MÓDULO III. MEDIDAS DE TENDENCIA CENTRAL, DISPERSIÓN Y ASIMETRÍA
|
|
- Julio Espejo Muñoz
- hace 5 años
- Vistas:
Transcripción
1 1 UNIVERSIDAD NACIONAL EXPERIMENTAL DE LOS LLANOS OCCIDENTALES EZEQUIEL ZAMORA VICE-RECTORADO DE PLANIFICACIÓN Y DESARROLLO SOCIAL PROGRAMA CIENCIAS SOCIALES Y JURIDICAS SUBPROGRAMA ADMINISTRACIÓN SUBPROYECTO: ESTADÍSTICA PARA ADMINISTRADORES I MÓDULO III. MEDIDAS DE TENDENCIA CENTRAL, DISPERSIÓN Y ASIMETRÍA En el módulo anterior examinamos algunas técnicas que permiten describir visualmente un conjunto de datos, es decir, procedimientos que ofrecen una idea cualitativa de las características de un conjunto de datos. El propósito de esta sección es el de introducir técnicas que permitan la descripción desde el punto de vista matemático. Las medidas descriptivas son cantidades que de manera resumida proveen información acerca de características importantes de un conjunto de datos. Las medidas descriptivas las podemos clasificar de acuerdo a lo que se mide en los siguientes tres grupos: Medidas de localización, medidas de dispersión y medidas de forma. 1. Medidas de Localización: También conocidas como medidas de tendencia central, son parámetros alrededor de los cuales se distribuyen los datos de la distribución y se toman como el centro de la misma. Algunas medidas de tendencia central son la media, la mediana y la moda. a) La Media: también conocida como promedio aritmético es la sumatoria de cada una de las observaciones entre el número de ellas. La media aritmética de una variable es simplemente el promedio de los datos. Su cálculo depende si los datos están o no agrupados en una distribución de frecuencia. Para datos no agrupados, la media aritmética está dada por: Tabla Tipo I:
2 Para datos agrupados en tablas de frecuencias, su fórmula de cálculo es: Tabla Tipo II: Clases individuales Xi Fi (Xi * Fi) Tabla Tipo III: Clases en intervalos Cuando las clases son valores individuales, el valor de la media es exacto, mientras que cuando son intervalos existe una pérdida de precisión ya que se supone que todos los valores dentro de una clase son iguales al punto medio de la misma. Esta pérdida de precisión es sin embargo despreciable. La media de una serie de datos representa el centro de gravedad o punto de equilibrio de esos datos. La media aritmética es fácil de obtener y explicar y tiene varias propiedades matemáticas que hacen más ventajosos su uso que el de las otras medidas de tendencia central.
3 3 Xi Fi MC MC * Fi [24 28) 8 [28 32) 8 [32 36) 3 [36 40) 11 [40 44) 7 [44 48] 5 Propiedades: La suma de los desvíos de los datos con respecto a su media es nula. Xi La sumatoria de las desviaciones con respecto a su media al cuadrado es igual a un mínimo.
4 4 Xi Si a cada uno de los valores de una serie, se le suma, se le resta, se le multiplica o se le divide un valor constante la media de la nueva serie de valores será igual a la media anterior, sumado, restado, multiplicado o dividido por un valor constante. En la suma: C = 4 En la resta: C = 3 Ventajas y Desventajas del uso de la Media Aritmética Ventajas Toma en cuenta todos los datos Fácil de calcular y de operar algebraicamente A medida que la distribución sea más simétrica mayor será la aproximación entre el valor medio de los datos no agrupados y el valor medio de los datos agrupados. Desventajas Es sensible a valores extremos No ofrece siempre una buena aproximación cuando las distribuciones son asimétricas No se puede calcular para tablas de frecuencias con intervalos de clases abiertas.
5 5 Media Aritmética Ponderada: Existen situaciones en las que a los valores de la variable se le asigna un peso, ponderación o importancia. Es decir, existen situaciones en las que los valores de una variable están afectadas por un factor que las modifica. A este factor se le conoce con el nombre de ponderación y, debe ser considerada al momento de calcular la media aritmética de esos valores. La media aritmética calculada considerando esa ponderación recibe el nombre de Media Aritmética Ponderada y se define de la siguiente manera: Donde Pi representa el grado de importancia relativa Subproyecto UC DEF Xi * Pi DISEÑO ORGANIZACIONAL 3 5 FUNDAMENTOS ECONOMICOS 4 4,94 ESTADISTICA PARA ADMINISTRADORES I 3 4,92 MATEMÁTICA FINANCIERA 3 4,08 CONTABILIDAD FINANCIERA 4 4,70 LEGISLACION 3 4,70
6 6 b) La Mediana: la mediana de un conjunto de datos es el valor del centro de los datos, una vez que los mismos sean ordenados de menor a mayor. Esto es, la mediana es aquel valor por debajo (encima) del cual se encuentra el 50% de los datos. Al igual que la media el cálculo de la mediana depende de si los datos están o no agrupados en una distribución de frecuencias. Para datos no agrupados, la mediana es el valor central del conjunto ordenado, mientras que cuando el número de datos es par, la mediana es el promedio de los valores centrales del conjunto ordenado, es decir: Tabla Tipo I: Pasos para calcular la Mediana: 1.- Ordene de forma ascendente o descendente los valores 2.- Ubique la posición a cada uno de los valores 3.- Determinar la posición de la mediana según el valor de n 4.- Determinar el valor de la mediana: a) cuando n = impar la mediana será el valor que ubique la posición medianal y b) cuando n = par la mediana será el punto medio de las dos posiciones de centro. a) pos = (n + 1) / 2 b) pos = n / 2 a) b)
7 7 Para datos agrupados en tablas de frecuencias Tabla Tipo II: Seguimos los pasos anteriores con la diferencia que ubicamos la clase medianal para ubicar el valor de la mediana. Xi Fi FAA
8 8 Tabla Tipo III: Si los datos están agrupados en tablas de frecuencias y las clases son intervalos, la mediana viene dada por: Dónde: Li = Límite inferior de la clase medianal pos = Posición de la mediana FA (-1) = Frecuencia acumulada anterior a la clase medianal Fi med = Frecuencia simple de la clase medianal AC = Amplitud de Clase Xi Fi FAA [24 28) 8 [28 32) 8 [32 36) 3 [36 40) 11 [40 44) 7 [44 48] 5 Propiedades: No se ve afectada por observaciones extremas. Es de cálculo rápido y de interpretación sencilla. Es función de los intervalos escogidos. Puede calcularse en el caso de las clases abiertas. Su mayor defecto es las propiedades matemáticas que posee. Para cualquier conjunto de datos, la mediana es el valor más cercano o próximo a todos ellos.
9 9 c) Moda: es el valor más común entre los datos, en otras palabras es el valor que tiene mayor frecuencia. Para datos no agrupados; Tablas Tipo I y II: Si las clases son valores individuales entonces la moda es el valor o los valores que posee(n) la(s) mayor(es) frecuencia(s) absoluta(s). a) b) Xi Fi
10 10 Tabla Tipo III: Si los datos están agrupados en tablas de frecuencias y las clases son intervalos, la moda viene dada por: Dónde: Li = Límite inferior de la clase con mayor frecuencia absoluta (clase modal) = Frecuencia absoluta de la clase modal Frecuencia absoluta de la clase premodal = Frecuencia absoluta de la clase modal Frecuencia absoluta de la clase postmodal AC = Amplitud de Clase Xi Fi [ ) 7 [ ) 16 [ ) 19 [ ) 25 [ ) 40 [ ) 30 [ ) 21 [ ] 5 Propiedades: Es muy fácil de calcular. No es susceptible de operaciones algebraicas. Es la única medida que puede ser usada para datos cualitativos. Es una medida muy imprecisa e inestable. Puede no ser única. No siempre es una medida de tendencia central.
MÓDULO III. MEDIDAS DE TENDENCIA CENTRAL, DISPERSIÓN Y ASIMETRÍA
1 UNIVERSIDAD NACIONAL EXPERIMENTAL DE LOS LLANOS OCCIDENTALES EZEQUIEL ZAMORA VICE-RECTORADO DE PLANIFICACIÓN Y DESARROLLO SOCIAL PROGRAMA CIENCIAS SOCIALES Y JURIDICAS SUBPROGRAMA ADMINISTRACIÓN SUBPROYECTO:
OARI CLASE 19/05/2015. DESCRIPCIÓN CUANTITATIVA DE LOS DATOS. MEDIDAS RESUMEN
OARI CLASE 19/05/2015. DESCRIPCIÓN CUANTITATIVA DE LOS DATOS. MEDIDAS RESUMEN Licenciatura en Gestión Ambiental 2015 Estimación de estadísticos descriptivos Una descripción cuantitativa de datos incluye:
Instrumentos y matriz de datos
Curso: Estadística Instrumentos y matriz de datos Medidas descriptivas de Tendencia Central y Posición Estadística Descriptiva Profesor: Gonzalo Fernández Fecha: 19/09/2017 LOGRO DE LA SESIÓN Al finalizar
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO LICENCIATURA EN TURISMO UNIDAD DE APRENDIZAJE: ESTADISTICA TEMA 1.5 : ESTADISTICA DESCRIPTIVA M. EN C. LUIS ENRIQUE KU MOO FECHA:
ESTADÍSTICA EN RRLL - CURSO 2010 TURNO NOCTURNO
ESTADÍSTICA EN RRLL - CURSO 2010 TURNO NOCTURNO MODULO 3: Medidas de tendencia central Haga clic para modificar el estilo de subtítulo del patrón Docentes: Mariana Cabrera - Laura Noboa - Verónica Curbelo
GUÍA DE EJERCICIOS. Áreas Matemáticas Análisis Estadístico
GUÍA DE EJERCICIOS Áreas Matemáticas Análisis Estadístico Resultados de aprendizaje Determinar e interpretar medidas de tendencia central y de posición, en datos tabulados. Contenidos 1. Estadística descriptiva
MEDIDAS DE TENDENCIA CENTRAL O DE PRECISIÓN
MEDIDAS DE TENDENCIA CENTRAL O DE PRECISIÓN Cuando se analiza un conjunto de datos, normalmente muestran una tendencia a agruparse o aglomerarse alrededor de un punto central. Para describir ese conjunto
Ing. M.Sc. Reinaldo A. Clemente C. Tlfo:
UNIVERSIDAD PEDAGÓGICA EXPERIMENTAL LIBERTADOR INSTITUTO DE MEJORAMIENTO PROFESIONAL DEL MAGISTERIO Código: HOC 220 Ing. M.Sc. Reinaldo A. Clemente C. reinaldo.clemente@yahoo.es Tlfo: 0414 7172105 1 Media
MEDIDAS DE TENDENCIA CENTRAL
MEDIDAS DE TENDENCIA CENTRAL Al describir grupos de observaciones, con frecuencia es conveniente resumir la información con un solo número. Este número que, para tal fin, suele situarse hacia el centro
MEDIDAS DE TENDENCIA CENTRAL
MEDIDAS DE TENDENCIA CENTRAL UNIDAD 4 M.Sc. JIMMY DELGADO VILLCA 1. PARAMETRO Y ESTADIGRAFO Se entiende por parámetro a una característica o atributo de la población, en otras palabras se la puede entender
Estadística Básica 1er Cuatrimestre 2012
Estadística Básica 1er Cuatrimestre 2012 En todo análisis y/o interpretación se pueden utilizar diversas medidas descriptivas que representan las propiedades de tendencia central, dispersión y forma, para
LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, M TENDENCIA CENTRAL
PreUnAB LOS ESTADÍGRAFOS BÁSICOS Y SU INTERPRETACIÓN, MEDIDAS DE TENDENCIA CENTRAL Clase # 26 Noviembre 2014 ESTADÍGRAFOS Concepto de estadígrafo Un estadígrafo, o estadístico, es un indicador que se calcula
INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA 2)
OBJETIVOS DE APRENDIZAJE: TEMA 2 MEDIDAS DE TENDENCIA CENTRAL Y DE POSICIÓN Conocer las características de las principales medidas de tendencia central (media aritmética, mediana y moda) y de posición
5. Medidas de Tendencia Central
5 Medidas de Tendencia Central En los capítulos anteriores, nos referimos a la clasificación, ordenación y presentación de datos estadísticos, limitando el análisis de la información a la interpretación
MEDIDAS ESTADÍSTICAS Medidas de Tendencia Central y de Variabilidad
MEDIDAS ESTADÍSTICAS Medidas de Tendencia Central y de Variabilidad 1 Propiedades deseables de una medida de Tendencia Central. 1) Definida objetivamente a partir de los datos de la serie. 2) Que dependa
MEDIDAS. necesita de ciertas medidas (números) representativas que puedan resumirlos. distribuciones de frecuencias de datos univariados:
MEDIDAS O Para describir los datos, se necesita de ciertas medidas (números) representativas que puedan resumirlos. O Sirven para caracterizar las distribuciones de frecuencias de datos univariados: O1-
MÓDULO II. TABULACIÓN Y PRESENTACIÓN DE DATOS TIPOS DE TABLAS ESTADÍSTICAS. Variables - Atributos. Tabla. 26
UNIVERSIDAD NACIONAL EXPERIMENTAL DE LOS LLANOS OCCIDENTALES EZEQUIEL ZAMORA VICE-RECTORADO DE PLANIFICACIÓN Y DESARROLLO SOCIAL PROGRAMA CIENCIAS SOCIALES Y JURIDICAS SUBPROGRAMA ADMINISTRACIÓN SUBPROYECTO:
MÓDULO I. CONCEPTOS BÁSICOS GENERALES SUMATORIA
UNIVERSIDAD NACIONAL EXPERIMENTAL DE LOS LLANOS OCCIDENTALES EZEQUIEL ZAMORA VICE-RECTORADO DE PLANIFICACIÓN Y DESARROLLO SOCIAL PROGRAMA CIENCIAS SOCIALES Y JURIDICAS SUBPROGRAMA ADMINISTRACIÓN SUBPROYECTO:
Estadística Inga Patricia Juárez, 2017 MEDIDAS DE TENDENCIA CENTRAL
MEDIDAS DE TENDENCIA CENTRAL Las medidas de tendencia central nos proporcionan la descripción significativa de un conjunto de observaciones. Como su nombre lo indica, son datos de una variable que tienden
Estadística Descriptiva 2da parte
Universidad Nacional de Mar del Plata Facultad de Ingeniería Estadística Descriptiva 2da parte 2 Cuatrimestre 2018 COMISIÓN :1. Prof. Dr. Juan Ignacio Pastore. Qué es la estadística? El contenido de la
LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA TEMA 17: LA MEDIANA
LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA TEMA 17: LA MEDIANA 1. LA MEDIANA: Es una medida de tendencia central que divide al total de n observaciones debidamente ordenadas o tabuladas
La estadística es una ciencia que demuestra que si mi vecino tiene
UNIDAD DOS MEDIDAS ESTADÍSTICAS La estadística es una ciencia que demuestra que si mi vecino tiene dos coches y yo ninguno, los dos tenemos uno. Frase de George Bernard Shaw PALABRAS CLAVE Datos originales
MEDIDAS. necesita de ciertas medidas (números) representativas que puedan resumirlos. distribuciones de frecuencias de datos univariados:
MEDIDAS O Para describir los datos, se necesita de ciertas medidas (números) representativas que puedan resumirlos. O Sirven para caracterizar las distribuciones de frecuencias de datos univariados: O1-
Técnicas Cuantitativas para el Management y los Negocios
Técnicas Cuantitativas para el Management y los Negocios Contador Público Módulo I: ESTADÍSTICA DESCRIPTIVA Contenidos Módulo I Unidad 1. Introducción y conceptos básicos Conceptos básicos de Estadística.
MEDIDAS DE TENDENCIA CENTRAL
UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, DECANA DE AMERICA) MEDIDAS DE TENDENCIA CENTRAL 20/05/2008 Ing. SEMS 2.1 INTRODUCCIÓN En el capítulo anterior estudiamos de qué manera los
Dr. Abner A. Fonseca Livias
UNIVERSIDAD NACIONAL HERMILIO VALDIZAN ESCUELA DE POST GRADO Dr. Abner A. Fonseca Livias PROFESOR PRINCIPAL 16/08/2014 6:44 Dr. Abner A. Fonseca L. 1 UNIVERSIDAD NACIONAL HERMILIO VALDIZAN ESCUELA DE POST
Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa
Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Materia: Estadística I Maestro: Dr. Francisco Javier Tapia Moreno Semestre: 2016-1 Hermosillo, Sonora, a 19 de septiembre
UNIVERSIDAD AUTONOMA DE SANTO DOMINGO
UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Descriptiva Para Psicólogos (EST-225)
Z i
Medidas de Variabilidad y Posición. Jesús Eduardo Pulido Guatire, marzo 010 Cuando trabajamos el aspecto denominado Medidas de Tendencia Central se observó que tanto la media como la mediana y la moda
Clase 2. Tema 2. Medidas de posición
Clase 2 Tema 2. Medidas de posición Estadística descriptiva univariable Herramientas para presentar y resumir el contenido de variables aisladas Presentar la distribución de una variable Resumir las características
NIVELACIÓN DE ESTADISTICA. Carlos Darío Restrepo
NIVELACIÓN DE ESTADISTICA Qué es la estadística? CONCEPTOS BASICOS Es una rama de las matemáticas que se ocupa de recopilar datos, de ordenarlos para una mejor comprensión del fenómeno que se desea estudiar
1. Estadística. 2. Seleccionar el número de clases k, para agrupar los datos. Como sugerencia para elegir el k
1. Estadística Definición: La estadística es un ciencia inductiva que permite inferir características cualitativas y cuantitativas de un conjunto mediante los datos contenidos en un subconjunto del mismo.
Medidas de variabilidad (dispersión)
Medidas de posición Las medidas de posición nos facilitan información sobre la serie de datos que estamos analizando. Estas medidas permiten conocer diversas características de esta serie de datos. Las
PROBABILIDAD. Unidad I Ordenamiento de la Información
1 PROBABILIDAD Unidad I Ordenamiento de la Información 2 Captura de datos muestrales Conceptos básicos de la estadística 3 Población (o universo): Totalidad de elementos o cosas bajo consideración Muestra:
Estadística para el análisis de los Mercados S2_A1.1_LECV1
5. Parámetros estadísticos. 5.1. Parámetros de centralización. Estos parámetros nos indican en torno a que puntos se encuentran los valores de la variable cuantitativa en estudio. Es la forma de representar
Profesora: Beatriz Ponce Nely TADA- 03
NOMBRE DEL ALUMNO: GRUPO: Unidad 1: Interpretación de información. Resultado de Aprendizaje 1.1: Agrupa y grafica conjunto de datos cualitativos y cuantitativos con base en la distribución de frecuencias.
Estadística Descriptiva o deductiva Inferencial o inductiva Población: Variable: Variable cualitativa: Variable cuantitativa: Variable discreta
Estadística La Estadística es la ciencia que trata de los métodos y procedimientos para recoger, clasificar, resumir, hallar regularidades y analizar datos, así como de realizar inferencias a partir de
Guía de actividad Independiente No 5. Estadística Descriptiva. Nombre del estudiante: Fecha:
Guía de actividad Independiente No 5. NOMBRE DE LA ASIGNATURA: Estadística Descriptiva TUTOR: Deivis Galván Cabrera Nombre del estudiante: Fecha: 1. Al comenzar el curso se pasó una encuesta a los alumnos
Estadística Inferencial. Estadística Descriptiva
INTRODUCCIÓN Estadística: Ciencia que trata sobre la teoría y aplicación de métodos para coleccionar, representar, resumir y analizar datos, así como realizar inferencias a partir de ellos. Recogida y
3 ANALISIS DESCRIPTIVO DE LOS DATOS
3 ANALISIS DESCRIPTIVO DE LOS DATOS 3.1 La tabulación de los datos 3.1.1 Tabla de distribución de frecuencias. 3.1.2 El histograma. 3.2 Medidas de tendencia central 3.2.1 La media. 3.2.2 La mediana. 3.2.3
Estadística I Tema 2: Análisis de datos univariantes Descripción numérica de datos
Estadística I Tema 2: Análisis de datos univariantes Descripción numérica de datos Descripción numérica de datos: medidas descriptivas Centro Posición Variación Forma media cuartiles rango coef. asimetría
ESTADÍSTICA DESCRIPTIVA EN POCAS PALABRAS (por jmd matetam.com)
ESTADÍSTICA DESCRIPTIVA EN POCAS PALABRAS (por jmd matetam.com) ESTADÍSTICA DESCRIPTIVA EN POCAS PALABRAS... 1 DEFINICIONES BÁSICAS... 1 Estadística... 1 Estadística descriptiva... 1 Estadística inferencial...
M i. Los datos vendrán en intervalos en el siguiente histograma de frecuencias acumuladas se ilustra la mediana.
Medidas de tendencia central y variabilidada para datos agrupados Media (media aritmética) ( X ) Con anterioridad hablamos sobre la manera de determinar la media de la muestra. Si hay muchos valores u
Tema 3: Medidas de posición
Estadística I Universidad de Salamanca Curso 2010/2011 Outline 1 na 2 Outline na 1 na 2 aritmética na Definición: X X = N i=1 x i N = k i=1 x in i N = k x i f i i=1 Propiedades Es única No tiene porque
Medidas descriptivas I. Medidas de tendencia central A. La moda
Medidas descriptivas I. Medidas de tendencia central A. La moda Preparado por: Roberto O. Rivera Rodríguez Coaching de matemática Escuela Eduardo Neuman Gandía 1 Introducción En muchas ocasiones el conjunto
UNIDAD I. ESTADISTICA
MEDIDAS DE ESTADÍSTICA DESCRIPTIVA (Tomado de: http://www.universidadabierta.edu.mx/serest/map/metodos%20cuantitativos/py e/tema_12.htm) UNIDAD I. ESTADISTICA 1.2 Medidas Descriptivas MEDIDAS DESCRIPTIVAS
ESTADISTICA DESCRIPTIVA. Mediante la presentación ordenada de los datos observados en tablas y gráficos estadísticos.
ESTADISTICA DESCRIPTIVA 1. DEFINICION La estadística es una ciencia que facilita la toma de decisiones: Mediante la presentación ordenada de los datos observados en tablas y gráficos estadísticos. Reduciendo
II. ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS
UNIVERSIDAD INTERAMERICANA PARA EL DESARROLLO ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS Contenido II. ORGANIZACIÓN N Y PRESENTACIÓN N DE DATOS II. Tablas de frecuencia II. Gráficos: histograma, ojiva, columna,
Ms. C. Marco Vinicio Rodríguez
Ms. C. Marco Vinicio Rodríguez mvrodriguezl@yahoo.com http://mvrurural.wordpress.com/ Uno de los objetivos de la estadística es saber acerca del comportamiento de parámetros poblacionales tales como:
Medidas de Tendencia central Medidas de Dispersión Medidas de Asimetría
Medidas de Tendencia central Medidas de Dispersión Medidas de Asimetría 1 Intento de resumir la distribución, expresando el valor que se puede considerar mas típico o representativo de los datos. El término
ÁREAS DE LA ESTADÍSTICA
QUÉ ES LA ESTADÍSTICA? Es el arte de realizar inferencias y sacar conclusiones a partir de datos imperfectos. ÁREAS DE LA ESTADÍSTICA Diseño: Planeamiento y desarrollo de investigaciones Descripción: Resumen
ESTADÍSTICA DESCRIPTIVA
ESTADÍSTICA DESCRIPTIVA Medidas de tendencia central y de dispersión Giorgina Piani Zuleika Ferre 1. Tendencia Central Son un conjunto de medidas estadísticas que determinan un único valor que define el
UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO ESCUELA PREPARATORIA TEXCOCO
UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO ESCUELA PREPARATORIA TEXCOCO MEDIDAS DE TENDENCIA CENTRAL Y DE DISPERSIÓN PARA DATOS NO AGRUPADOS MATERIAL DIDACTICO SOLO VISION ASIGNATURA QUE CORRESPONDE: ESTADISTICA
Estadística I. Finanzas y contabilidad
Estadística I. Finanzas y contabilidad Temario de la asignatura Introducción. Análisis de datos univariantes. Análisis de datos bivariantes. Series temporales y números índice. Probabilidad. Modelos probabilísticos.
Estadística Descriptiva 2da parte
Universidad Nacional de Mar del Plata Facultad de Ingeniería Estadística Descriptiva 2da parte 1 Cuatrimestre 2014 Prof. Marina Tomei. Jueves de 8 a 10 hs. Mg. Stella Maris Figueroa. juevesde 13 a 105hs.
Medidas de Tendencia Central. Dra. Noemí L. Ruiz Limardo Derechos de Autor Reservados Revisado 2010
Medidas de Tendencia Central Dra. Noemí L. Ruiz Limardo Derechos de Autor Reservados Revisado 2010 Objetivos de Lección Conocer cuáles son las medidas de tendencia central más comunes y cómo se calculan
Estadística Descriptiva. SESIÓN 8 Medidas de centralización
Estadística Descriptiva SESIÓN 8 Medidas de centralización Contextualización de la sesión 8 En la sesión anterior has conocido una de las medidas de tendencia central denominada media aritmética, a través
Tema 2: Estadísticos. Bioestadística. U. Málaga. Tema 2: Estadísticos 1
Bioestadística Tema 2: Estadísticos Tema 2: Estadísticos 1 Parámetros y estadísticos Parámetro: Es una cantidad numérica calculada sobre una población La altura media de los individuos de un país La idea
Estadística Descriptiva en R: Parámetros y estadísticos. José Enrique Martín García Universidad Politécnica de Gimialcón (Copyright 2016)
Estadística Descriptiva en R: Parámetros y estadísticos José Enrique Martín García Universidad Politécnica de Gimialcón (Copyright 2016) Parámetros y Estadísticos Parámetro: Es una cantidad numérica calculada
3.2. Desviación Media
Socioestadística I Capítulo 3. CARACTERÍSTICAS DE LAS DISTRIBUCIONES DE FRECUENCIAS 3.2. Desviación Media Es otra medida de dispersión y viene dada por la media aritmética de los valores absolutos de las
Y accedemos al cuadro de diálogo Descriptivos
SPSS: DESCRIPTIVOS PROCEDIMIENTO DE ANÁLISIS INICIAL DE DATOS: DESCRIPTIVOS A diferencia con el procedimiento Frecuencias, que contiene opciones para describir tanto variables categóricas como cuantitativas
ACTIVIDAD 2. Ejemplo: Los pesos de seis amigos son: 84, 91, 72, 68, 87 y 78 kg. Hallar el peso medio.
ACTIVIDAD 2 INDICADOR A EVALUAR: DISCIPLINA ASPECTO: RESPONSABILIDAD Transcribe o imprime, recorta y pega en el cuaderno el siguiente referente teórico y responda los ejercicios planteados en el cuaderno:
Tema 3: Estadística Descriptiva
Tema 3: Estadística Descriptiva Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 3: Estadística Descriptiva Curso 2008-2009 1 / 27 Índice
Estadística Aplicada
Estadística Aplicada Universidad Maimónides 2016 Clase 2. Medidas de Tendencia Central y Dispersión Pedro Elosegui Medidas de Descripción del Conjunto de Datos -Estadísticas sumarias que permiten describir
DEPARTAMENTO DE SOCIOLOGÍA I. Curso
DEPARTAMENTO DE SOCIOLOGÍA I Curso 2010-2011 Socioestadística I Capítulo 3. CARACTERÍSTICAS DE LAS DISTRIBUCIONES DE FRECUENCIAS 2.2. La Mediana (ejemplo) Con esta distribución, vamos a calcular
Estadística I Tema 2: Análisis de datos univariantes
Estadística I Tema 2: Análisis de datos univariantes Tema 2: Análisis de datos univariantes Contenidos Gráficas para datos categóricos (diagrama de barras, diagrama de sectores). Gráficas para datos numéricos
FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional
FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- Estadística variable unidimensional 1. Conceptos de Estadística 2. Distribución de frecuencias 2.1. Tablas de valores con variables continuas 3. Parámetros
MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN. Lic. Esperanza García Cribilleros
MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN Lic. Esperanza García Cribilleros ANÁLISIS EXPLORATORIO DE DATOS Diagrama de tallo y hojas Diagrama de caja DESCRIPCIÓN N DE LOS DATOS Tablas
INTRODUCCIÓN AL USO DE PAQUETES COMPUTACIONALES
INTRODUCCIÓN AL USO DE PAQUETES COMPUTACIONALES TEMAS MEDIDAS DE TENDENCIA CENTRAL MEDIDAS DE DISPERSION MATRICES DEFINICIONES POBLACION: conjunto de elementos de referencia sobre el que se realizan las
Medidas de centralización
1 1. Medidas de centralización Medidas de centralización Hemos visto cómo el estudio del conjunto de los datos mediante la estadística permite realizar representaciones gráficas, que informan sobre ese
MEDIDAS DE RESUMEN. Medidas de Tendencia Central Medidas de Dispersión. Rafael Díaz Sarmiento, M.D., E.S.O., E.C. Las Palmas de Gran Canario, España
MEDIDAS DE RESUMEN Medidas de Tendencia Central Medidas de Dispersión Rafael Díaz Sarmiento, M.D., E.S.O., E.C. Las Palmas de Gran Canario, España MEDIDAS DE RESUMEN DEFINICIONES: Medida de tendencia central:
Guía de Matemática Cuarto Medio
Guía de Matemática Cuarto Medio Aprendizaje Esperado: 1. Conocen distintas maneras de organizar y presentar información incluyendo el cálculo de algunos indicadores estadísticos, la elaboración de tablas
COLEGIO CALASANCIO. MADRID. ESTADÍSTICA UNIDIMENSIONAL. 4º E.S.O.
Repasa de cursos anteriores: Estadística. Población. Muestra. Carácter estadístico: cualitativo (modalidad) y cuantitativo (variable estadística), que puede ser (discreta y continua] Frecuencias: absolutas
Resumenes numéricas de una muestra de datos. M. Wiper Análisis Estadístico del Delito 1 / 41
Resumenes numéricas de una muestra de datos M. Wiper Análisis Estadístico del Delito 1 / 41 M. Wiper Análisis Estadístico del Delito 2 / 41 Objetivo Introducir medidas de localización, dispersión y asimetría
TEMA IV PERCENTIL Y ESTADIGRAFOS DE POSICION
TEMA IV PERCENTIL Y ESTADIGRAFOS DE POSICION 1. Percentiles, cuartiles y deciies. 2. Estadígrafos de Posición. 3. Sesgo y curtosis o de pastel. Pictogramas. OBJETIVOS DE UNIDAD GENERALES. Que el futuro
Gráficos. Son muy útiles para describir los datos y entenderlos de manera rápida.
Gráficos 20 Son muy útiles para describir los datos y entenderlos de manera rápida. Existen gráficos de distribución para variables categóricas como el gráfico de barras, y para proporciones relativas
ESTADÍSTICA SEMANA 3
ESTADÍSTICA SEMANA 3 ÍNDICE MEDIDAS DESCRIPTIVAS... 3 APRENDIZAJES ESPERADOS... 3 DEFINICIÓN MEDIDA DESCRIPTIVA... 3 MEDIDAS DE POSICIÓN... 3 MEDIDAS DE TENDENCIA CENTRAL... 4 MEDIA ARITMÉTICA O PROMEDIO...
ESTADÍSTICA 1.- NOCIONES GENERALES
ESTADÍSTICA 1.- NOCIONES GENERALES : Conjunto de elementos cuyo conocimiento es objeto de estudio. Ejemplo: Jóvenes de Laguna de Duero. : Parte de la población cuyo estudio sirve para inferir características
Medidas Descriptivas Numéricas
2. Mediana La mediana de una colección de datos, que previamente han sido ordenados, es aquél valor más central o que está más en medio en el conjunto de datos. En otras palabras, la mediana es mayor que
CLASIFICACIÓN DE LA ESTADÍSTICA
Estadística aplicada a la Investigación Docente: BC. Aníbal Espínola Cano CLASIFICACIÓN DE LA ESTADÍSTICA 1 ESTADÍSTICA DESCRIPTIVA Ordenando la Información Al ordenar datos muy numerosos, es usual agruparlos
Medidas de Tendencia Central.
Medidas de Tendencia Central www.jmontenegro.wordpress.com MEDIDAS DE RESUMEN MDR MEDIDAS DE TENDENCIA CENTRAL MEDIA MEDIANA MODA CUARTILES,ETC. MEDIDAS DE DISPERSIÓN RANGO DESVÍO EST. VARIANZA COEFIC.
ESTADÍSTICA Camerina Laura Ramírez Gallegos
ESTADÍSTICA DEFINICIÓN La Estadística es una disciplina que utiliza recursos matemáticos para organizar y resumir una gran cantidad de datos obtenidos de la realidad, e inferir conclusiones respecto de
Representación gráfica Polígono de frecuencias
Representación gráfica Polígono de frecuencias Es una alternativa al histograma. Construcción Paso 1. En el eje horizontal se escriben las marcas de clase de cada intervalo. Paso 2. Para cada una de las
MEDIDAS DE POSICIÓN CUANTILES CUARTILES DECILES CARLOS DARIO RESTREPO
MEDIDAS DE POSICIÓN Las Medidas de Posición, también conocidas como Otras Medidas de Dispersión, son otras medidas o métodos que resultan ser más prácticos para precisar ciertas situaciones en las que
INTRODUCCIÓN. Fenómeno Real. Aprendizaje sobre el fenómeno. Análisis Estadístico. Datos Observados
ESTADÍSTICA INTRODUCCIÓN Qué es la estadística?. - Es la rama de las matemáticas que estudia la recolección, análisis e interpretación de datos. Por qué estudiamos estadística? - Aprender sobre fenómenos
MEDIDAS DE VARIABILIDAD
MEDIDAS DE VARIABILIDAD 1 Medidas de variabilidad Qué son las medidas de variabilidad? Las medidas de variabilidad de una serie de datos, muestra o población, permiten identificar que tan dispersos o concentrados
Índice IMADIL /10/2014. TEMA 3: Características estadísticas fundamentales (Primera parte) 1. INTRODUCCIÓN
TEMA 3: Características estadísticas fundamentales (Primera parte) Ignacio Martín y José Luis Padilla IMADIL 214-215 Índice 1. Descripción y Exploración de los datos. 2. Estadísticos de Posición. 3. Estadísticos
Unidad Nº 3. Medidas de Dispersión
Unidad Nº 3 Medidas de Dispersión 1.-Definición.- Las medidas de tendencia central nos enseñaban a localizar el centro de la información en una serie de observaciones o distribución, pero no a realizar
ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua
ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:
CAPÍTULO IV MEDIDAS DE TENDENCIA CENTRAL Y DE POSICION
Notas de clase: Rénember Niño C. CAPÍTULO IV MEDIDAS DE TENDENCIA CENTRAL Y DE POSICION 4.1 MEDIDAS DE TENDENCIA CENTRAL Hemos analizado como a partir de tablas y gráficos puede presentarse la información
OBJETIVOS. Parámetros vs Estadísticos. Descripción de datos: Medidas numéricas. Capítulo 3
Lind,Douglas; William G. Marchal y Samuel A. Wathen (2012). Estadística aplicada a los negocios y la economía, 15 ed., McGraw Hill, China. UAMX Descripción de datos: Medidas numéricas Capítulo 3 FVela/McGraw-Hill/Irwin
ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA
ESTADÍSTICA APLICADA. TEMA 1. ESTADÍSTICA DESCRIPTIVA Definición de Estadística: La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer
CLASE 2 INTRODUCCION A LA ESTADISTICA
CLASE 2 INTRODUCCION A LA ESTADISTICA Medidas descriptivas Medidas de Centralización o Tendencia Central Nos dan un centro de la distribución de frecuencias, es un valor que se puede tomar como representativo
Estadística aplicada al Periodismo
Estadística aplicada al Periodismo Temario de la asignatura Introducción. Análisis de datos univariantes. Análisis de datos bivariantes. Series temporales y números índice. Probabilidad y Modelos probabilísticos.
1 POBLACIÓN Y MUESTRA
1 POBLACIÓN Y MUESTRA Estadística.- es la rama de las matemáticas que se encarga de describir y analizar datos de un estudio, y obtener consecuencias válidas del estudio. Población.- es el conjunto de
Tema 6. Índices estadísticos de variables cuantitativas. Parámetros de tendencia central, dispersión, posición y forma.
Tema 6. Índices estadísticos de variables cuantitativas. Parámetros de tendencia central, dispersión, posición y forma. Los parámetros o índices (ya vimos en el tema 3 que consideramos ambos conceptos
Estadística I. 1. Definición. 5. Distribución de Frecuencias. 2. Población. 3. Muestra. 4. Variable Estadística
...... Estadística I 1. Definición Es la ciencia que nos proporciona un conjunto de métodos y procedimientos para la recolección, clasificación e interpretación de datos, lo cual sirve para sacar conclusiones
Fundamentos de Estadística y Simulación Básica
Fundamentos de Estadística y Simulación Básica TEMA 2 Estadística Descriptiva Clasificación de Variables Escalas de Medición Gráficos Tabla de frecuencias Medidas de Tendencia Central Medidas de Dispersión
Principios de Estadística
Principios de Estadística Principios de Estadística Docentes: Edgardo Rodriguez Juan Passucci Marcelo Rodriguez Principios de Estadística Curso: Teórico-práctico 8.30 hs Parciales Promoción Área Cartelera
Nombre: Curso: Fecha:
REPASO Y APOYO RECONOCER Y DIFERENCIAR LOS CONCEPTOS DE POBLACIÓN Y MUESTRA OBJETIVO 1 La Estadística es la ciencia encargada de recoger, analizar e interpretar los datos relativos a un conjunto de elementos.