. z=2+i 5. 1"2i

14 EXAMEN COMPLEJOS 1. Calcula en forma binómica y polar ( 3+i) 4 2. Encuentra a y b para que (a+7i)/(3+bi) = 2+i 3. Dado el número complejo (i 6 -i -5 )/i. Halla: a) su cociente; b) los afijos de las raíces cúbicas del complejo obtenido en el apartado anterior. 4. Escribe una ecuación de segundo grado cuyas raíces sean 2 45º y 2 315º. 5. Dado el número complejo (x+i)/(1+xi). Calcula x en los siguientes casos: a) el cociente sea imaginario puro; b) el cociente sea número real; c) el afijo está en la bisectriz del primer cuadrante i-8; 16120º 2. a=4, b=2 3. a) 1+i; b) 6 2, , x 2-2x+2=0 5. a) x=0; b) x="1; c) x=-1" 2

15 EXAMEN COMPLEJOS 1. Define: a) forma polar; b) forma trigonométrica; c) y d) deduce la expresión del producto de dos números complejos en forma polar (o trigonométrica). 2. Utilizando la fórmula de Moivre deduce las expresiones del seno y coseno de 3á. 3. Dados los números complejos z=2120º, v=230º y t=1+ 3i. Calcula: a) z.v 2 -t 3 b) 3 z 1 4. Resuelve en la ecuación x 2-2x+2=0. 5. Eleva al cubo 3-i y expresa el resultado de todos los modos posibles. 2. sen(3á)=3cos 3 ásená-sen 3 á; cos(3á)=cos 3 á-3cosásen 2 á 3 2 ; 2 ; a) 0; b) "i º, 8(cos270º+isen270º), -8i, (0,-8)

16 EXAMEN COMPLEJOS 1. Define: a) parte imaginaria y real de un número complejo b) conjugado de un número complejo c) inverso de un número complejo d) opuesto de un número complejo 2. Halla dos números complejos sabiendo que su suma es -4+7i, la parte imaginaria del primero es 4 y pertenece al primer cuadrante, y el cociente del primero partido por el segundo es imaginario puro. 3. Calcula i Calcula el valor de k para que el afijo del cociente a) el eje de abscisas. b) el eje de ordenadas. c) la bisectriz del segundo cuadrante. k +i 4 se encuentre sobre: 2+i 5. a) Resuelve la ecuación: x 2 -(2+2i)x+2i-1=0. b) Calcula (i 20 +i 35 -i 462 ).i i, -6+3i º, 2140º, 2260º 4. a) k=2; b) k=-1/2; c) k=1/3 5. a) 2+i, i; b) -1-2i

17 1. Teoría: a) Forma polar; b) Producto de números complejos; c) Ley de Moivre. 2. Si el senx=0,6 y 0<x<ð/2. Halla por la ley de Moivre sen4x. 3. Realiza las siguientes operaciones: 7 4 a) i +i 3 i b) (3 + 3i ) c) 3 + i z + 6i 4. Halla el número complejo z si =3 - i z +i 5. Halla los resultados de la siguiente ecuación: x 2-2x+5=0. 2. sen4x=0, a) i; b) -324= º; c) 310º, 3130º, 3250º 4. z= -2+i i, 1-2i

Los números complejos

Los números complejos 7 Los números complejos 1. Forma binómica del número complejo Piensa y calcula Halla mentalmente cuántas soluciones tienen las siguientes ecuaciones en el conjunto de los números reales. a) x 2 25 = 0

Más detalles

Ejercicios de recopilación de complejos

Ejercicios de recopilación de complejos Ejercicios de recopilación de complejos Conjugado, opuesto, representaciones gráficas. Tipos de complejos 1. Clasificar los siguientes números complejos en reales e imaginarios. Para cada uno, cuál es

Más detalles

Matemáticas I Ejercicios resueltos. Tema 6: Números Complejos

Matemáticas I Ejercicios resueltos. Tema 6: Números Complejos Matemáticas I Ejercicios resueltos. Tema : Números Complejos 1. Calcula: ( + i)( i) (1 i)( i) c) i ( i)5i + i( 1 + i) (5 i) d) ( i)( + i) ( i) (+i)( i) (1 i)( i) i+i ( i i ) +i ( 1 5i) +1+i+5i 5 + i +

Más detalles

5. Efectúa las siguientes operaciones con números complejos:

5. Efectúa las siguientes operaciones con números complejos: 17. Expresa en forma binómica el complejo 4 4π 1. Calcular i. Efectúa la siguiente operación con números complejos: 5 + i 5 i. Efectúa el siguiente cociente de complejos en forma polar, expresando el resultado

Más detalles

I. E. S. Fray Luis de León Jesús Escudero Martín Pág. 1

I. E. S. Fray Luis de León Jesús Escudero Martín Pág. 1 I E S Fray Luis de León Jesús Escudero Martín Pág 1 II2 NÚMEROS COMPLEJOS 1 Introducción 2 Definición 3 Representación gráfica de los números complejos 4 Igualdad de números complejos 5 Operaciones con

Más detalles

NÚMEROS COMPLEJOS UNIDAD 5. Página 130. El paso de N a Z

NÚMEROS COMPLEJOS UNIDAD 5. Página 130. El paso de N a Z UNIDAD NÚMEROS COMPLEJOS Página 0 El paso de N a Z 0 Imagina que solo se conocieran los números naturales, N. Sin utilizar otro tipo de números, intenta resolver las siguientes ecuaciones: a) x + b) x

Más detalles

NÚMEROS COMPLEJOS. Página 147 REFLEXIONA Y RESUELVE. Extraer fuera de la raíz. Potencias de. Cómo se maneja k 1? Saca fuera de la raíz:

NÚMEROS COMPLEJOS. Página 147 REFLEXIONA Y RESUELVE. Extraer fuera de la raíz. Potencias de. Cómo se maneja k 1? Saca fuera de la raíz: NÚMEROS COMPLEJOS Página 7 REFLEXIONA Y RESUELVE Extraer fuera de la raíz Saca fuera de la raíz: a) b) 00 a) b) 00 0 Potencias de Calcula las sucesivas potencias de : a) ( ) ( ) ( ) b) ( ) c) ( ) 5 a)

Más detalles

EJERCICIO 2. (1 punto) Reduce a un ángulo del primer cuadrante y calcula las razones trigonométricas de los ángulos siguientes:

EJERCICIO 2. (1 punto) Reduce a un ángulo del primer cuadrante y calcula las razones trigonométricas de los ángulos siguientes: Segunda Evaluación Grupo: 1ºBTCN Fecha: 1 enero 010 1 er Control EJERCICIO 1 (1 puntos) Sabiendo que está en el primer cuadrante y sen =1/, calcula (sin calcular previamente el ángulo ): a) cos b) sen

Más detalles

MATEMÁTICAS I EJERCICIOS NÚMEROS COMPLEJOS

MATEMÁTICAS I EJERCICIOS NÚMEROS COMPLEJOS . De los siguientes números complejos, indica: a) z 5 i Su opuesto: z b) z + i Su conjugado: z c) z i Su parte real: Su parte imaginaria: d) z 5i Su afijo: (, ). Expresa como números complejos: a) 4 b)

Más detalles

EXAMEN GLOBAL. 4. Dada la función y = 1/x. Existe algún punto en el que la recta tangente esté inclinada 45º?, y 135º?. Calcula esa recta tangente.

EXAMEN GLOBAL. 4. Dada la función y = 1/x. Existe algún punto en el que la recta tangente esté inclinada 45º?, y 135º?. Calcula esa recta tangente. ejerciciosyeamenes.com. a) Enunciado y demostración del teorema del seno. b) Dos coches parten al mismo tiempo de un mismo punto. Van por carreteras rectas que forman entre sí un ángulo de 30º. El primer

Más detalles

Unidad 7 Números Complejos! 1 PROBLEMAS PROPUESTOS (! "#$) Matemáticas 1. " Completa estas operaciones entre números complejos:

Unidad 7 Números Complejos! 1 PROBLEMAS PROPUESTOS (! #$) Matemáticas 1.  Completa estas operaciones entre números complejos: Unidad 7 Números Complejos! PROBLEMAS PROPUESTOS (! "#$) " Completa estas operaciones entre números complejos: (5-i)- z -+i (b) ( + i) ( - + 0i) z (c) -7i-i (-+5)z a) ( 5 i ) z - + i z 5 i + i 8 i. b)

Más detalles

N Ú M E R O S C O M P L E J O S

N Ú M E R O S C O M P L E J O S N Ú M E R O S C O M P L E J O S. N Ú M E R O S C O M P L E J O S E N F O R M A B I N Ó M I C A Al intentar resolver la ecuación x 6x 0, obtenemos como soluciones + y que carecen de sentido porque no es

Más detalles

Unidad 6 Números complejos

Unidad 6 Números complejos Unidad Números complejos PÁGINA 11 SOLUCIONES 1. Las soluciones de las ecuaciones dadas son: x = 0 x=± x + = 0 x=± i. En cada uno de los casos: 1) a + b = 5, a = 0,8 unidades a = 1,8 u o a b = 1, b = 1,8

Más detalles

Problemas Tema 3 Enunciados de problemas sobre complejos

Problemas Tema 3 Enunciados de problemas sobre complejos página 1/6 Problemas Tema 3 Enunciados de problemas sobre complejos Hoja 1 1. Dados los complejos: z 1 = 2 + 3i z 2 = 2 - i z 3 = 1 + 4i z 4 = 5 2i Calcula (z 1 + z 2)(z 3 z 4) -28 + 16i 2. Calcula (2

Más detalles

1. Conjuntos de números

1. Conjuntos de números 1.2. Números complejos 1.2.1. FORMA BINÓMICA Números complejos en forma binómica Se llama número complejo a cualquier expresión de la forma z = x + yi donde x e y son números reales cualesquiera e i =

Más detalles

. De R (Reales) a C (Complejos)

. De R (Reales) a C (Complejos) INTRODUCCIÓN Los números complejos se introducen para dar sentido a la raíz cuadrada de números negativos. Así se abre la puerta a un curioso y sorprendente mundo en el que todas las operaciones (salvo

Más detalles

1. CONJUNTOS DE NÚMEROS

1. CONJUNTOS DE NÚMEROS Águeda Mata Miguel Rees, Dpto. de Matemática Aplicada, FI-UPM. 1 1.2.1. Definición 1. CONJUNTOS DE NÚMEROS 1.2. NÚMEROS COMPLEJOS Se llama número complejo a cualquier epresión de la forma z = + i donde

Más detalles

3.- Calcular, sin calcular el ángulo, las restantes razones trigonométricas del ángulo que

3.- Calcular, sin calcular el ángulo, las restantes razones trigonométricas del ángulo que REPASO DE TRIGONOMETRÍA ELEMENTAL:.- Dados los ángulos 5º9' 6' ' y 670''5' ', calcula sin calculadora: a) b).- Demuestra cuánto valen las razones trigonométricas de rad..- Calcular, sin calcular el ángulo,

Más detalles

TEMA 7 NÚMEROS COMPLEJOS

TEMA 7 NÚMEROS COMPLEJOS TEMA 7 NÚMEROS COMPLEJOS La unidad imaginaria i. Hay ecuaciones que no se pueden resolver en. Por ejemplo: x + 1 = 0 x = - 1 x = ± -1 En el siglo XVI se inventaron un número para resolver esta i = -1 ecuación.

Más detalles

Matemáticas I Problemas

Matemáticas I Problemas Matemáticas I Problemas Jesús García de Jalón de la Fuente Curso 07-08 ÍNDICE Índice. Radicales 4. Logaritmos 6. Polinomios y ecuaciones 9 4. Trigonometría 6 5. Números complejos 5 6. Geometría 9 7. Circunferencia

Más detalles

ESCUELA MILITAR DE INGENIERÍA ÁLGEBRA I

ESCUELA MILITAR DE INGENIERÍA ÁLGEBRA I ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS ÁLGEBRA I NUMEROS COMPLEJOS. Imaginario: guardia que no efectúa rondas, pero se encuentra en un lugar fijo dispuesto a intervenir si fuera necesario.

Más detalles

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas

Más detalles

Un ángulo es una porción de plano limitada por dos semirrectas, los lados, que parten de un mismo punto llamado vértice.

Un ángulo es una porción de plano limitada por dos semirrectas, los lados, que parten de un mismo punto llamado vértice. Índice general II. UNIDAD 2 3 1. Trigonometría.................................. 3 1.1. Razones trigonométricas de un ángulo................. 3 2. Números complejos................................ 5 2.1.

Más detalles

Apellidos y Nombre: Hoja 1

Apellidos y Nombre: Hoja 1 Hoja 1 1 Hallar dos números complejos tales que su suma sea 1+6i y su cociente imaginario puro. Suponer, además que la parte real del que se tome como divisor al calcular el cociente es 1. Hallar los números

Más detalles

EJERCICIOS DE RECUPERACIÓN MATEMÁTICAS I (PARTE 2)

EJERCICIOS DE RECUPERACIÓN MATEMÁTICAS I (PARTE 2) EJERCICIOS DE RECUPERACIÓN MATEMÁTICAS I (PARTE 2) TEMA 4: TRIGONOMETRÍA 1. Completa esta tabla, utilizando para ello las relaciones fundamentales: sen α 0 92 0 2 cos α 0 12 0 5 tg α 0 75 1 12 2. Resuelve

Más detalles

Conjuntos numéricos. Sucesiones. Funciones

Conjuntos numéricos. Sucesiones. Funciones Conjuntos numéricos. Sucesiones. Funciones Conjuntos numéricos 1. Pertenece el número real 2.15 al entorno de centro 2.2 y radio 0.1? 2. Representa gráficamente el conjunto de puntos tales que (a) x+6

Más detalles

Problemas Tema 2 Solución a problemas de Complejos - Hoja 7 - Todos resueltos

Problemas Tema 2 Solución a problemas de Complejos - Hoja 7 - Todos resueltos página 1/1 Problemas Tema Solución a problemas de Complejos - Hoja 7 - Todos resueltos Hoja 7. Problema 1 1. Opera y simplifica. 3 4 ( +i ) ( 3+i) Expresamos cada número complejo en forma polar. + i módulo=

Más detalles

COLEGIO NUESTRA SEÑORA DEL BUEN CONSEJO. Melilla LUGARES GEOMÉTRICOS Y CÓNICAS

COLEGIO NUESTRA SEÑORA DEL BUEN CONSEJO. Melilla LUGARES GEOMÉTRICOS Y CÓNICAS LUGARES GEOMÉTRICOS Y CÓNICAS 01. Halla la ecuación de la circunferencia de centro ( 5, 12) y radio 13. Comprueba que pasa por el punto (0, 0). 02. Halla las ecuaciones de los siguientes lugares geométricos:

Más detalles

Los números complejos

Los números complejos Los números complejos 1. Necesidad de los números complejos Resolución de la ecuación x -6x+1=0 Cuando resolvemos esta ecuación queda:.x = 6± 6 5 = 6± 16 = 6± 16 1 = 6±4 1 = ± 1. Es evidente que no hay

Más detalles

NOTACIÓN Y REPRESENTACIÓN

NOTACIÓN Y REPRESENTACIÓN TEORÍA NÚMEROS COMPLEJOS DEFINICIÓN: Los números complejos son el conjunto de todos los números reales e imaginarios. Surgen de la necesidad de expresar la raíz par de un número negativo. APLICACIÓN: Los

Más detalles

Álgebra Enero I.-Resolver las ecuaciones dadas por factorización y si no es posible, hacerlo usado formula general.

Álgebra Enero I.-Resolver las ecuaciones dadas por factorización y si no es posible, hacerlo usado formula general. Laboratorio # 1 Ecuaciones Cuadráticas I I.-Resolver las ecuaciones dadas por factorización y si no es posible, hacerlo usado formula general. 1) x 2 3x + 2 = 0 2) x 2 x 12 = 0 3) 3y 2 + 2y 1 = 0 4) 6z

Más detalles

4.1. Qué es un número complejo. Representación geométrica.

4.1. Qué es un número complejo. Representación geométrica. Tema Números complejos.. Qué es un número complejo. Representación geométrica. Un número complejo z C C es el conjunto de los números complejos es una expresión de la forma z a + b i en la que a, b R a

Más detalles

APELLIDOS Y NOMBRE: Fecha:

APELLIDOS Y NOMBRE: Fecha: MATEMÁTICAS I. º BTO B Control. Trigonometría I APELLIDOS Y NOMBRE: Fecha: 5-0-00 El eamen se realizará con tinta de un solo color: azul ó negro No se puede usar corrector Se valorará positivamente: ortografía,

Más detalles

Números complejos Matemáticas I. Números complejos. Necesidad de ampliar el conjunto de los números reales.

Números complejos Matemáticas I. Números complejos. Necesidad de ampliar el conjunto de los números reales. Números complejos. Necesidad de ampliar el conjunto de los números reales. En ocasiones cuando resolvemos ecuaciones como la siguiente x 1=0 Nos encontramos, si despejamos la incógnita x, con que x=± 1

Más detalles

b) u sea // al vector v = (-1,2) c) Ambos vectores tengan el mismo módulo. u

b) u sea // al vector v = (-1,2) c) Ambos vectores tengan el mismo módulo. u EXAMEN 2ª EVALUACIÓN MATEMÁTICAS I 1º BACH. A+B CURSO 2008-2009 1. Dado el vector u =(2,a), hallar a para que: a) u sea al vector v = (-1,2) b) u sea // al vector v = (-1,2) c) Ambos vectores tengan el

Más detalles

El primer asomo de la raíz cuadrada de un número negativo se presentó en la stereometría de Herón de Alejandría (año 50), y más tarde en la

El primer asomo de la raíz cuadrada de un número negativo se presentó en la stereometría de Herón de Alejandría (año 50), y más tarde en la El primer asomo de la raíz cuadrada de un número negativo se presentó en la stereometría de Herón de Alejandría (año 50), y más tarde en la aritmética de Diofanto (año 275). 56 8i 14 + 10i 1. Trata la

Más detalles

PENDIENTES DE 1º BACH MATEMÁTICAS I EJERCICIOS BLOQUE II

PENDIENTES DE 1º BACH MATEMÁTICAS I EJERCICIOS BLOQUE II PENDIENTES DE 1º BACH MATEMÁTICAS I EJERCICIOS BLOQUE II 5. Geometría analítica 1.- Calcula el módulo y el argumento del vector v ( 3, 4) v = 5, a = 33 7 48.- Dados los puntos A( 5, 3) y B(, 7), calcula

Más detalles

Matemáticas I Tema 6. Números Complejos

Matemáticas I Tema 6. Números Complejos Matemáticas I Tema 6. Números Complejos Índice 1. Introducción 2 2. Números 2 2.1. Unidad imaginaria............................... 3 2.2. Soluciones de ecuaciones de segundo grado.................. 3

Más detalles

EJERCICIOS PARA VERANO. MATEMÁTICAS I 1º BACH

EJERCICIOS PARA VERANO. MATEMÁTICAS I 1º BACH Desarrollar los siguiente valores absolutos f(x) = x² + 5x 4 - x - 2 f(x) = x² -4x + 3 + x - 3 f(x) = x x f(x) = x / x Resolver las ecuaciones exponenciales: Resolver los sistemas de ecuaciones exponenciales:

Más detalles

ESCUELA MILITAR DE INGENIERIA VARIABLE COMPLEJA Misceláneas de problemas 2014

ESCUELA MILITAR DE INGENIERIA VARIABLE COMPLEJA Misceláneas de problemas 2014 ESCUELA MILITAR DE INGENIERIA VARIABLE COMPLEJA Misceláneas de problemas 2014 Tema: Números Complejos (C). 1. Clasifica los siguientes números complejos en reales e imaginarios. Mencionar, para cada uno,

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 5. Números complejos

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 5. Números complejos Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN 3 Dado el número complejo z3i, su conjugado, z, su opuesto, z, y su inverso,, son: z a) z 3, z 3, z 3 3 3 b) z 3, z 3, z 3 c) z 3, z 3, z 3

Más detalles

Laboratorio 1 Ecuaciones Cuadráticas I. II.- Resolver las ecuaciones siguientes usando el MÉTODO COMPLETANDO CUADRADOS.

Laboratorio 1 Ecuaciones Cuadráticas I. II.- Resolver las ecuaciones siguientes usando el MÉTODO COMPLETANDO CUADRADOS. Laboratorio 1 Ecuaciones Cuadráticas I I.- Resolver las ecuaciones siguientes utilizando el MÉTODO DE FACTORIZACIÓN. 1) 121 25x = 0 2) 27az 2 75a 3 = 0 3) 15y 2 = 21y II.- Resolver las ecuaciones siguientes

Más detalles

Laboratorio #1 Ecuaciones Cuadráticas I. II.- Resolver las ecuaciones siguientes usando el método Completando Cuadrados.

Laboratorio #1 Ecuaciones Cuadráticas I. II.- Resolver las ecuaciones siguientes usando el método Completando Cuadrados. Laboratorio #1 Ecuaciones Cuadráticas I I.- Resolver las ecuaciones siguientes utilizando el método de Factorización. 1) 121 25x = 0 2) 27az 2 75a 3 = 0 3) 15y 2 = 21y II.- Resolver las ecuaciones siguientes

Más detalles

EVALUACION: 1ª CURSO: 1º B.C.T. FECHA: 8/11/13 EXAMEN: 1º. 1) Simplifica todo lo posible racionalizando los denominadores:

EVALUACION: 1ª CURSO: 1º B.C.T. FECHA: 8/11/13 EXAMEN: 1º. 1) Simplifica todo lo posible racionalizando los denominadores: EVALUACION: 1ª CURSO: 1º B.C.T. FECHA: 8/11/13 EXAMEN: 1º 1) Simplifica todo lo posible racionalizando los denominadores: + 2) Simplifica todo lo posible la siguiente operación con fracciones algebraicas:

Más detalles

. a) Comprueba que forman una base de los vectores libres del plano. b) Encuentra las componentes del vector w ( 1,5)

. a) Comprueba que forman una base de los vectores libres del plano. b) Encuentra las componentes del vector w ( 1,5) Curso: º Bachillerato Recuperación Fecha: 5 de Junio de 05 º Trimestre.- Dados los vectores u (, ) implica una penalización del 5% de la nota. y v (,). a) Comprueba que forman una base de los vectores

Más detalles

1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2)

1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 2. Halla la ecuación de la recta r, sabiendo que es paralela a y=2x-3 y pasa por el punto (1,3). 3. Halla la ecuación de la recta

Más detalles

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos]

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos] Matemáticas II Pruebas de Acceso a la Universidad GEOMETRÍA Junio 94 1 Sin resolver el sistema, determina si la recta x y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1 Razónalo

Más detalles

4. Escribe la ecuación de la circunferencia de centro C(-2,3) y radio 4. Sol: (x+2) 2 +(y-3) 2 =16.

4. Escribe la ecuación de la circunferencia de centro C(-2,3) y radio 4. Sol: (x+2) 2 +(y-3) 2 =16. Problemas de circunferencias 4. Escribe la ecuación de la circunferencia de centro C(-2,3) y radio 4. Sol: (x+2) 2 +(y-3) 2 =16. 10. 5. Calcula la potencia del punto P(-1,2) a la circunferencia: x 2 +y

Más detalles

Ejercicios 17/18 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos.

Ejercicios 17/18 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos. Ejercicios 17/18 Lección 5. Geometría. 1 1. Expresa el vector u = ( 3, 1) como combinación lineal de los vectores v = ( 3, ) w = ( 4, 1). y. Expresa w = (4, 6) como combinación lineal de u = (,5) y v =

Más detalles

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto

Más detalles

1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a)

1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a) Ejercicios de cónicas 1º bachillerato C 1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a) b) c) d) e) f) g) h) i) Soluciones: a) Circunferencia de centro ( y radio 3. Excentricidad

Más detalles

Apellidos: Nombre: TEMA 6 - CÓNICAS - ()* & TEMA 7 - COMPLEJOS

Apellidos: Nombre: TEMA 6 - CÓNICAS - ()* & TEMA 7 - COMPLEJOS EXAMEN DE MATEMÁTICAS 3ª EVALUACIÓN Apellidos: Nombre: Curso: 1º Grupo: C Día: 4 - V- 15 CURSO 2015-16 TEMA 6 - CÓNICAS 1. Demuestra que la recta r de ecuación 3x+4y- 25 = 0 es tangente a la circunferencia

Más detalles

NÚMEROS COMPLEJOS. Capítulo Operaciones con números complejos

NÚMEROS COMPLEJOS. Capítulo Operaciones con números complejos Capítulo 1 NÚMEROS COMPLEJOS Observe que la ecuación x 2 + 1 0 no tiene solución en los números reales porque tendríamos que encontrar un número cuyo cuadrado fuera 1, es decir x 2 1 o, lo que viene a

Más detalles

Tarea 3 de Álgebra Superior II Araceli Guzmán Tristán

Tarea 3 de Álgebra Superior II Araceli Guzmán Tristán Tarea 3 de Álgebra Superior II Araceli Guzmán Tristán 1. Comprobar que: a) ( i) i(1 i) = i b) 1+i 3 4i + i 5i = 5 c) 5 (1 i)( i)(3 i) = i d) (1 i) 4 = 4. Resuelve las siguientes ecuaciones: a) (1 + i)z

Más detalles

MATEMÁTICAS 1º BACH. CC. N. Y S. 20 de octubre de 2008 Trigonometría. cotg

MATEMÁTICAS 1º BACH. CC. N. Y S. 20 de octubre de 2008 Trigonometría. cotg MATEMÁTICAS º BACH. CC. N. Y S. 0 de octubre de 008 Trigonometría Atención: Los resultados serán válidos sólo cuando los razonamientos empleados se incluyan. Todos los problemas valen puntos. ) Sabiendo

Más detalles

Módulo 4-Diapositiva 25 Trigonometría en Complejos. Universidad de Antioquia

Módulo 4-Diapositiva 25 Trigonometría en Complejos. Universidad de Antioquia Módulo 4-Diapositiva 25 Trigonometría en Complejos Facultad de Ciencias Exactas y Naturales Temas Números complejos Módulo de un número complejo Forma polar de un número complejo Producto y cociente de

Más detalles

Ejercicios 16/17 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos.

Ejercicios 16/17 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos. Ejercicios 16/17 Lección 5. Geometría. 1 1. Expresa el vector u = ( 3, 1) como combinación lineal de los vectores v = ( 3, ) w = ( 4, 1). y. Expresa w = (4, 6) como combinación lineal de u = (,5) y v =

Más detalles

APELLIDOS Y NOMBRE:...

APELLIDOS Y NOMBRE:... 1º BACHILLERATO Fecha: 6-09-011 PRUEBA INICIAL APELLIDOS Y NOMBRE:... NORMAS El eamen se realizará con tinta de un solo color: azul ó negro No se puede usar corrector Se valorará potivamente: ortografía,

Más detalles

MATEMÁTICAS I Pendientes 1ª Parte

MATEMÁTICAS I Pendientes 1ª Parte MATEMÁTCAS Pendientes ª Parte Calcula: ) ( ) ( ) ) d a bi a b ab d i ) a b ab RADCALES -6 ) ab a b a b ) ( ) a a a 6) b c 6 a a b b c 6 8 7) a bc 9 a bc 8) 7 8 8 9) 80 80 0 0) 8 0 6 ) 7 7 ) 7 8 0 6 ) 7

Más detalles

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo. GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de

Más detalles

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS Potencias de la unidad imaginaria i 0 = 1 i 1 = i i 2 = 1 i 3 = i i 4 = 1 Los valores se repiten de cuatro en cuatro, por eso, para saber cuánto

Más detalles

Trabajo de verano. MATEMÁTICAS I ***** 1º de Bachto. CyT. INSTITUTO DE EDUCACIÓN SECUNDARIA LA FLOTA. x 5 3 R. x c) log. log 14, 25 11, 16.

Trabajo de verano. MATEMÁTICAS I ***** 1º de Bachto. CyT. INSTITUTO DE EDUCACIÓN SECUNDARIA LA FLOTA. x 5 3 R. x c) log. log 14, 25 11, 16. INSTITUTO DE EDUCACIÓN SECUNDARIA LA FLOTA Trabajo de verano MATEMÁTICAS I ***** º de Bachto. CT. UNIDAD I. Números reales. Suceones aritmos. Epresar como intervalos representar gráficamente los guientes

Más detalles

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6. ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el

Más detalles

} solución: x = -4, y = 6, z = 1

} solución: x = -4, y = 6, z = 1 página 1/10 Problemas Tema 4 Enunciados de problemas de repaso de la 1ª evaluación Hoja 1 1. Resuelve aplicando el método de Gauss. 3 x+2 y+z=1 5 x+3 y+4 z=2 x+ y z=1 solución: x = -4, y = 6, z = 1 2.

Más detalles

2. Escribe tres números complejos imaginarios puros, tres números imaginarios y tres números reales.

2. Escribe tres números complejos imaginarios puros, tres números imaginarios y tres números reales. PROBLEMAS DE NUMEROS COMPLEJOS Conjugado, complejos. opuesto, representaciones gráficas. Tipos de 1. Clasifica los siguientes números complejos en reales e imaginarios. Di, para cada uno, cuál es la parte

Más detalles

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6 LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE Capítulo 7 Sec. 7.5 y 7.6 El Plano Complejo Se puede utilizar un plano de coordenadas para representar números complejos. Si cada

Más detalles

Tema 1: El cuerpo de los números complejos. Nota histórica. El cuerpo de los números complejos. Marisa Serrano José Ángel Huidobro

Tema 1: El cuerpo de los números complejos. Nota histórica. El cuerpo de los números complejos. Marisa Serrano José Ángel Huidobro Índice Tema 1: El cuerpo de los números complejos Marisa Serrano José Ángel Huidobro Universidad de Oviedo 6 de octubre de 2008 email: mlserrano@uniovi.es jahuidobro@uniovi.es Nota histórica El cuerpo

Más detalles

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3 Definición LA CIRCUNFERENCIA Se llama circunferencia a la sección cónica generada al cortar un cono recto con un plano perpendicular al eje del cono. La circunferencia es el lugar geométrico de todos los

Más detalles

Módulo de Revisión Anual. Matemática 6 año A y C

Módulo de Revisión Anual. Matemática 6 año A y C Módulo de Revisión Anual Matemática 6 año A y C Función Homográfica ) Hallar las ecuaciones de las asíntotas verticales y horizontales de las siguientes funciones homográficas. a) f() +6 b) f() + c) f()

Más detalles

NÚMEROS COMPLEJOS. El plano geométrico precisamente es R x R. Que abreviadamente escribimos R 2.

NÚMEROS COMPLEJOS. El plano geométrico precisamente es R x R. Que abreviadamente escribimos R 2. ºBAC CNyS NÚMEROS COMPLEJOS. PRODUCTO CARTESIANO DE DOS CONJUNTOS. CONJUNTO PRODUCTO. NÚMEROS IMAGINARIOS. NÚMEROS COMPLEJOS 4. OPERACIONES 5. OPERACIONES EN FORMA POLAR. PRODUCTO CARTESIANO DE DOS CONJUNTOS.

Más detalles

GEOMETRÍA ANALÍTICA. 32) Deduce la ecuación de la recta cuyos puntos de intersección con los ejes son A=(6,0) y B=(0,-2). Sol: x-3y- 6=0.

GEOMETRÍA ANALÍTICA. 32) Deduce la ecuación de la recta cuyos puntos de intersección con los ejes son A=(6,0) y B=(0,-2). Sol: x-3y- 6=0. GEOMETRÍA ANALÍTICA 30) Encuentra la ecuación vectorial, paramétrica y continua de la recta que pasa por los puntos A=(3,2) y B=(1,-1). Sol: (x,y)=(3,2)+t(2,3); {x=3+2t; y=2+3t}; (x-3)/2=(y-2)/3 31) Cuál

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.

Más detalles

Los números complejos

Los números complejos 7 Los números complejos 1. Forma binómica del número complejo Piensa y calcula Halla mentalmente cuántas soluciones tienen las siguientes ecuaciones en el conjunto de los números reales. a) x 2 25 = 0

Más detalles

Números Complejos Matemáticas Básicas 2004

Números Complejos Matemáticas Básicas 2004 Números Complejos Matemáticas Básicas 2004 21 de Octubre de 2004 Los números complejos de la forma (a, 0) Si hacemos corresponder a cada número real a, el número complejo (a, 0), tenemos una relación biunívoca.

Más detalles

6 EXÁMENES ALGEBRA, TRIGONOMETRÍA GEOMETRÍA 1BAC CC Página 1 de 26

6 EXÁMENES ALGEBRA, TRIGONOMETRÍA GEOMETRÍA 1BAC CC Página 1 de 26 6 EXÁMENES ALGEBRA, TRIGONOMETRÍA GEOMETRÍA 1BAC CC Página 1 de 6 EXAMEN A: Ejercicio nº 1.- Halla el valor de la siguiente expresión, utilizando la definición de logaritmo: 5 log 416 + log 81 ln 1 Ejercicio

Más detalles

TEMARIO DEL CURSO UTILIZAS TRIÁNGULOS: ÁNGULOS Y RELACIONES MÉTRICAS. TEOREMA DE PITÁGORAS.

TEMARIO DEL CURSO UTILIZAS TRIÁNGULOS: ÁNGULOS Y RELACIONES MÉTRICAS. TEOREMA DE PITÁGORAS. UNIDAD DE COMPETENCIA I Ángulos: Por su abertura Por la posición entre dos rectas paralelas y una secante (transversal) Por la suma de sus medidas. Complementarios Suplementarios Triángulos: Por la medida

Más detalles

Matemáticas I. Curso Exámenes

Matemáticas I. Curso Exámenes Matemáticas I. Curso 010-011. Exámenes 1. Logaritmos y radicales Ejercicio 1. Racionalizar los denominadores: 5 45 4 7 7 8 7 5 5 + 5 5 5 = = 45 9 5 5 = 1 4 7 = 4 + 7) 4 7)4 + 7) = 4 + 7) = 4 + 7) = 4 +

Más detalles

b) Halle el punto de corte del plano π con la recta que pasa por P y P.

b) Halle el punto de corte del plano π con la recta que pasa por P y P. GEOMETRÍA 1- Considere los puntos A(1,2,3) y O(0,0,0). a) Dé la ecuación de un plano π 1 que pase por A y O, y sea perpendicular a π 2 : 3x-5y+2z=11. b) Encuentre la distancia del punto medio de A y O

Más detalles

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS C. NÚMEROS COMPLEJOS. C.1 Noción de número complejo.

Más detalles

CURSO: 1º bachillerato GRUPO: A Nº: FECHA: CALIF. 1. (1 puno) Representa sobre la recta real los siguientes conjuntos:

CURSO: 1º bachillerato GRUPO: A Nº: FECHA: CALIF. 1. (1 puno) Representa sobre la recta real los siguientes conjuntos: CURSO: 1º bachillerato GRUPO: A Nº: FECHA: CALIF. 1. (1 puno) Representa sobre la recta real los siguientes conjuntos: a) {x/ -5

Más detalles

GEOMETRÍA ANALÍTICA PARA LA CLASE. A (x 2 ;y 2 ) y 2. d(a,b) y 2 y 1. x 1 x 2. y 1. B (x 1 ;y 1 ) x 2. Geometría Analítica DISTANCIA ENTRE DOS PUNTOS

GEOMETRÍA ANALÍTICA PARA LA CLASE. A (x 2 ;y 2 ) y 2. d(a,b) y 2 y 1. x 1 x 2. y 1. B (x 1 ;y 1 ) x 2. Geometría Analítica DISTANCIA ENTRE DOS PUNTOS GEOMETRÍA ANALÍTICA La Geometría Analítica hace uso del Álgebra y la Geometría plana. Con ella expresamos y resolvemos fácilmente problemas geométricos de forma algebraica, siendo los sistemas de coordenadas

Más detalles

NÚMEROS COMPLEJOS, C

NÚMEROS COMPLEJOS, C NÚMEROS COMPLEJOS, C CPR. JORGE JUAN Xuvia-Narón En determinadas ocasiones pueden aparecer en el desarrollo de una expresión algebraica ó en la solución de una ecuación, raíces cuadradas ó de índice par

Más detalles

TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios:

TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios: TEMA 7: CÓNICAS CIRCUNFERENCIA Se define la circunferencia como el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. A dicha distancia se le llama radio de la circunferencia.

Más detalles

GEOMETRÍA ANALÍTICA PLANA

GEOMETRÍA ANALÍTICA PLANA GEOMETRÍA ANALÍTICA PLANA I. VECTORES LIBRES 1. Dada la siguiente figura, calcula gráficamente los siguientes vectores: a. AB BI b. BC EF c. IH 2BC d. AB JF DC e. HG 2CJ 2CB 2. Estudia si las siguientes

Más detalles

Ejercicios de Funciones: derivadas y derivabilidad

Ejercicios de Funciones: derivadas y derivabilidad Matemáticas 2ºBach CNyT. Ejercicios Funciones: Derivadas, derivabilidad. Pág 1/15 Ejercicios de Funciones: derivadas y derivabilidad 1. Calcular las derivadas en los puntos que se indica: 1., en x = 5.

Más detalles

Medida de ángulos. Es la medida de un ángulo cuyo arco mide un radio. 2 rad = 360. rad = º rad

Medida de ángulos. Es la medida de un ángulo cuyo arco mide un radio. 2 rad = 360. rad = º rad Medida de ángulos Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. El ángulo es positivo si se desplaza

Más detalles

Nivel: 4º ESO Grupo: Fecha: 28 de enero de (1.2 puntos) Calcula las distancias desconocidas en esta figura utilizando el Teorema de Tales:

Nivel: 4º ESO Grupo: Fecha: 28 de enero de (1.2 puntos) Calcula las distancias desconocidas en esta figura utilizando el Teorema de Tales: Departamento de Matemáticas Evaluación II Control 1º Nota Nivel: 4º ESO Grupo: Fecha: 8 de enero de 010 1. (1. puntos) Calcula las distancias desconocidas en esta figura utilizando el Teorema de Tales:

Más detalles

EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO

EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO Página 1 de 14 Entregar el día del examen de recuperación de matemáticas. Será condición indispensable para aprobar la asignatura. 1. Calcula: NUMEROS ENTEROS. FRACCIONES.

Más detalles

GESTIÓN ACADÉMICA PLAN DE ASIGNATURA GUÍA DIDÁCTICA

GESTIÓN ACADÉMICA PLAN DE ASIGNATURA GUÍA DIDÁCTICA PÁGINA: 1 de 7 Nombres y Apellidos del Estudiante: Grado: 9º Periodo: 2º Docente: Esp. BLANCA ROZO BLANCO Duración: Área: Matemática Asignatura: Matemática ESTÁNDAR: Utilizo números reales en sus diferentes

Más detalles

Medida de ángulos. Para medir ángulos se utilizan las siguientes unidades:

Medida de ángulos. Para medir ángulos se utilizan las siguientes unidades: Medida de ángulos Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. El ángulo es positivo si se desplaza

Más detalles

es perpendicular al vector b ( 3, 2) módulo de a es 2 13, halla los valores de x y de y.

es perpendicular al vector b ( 3, 2) módulo de a es 2 13, halla los valores de x y de y. Nombre: Curso: 1º Bachillerato B Eamen II Fecha: 6 de febrero de 018 Segunda Evaluación Atención: La no eplicación clara y concisa de cada ejercicio implica una penalización del 5% de la nota 1.- ( puntos)

Más detalles

5to 2 Matematicas TP Trim 1.docx

5to 2 Matematicas TP Trim 1.docx TRABAJO PRÁCTICO BASICO FUNCION CUADRATICA_1 prof. diniro -dave Utilizando la pág. 134 del libro matemática 1, Ed. Puerto de Palos completa las siguientes consignas 1) Define la función cuadrática. 2)

Más detalles

01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial.

01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial. 2.6 Criterios específicos de evaluación. 01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial. 03. Conoce la definición

Más detalles

MATEMÁTICAS I Modalidad Ciencias y Tecnología

MATEMÁTICAS I Modalidad Ciencias y Tecnología CUADERNO DE ACTIVIDADES CURSO 016/017 MATEMÁTICAS I Modalidad Ciencias y Tecnología 1º curso de Bachillerato I.E.S. Victoria Kent (Marbella) Departamento de Matemáticas Bloque de Aritmética y álgebra Ejercicio

Más detalles

EXAMEN DE TRIGONOMETRÍA

EXAMEN DE TRIGONOMETRÍA 1. Deduce la expresión del seno del ángulo mitad. 2. Sabiendo que sen á = 1/4 y que á está en el primer cuadrante, calcula tg 2á. 3. Calcula cos(2x), siendo cos x=1/2. 4. Resuelve la ecuación: cos(x)=cos(2x)

Más detalles

INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO

INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO PRIMER EXAMEN PARCIAL INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO GUÍA DE GEOMETRÍA ANALÍTICA 2016-2017A SISTEMA DE COORDENADAS, LUGARES

Más detalles

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos:

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: 1 CONOCIMIENTOS PREVIOS. 1 Números complejos. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Trigonometría. Sería conveniente realizar un ejercicio

Más detalles