Estudio y optimización del algoritmo de ordenamiento Shellsort

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Estudio y optimización del algoritmo de ordenamiento Shellsort"

Transcripción

1 Estudo y optmzacó del algortmo de ordeameto Sellsort Bejam Bustos Departameto de Cecas de la Computacó, Uversdad de Cle bebustos@dcc.ucle.cl Resume Este estudo aalza, e forma empírca, el desempeño del algortmo de ordeameto Sellsort co dferetes seres de pasos. Se estuda optmzacoes al algortmo para evtar los peores casos y se compara su redmeto co algortmos de ordeameto efcetes (Qucksort, Mergesort y Heapsort), dscutédose la utldad del algortmo para resolver el problema de ordeameto de cojutos de tamaño medo.. Itroduccó El estudo de algortmos de ordeameto tee ua gra mportaca detro de la Ceca de la Computacó, pues ua buea catdad de los procesos realzados por medos computacoales requere que sus datos esté ordeados. Además, el eco de almacear los datos de maera ordeada permte mplemetar algortmos de búsqueda muy rápdos (por ejemplo: búsqueda bara). Esta y mucas otras razoes de f práctco mpulsaro el estudo y la búsqueda de algortmos de ordeameto efcetes. Desde los comezos del uso de computadores se coocía algortmos que resolvía el problema e tempo cuadrátco respecto del tamaño del problema, pero era rutas muy secllas y letas. El algortmo de ordeameto Sellsort fue publcado e 959 por Doald L. Sell, y fue uo de los prmeros e romper la barrera del orde cuadrátco, auque esto e realdad se probó u par de años después de su publcacó. El objetvo de este estudo es demostrar empírcamete que mplemetar Sellsort co seres de pasos depedetes del tamaño del arreglo puede llegar a ser muco más efcete que co las seres cláscas, las cuales so depedetes del tamaño del arreglo, pero ay que aplcar ua optmzacó seclla para obteer bueos resultados: todos los pasos de la sere debe ser úmeros mpares. Además,

2 este estudo muestra que dada la smplcdad de programacó del algortmo, su bue peor caso y caso promedo, y su ejecucó place, es decr, o ecesta espaco adcoal para realzar el ordeameto del arreglo, lo ace u bue caddato para resolver el problema de ordeameto cuado la catdad de elemetos a ordear o es muy grade (meos de elemetos). 2. Descrpcó del algortmo de ordeameto Sellsort El problema cosste esecalmete e ordear u úmero fto de elemetos e u tempo razoable. Para estos efectos, dremos que cada elemeto ocupa ua celda detro de u arreglo prevamete defdo. Sellsort trabaja medate ua sere de teracoes, utlzado u algortmo de ordeacó smple (Isert Sort) etre elemetos que se ecuetra a determada dstaca detro del arreglo, dstaca que dsmuye a medda que avazamos e teracoes, co lo que la últma teracó correspode al algortmo de ordeacó tradcoal de Isert Sort (cuado la dstaca es ). E prmer lugar aalcemos el algortmo de Isert Sort utlzado pseudocódgo: for j 2 to do KEY L[j]; j wle >0 ad L[]>KEY do L[+] L[]; ed L[+] KEY ed dode correspode al úmero total de elemetos a ordear y L es orgalmete el arreglo desordeado. El algortmo actúa tomado cada elemeto desde el segudo e adelate, y se va tercambado co los elemetos aterores a él metras ecuetre que el elemeto a su zquerda e el arreglo es mayor que él. De esta forma, cuado vamos a comparar el elemeto -esmo, todos los elemetos aterores (asta el (-)ésmo) se ecuetra ya ordeados. Cuado terma la ejecucó, L preseta los elemetos ordeados de meor a mayor. Se puede demostrar que el tempo promedo que demora el algortmo Isert

3 Sort e ordear u arreglo es de O ( 2 ), y que el algortmo es muy rápdo s el arreglo está semordeado. E partcular, s el arreglo está ordeado el algortmo de sercó demora O (). El algortmo de Sellsort actúa de maera smlar, pero etre elemetos separados a ua dstaca que va dsmuyedo e cada teracó. Lo que obteemos co esto es que cuado se emplee el algortmo tradcoal de Isert Sort, los elemetos ya está ordeados relatvamete, y así la catdad de comparacoes que tee que acer es muco meor. Elgedo las dstacas adecuadas, el algortmo de Sellsort preseta u mejor orde promedo que Isert Sort. A cotuacó se preseta el algortmo de Sellsort e pseudocódgo: for s t to by {s es el ídce del cremeto o dstaca} dst[s] { es el cremeto o dstaca etre elemetos a comparar} for j + to {j empeza e el segudo elemeto del arreglo orgal} KEY L[j]; j wle >0 ad L[]>KEY do L[ + ] L[]; j ed L[ + ] KEY ed ed dode t correspode al úmero de teracoes, dst es u arreglo que cotee la dstaca etre elemetos a comparar para cada teracó (la prmera e el arreglo sempre es gual a y correspode a la últma dstaca ocupada por el algortmo, mometo e el cual es equvalete a Isert Sort), es el úmero de elemetos a ordear y L es orgalmete el arreglo desordeado. Luego de su ejecucó, e L está ordeados los elemetos de meor a mayor. ejemplo: Para que esto quede más claro covee lustrar el problema y su solucó co el sguete

4 La razó para usar el método de sercó para ordear los subarreglos de las etapas sucesvas de Sellsort, es por su secllez y por el eco que el trabajo realzado e etapas prevas se matee al ordear la etapa actual. E efecto, s se defe como arreglo t-ordeado aquel e el cual los elemetos que se ecuetra a dstaca t, detro del arreglo, está ordeados, se puede demostrar que s u arreglo -ordeado es trasformado a k-ordeado (co k<), se matee -ordeado,. Esto permte que a medda que el paso se va acedo más pequeño, los elemetos ya está bastate ordeados globalmete y al realzar la últma etapa co paso = (que es ua ordeacó por Isercó), práctcamete se lleva a cabo e ua sola pasada ( O () ), dado todo el trabajo realzado e las teracoes prevas. Este algortmo es u claro ejemplo de como ua pequeña modfcacó a u algortmo leto lo puede covertr e uo bastate más rápdo. El úmero de comparacoes efectuado por Sellsort es ua fucó de las secuecas de cremeto o dstacas que utlza. Su aálss es extremadamete dfícl y requere respuestas a varos problemas matemátcos todavía o resueltos. Por lo tato, la mejor secueca posble de cremetos aú o a sdo determada, auque alguos casos específcos a sdo estudados. Por ejemplo, para la sere

5 3 2 =. 72 y = 5 ( 3 se a demostrado que el tempo de ejecucó es O ), lo que puede parecer sorpredete: acedo ua sola pasada preva se mejora el algortmo de sercó que e promedo es O ( 2 ). Las sere de pasos almaceados e el arreglo dst tee la característca de ser depedete del tamaño del arreglo al cual se aplca durate el desarrollo del algortmo, por lo que sus valores puede ser pre-calculados ates de ejecutar el ordeameto. E geeral, al programar el algortmo esto o es así, y los valores de los pasos se calcula cada vez que ua teracó terma, lo cual o fluye e ada e la efceca del algortmo: durate las pruebas realzadas e el estudo, las dferecas de tempo etre teer pre-calculados los pasos e rlos calculado e cada teracó o superaro el marge de error de las pruebas (meos del 0.0% del tempo promedo obtedo). S perjuco de lo ateror, exste otras seres de pasos que so depedetes del tamaño del arreglo al cual se aplca, como por ejemplo +, partedo co t = y termado cuado 2 =. El comportameto de ésta sere o es muy dferete a la de = 2, pero s se camba el factor de dvsó 2 por uo lgeramete superor, dgamos 2.2, el algortmo se acelera otablemete. E la lteratura se recomeda o utlzar este tpo de seres, pues s ates el aálss matemátco era muy complcado, co este tpo de seres depedetes es mposble realzarlo. S embargo, este estudo demuestra empírcamete que alguas seres de este tpo puede llegar a ser muy efcetes s se le aplca al algortmo ua pequeña optmzacó, la cual se aalza a cotuacó. 3. Evtado el peor caso Durate el desarrollo del estudo se probó el redmeto de la sguete sere: + 2.4, partedo co t = y termado cuado = 4.8. Para esto, se geeraro arreglos co elemetos

6 al azar, partedo desde u tamaño de 00 asta u tamaño de y agregado 00 elemetos e cada teracó del expermeto ( u test bastate exaustvo!). El algortmo fucoaba bastate be, pero resaltaro dos problemas: las dferecas e el tempo utlzado etre catdades de elemetos muy smlares era grades, y el algortmo se comportaba estreptosamete mal co arreglos de exactamete elemetos (u orde de magtud de dfereca co respecto a arreglos de y elemetos), lo cual era bastate extraño. La raíz del problema radcaba, curosamete, e los msmos cos del algortmo: Se a demostrado que el peor caso de Sellsort ocupado los cremetos de Sell, es decr = 2 ( es poteca de 2), ejecuta u úmero de comparacoes O ( 2 ), s los elemetos está dstrbudos orgalmete e el arreglo de tal maera que la mtad mayor se ecuetre e celdas pares y la mtad meor e celdas mpares. Dado que todos los cremetos so pares exceptuado el últmo, cuado se a llegado a la últma teracó, co el úco cremeto mpar gual a, cotúa estado todos los elemetos mayores e las celdas pares y los meores e las celdas mpares. De este modo e el últmo paso (equvalete al algortmo de Isert Sort) se debe realzar ua gra catdad de comparacoes (recordemos que Isert Sort es, e promedo, O ( 2 ) ). Efectvamete esto era lo que ocurría co la sere de pasos estudada. Todas las aproxmacoes de partedo co t = 4.8 da úmeros pares (y es el úco valor etre 00 y , múltplos de 00, e el que ocurre este feómeo), co lo que el últmo paso, gual a u Isert Sort, debía realzar ua gra catdad de trabajo al o aberse comparado uca las poscoes mpares del arreglo co las pares, lo que degradaba otablemete el redmeto del algortmo. Realzado la pequeña optmzacó de restarle uo al paso s éste resulta par, se obtee u algortmo muco más omogéeo y efcete e su comportameto. La aplcacó de esta optmzacó debera realzarse a todas las seres de pasos, sea éstas depedetes del tamaño del arreglo o o.

7 4. Comparacó del redmeto de dsttas seres de pasos Las seres mplemetadas para realzar el estudo (y que fuero pre-seleccoadas por ser las más efcetes), so las sguetes:. 3* + ( =, 4, 3, 40, 2, 364, 093, ), e dode el paso mayor es el úmero de la = sere más cercao a = 2, e dode el paso mayor es el úmero de la sere más cercao a = 2, e dode el paso mayor es el úmero de la sere que se ecuetra dos poscoes ates del más cercao a k (restádole s resulta par), dode: (a) k = 2.2, (b) k = 2.4, y el paso mayor es k t = 2 *. Se geeraro arreglos de úmeros eteros co valores aleatoros, cuya catdad de elemetos varó etre los y elemetos (múltplos de 5.000). Cada teracó del test cosstó e repetr 30 veces el algortmo co arreglos dsttos pero co la msma catdad de elemetos, calculado luego el tempo promedo que tomaba el algortmo e ordear el arreglo. Para verfcar la valdez de los datos, se calculó el tervalo de cofaza I e el cual se ecotraría la meda real de los tempos obtedos, co u vel de cofaza del 95%: I S S = [ X * 2.262, X + * 2.262], = 30 para cada teracó. X = * X = (meda empírca) S (varaza empírca) 2 = 2 * ( X X ) =

8 El test fue realzado e u PC co procesador Petum 200 MMX y sstema operatvo Lux (kerel ). Los algortmos fuero mplemetados e leguaje C. Los resultados obtedos se muestra e el sguete gráfco: Comparacó etre seres de Sellsort 0,9 0,8 0,7 Tempo [seg] 0,6 0,5 0,4 0,3 0,2 0, Sere Sere 2 Sere 3 Sere 4a Sere 4b Nº de elemetos Los putos represeta el tempo promedo obtedo por cada algortmo. Los tervalos de cofaza calculados posee u aco promedo del 2% del tempo promedo obtedo, por lo que dcos tempos se acerca bastate a la meda real. Se observa e el gráfco que las seres depedetes del tamaño del arreglo supera amplamete a la mejor sere depedete del arreglo. E partcular, la sere de pasos reduce e u 24% el tempo de la mejor sere clásca ( 3* + ) e arreglos co elemetos. La curva que =

9 mejor aproxma a los datos obtedos utlzado esta sere es Y , = e * X, es decr, el tempo promedo que toma el algortmo e ordear es de O ) aproxmadamete. 9 ( 8 Se realzó el msmo test pero aora comparado Qucksort, Mergesort y Heapsort co la mejor sere de Sellsort, El resultado obtedo fue el sguete: Comparacó de Sellsort co algortmos de ordeameto efcetes Tempo [seg] 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0, Sellsort Qucksort Mergesort Heapsort Nº de elemetos Cabe destacar que Mergesort se demora lo msmo e ordear u arreglo desordeado de elemetos que Sellsort, pero éste o ocupa espaco extra para realzar el ordeameto. Qucksort sgue sedo el algortmo más efcete, pero asta los Sellsort sólo toma el doble de tempo que Qucksort para ordear el arreglo.

10 Resumedo: para arreglos de meos de elemetos Sellsort se comporta mejor que Heapsort, que tee complejdad e tempo O ( * l( )) y opera " place"; Mergesort se comporta u poco mejor que Sellsort e tempo de ejecucó, pero tee la desvetaja que o trabaja " place"; Qucksort se comporta muco mejor que Sellsort y també opera " place", pero tee la desvetaja de teer u peor caso O ( 2 ). 5. Coclusoes S be Sellsort o es el algortmo más efcete para ordear arreglos, comparado co la complejdad O( *l( )) de los algortmos Qucksort, Mergesort y Heapsort, es u algortmo muco más fácl de programar. Su smplcdad radca e que derva del algortmo más smple para ordear, Isert 9 ( 8 Sort. Además, su complejdad promedo e tempo de ) + O ocupado la sere 2.2, y su complejdad e espaco de O (), debdo a que opera place, lo ace u bue caddato para resolver el problema de ordeameto e cojutos de meos de elemetos. Es vtal para la efceca del algortmo que todos los elemetos de la sere de pasos sea úmeros mpares, para lo cual basta co restarle al paso s éste es par. Co esta pequeña modfcacó se reduce el tempo promedo de ejecucó y su varaza. Además, el estudo demuestra empírcamete que alguas seres depedetes del tamaño del arreglo reduce el tempo de ejecucó del algortmo co respecto a las seres cláscas. S embargo, aú o se sabe co certeza cuál es la efceca real del algortmo, y es muy posble que exsta seres de pasos que reduzca los tempos de ejecucó obtedos e los tests descrtos. 6. Referecas Mark Alle Wess, Data Structures ad Algortm Aalyss, Bejam/Cummgs, 2ª ed., 995, pág

11 Mca Hofr, Aalyss of Algortms: Computatoal Metods ad Matematcal Tools, Oxford Uversty Press, 995, pág Robert Sedgewck, Algortms C++, Addso-Wesley, 992, pág Sara Baase, Computer Algortms: Itroducto to Desg ad Aalyss, Addso-Wesley, 978, pág

Supongamos que hemos aplicado el test F y hemos rechazado la H0.

Supongamos que hemos aplicado el test F y hemos rechazado la H0. Comparacó de medas tomadas de a pares CONDICION Meda s --------- ---------- ------ ---------- 0.00 3.0000 0.00 3.73 3 97.00 3.0000 4 93.00.44 TOTAL 98.73.6036 Supogamos que hemos aplcado el test F y hemos

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Poblacoes y muestras Varables. Tablas de frecuecas Meddas de: tedeca cetral-dspersó ESTADÍSTICA DESCRIPTIVA: Tee por objetvo recoplar, orgazar y aalzar formacó referda a datos de u

Más detalles

Métodos indirectos de estimación: razón, regresión y diferencia

Métodos indirectos de estimación: razón, regresión y diferencia Métodos drectos de estmacó: razó, regresó dfereca Cotedo. Itroduccó, defcó de estmadores drectos. Estmador de razó, propedades varazas. Límtes de cofaza. 3. Tamaño de la muestra e los estmadores de razó

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple 1 Curso de Estadístca Udad de Meddas Descrptvas Leccó 2: Meddas de Tedeca Cetral para Datos Agrupados por Valor Smple Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor 2 Objetvos 1. Calcular

Más detalles

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx TEMA 3 Meddas de varabldad y asmetría 1. MEDIDAS DE VARIABILIDAD La varabldad o dspersó hace refereca al grado de varacó que hay e u cojuto de putuacoes. Por ejemplo: etre dos dstrbucoes que preseta la

Más detalles

La inferencia estadística es primordialmente de naturaleza

La inferencia estadística es primordialmente de naturaleza VI. Ifereca estadístca Ifereca Estadístca La fereca estadístca es prmordalmete de aturaleza ductva y llega a geeralzar respecto de las característcas de ua poblacó valédose de observacoes empírcas de la

Más detalles

GUÍA DE EJERCICIOS ESTADÍSTICA DESCRIPTIVA

GUÍA DE EJERCICIOS ESTADÍSTICA DESCRIPTIVA GUÍA DE EJERCICIOS ESTADÍSTICA DESCRIPTIVA Área Matemátcas- Aálss Estadístco Módulo Básco de Igeería (MBI) Resultados de apredzaje Apreder el correcto uso de la calculadora cetífca e modo estadístco, además

Más detalles

Los Histogramas. Histograma simple

Los Histogramas. Histograma simple Los Hstogramas El Hstograma es ua forma de represetacó de datos que permte aalzar fáclmete el comportameto de ua poblacó, ya sea per se, o por medo de ua muestra. U Hstograma se defe como u cojuto de barras

Más detalles

El Problema de Búsqueda

El Problema de Búsqueda Aálss y Dseño de Algortmos El Problema de Búsqueda Arturo Díaz Pérez Cojutos estátcos Arboles de decsó para búsqueda Cojutos dámcos Arboles de búsqueda bara Aálss del peor caso Aálss del caso promedo Arboles

Más detalles

Teoría Simplificada de ERRORES Suscriben este documento los coordinadores de Laboratorio de Química, Física I y Física II.

Teoría Simplificada de ERRORES Suscriben este documento los coordinadores de Laboratorio de Química, Física I y Física II. Teoría Smplfcada de ERRORES Suscrbe este documeto los coordadores de Laboratoro de Químca, Físca I y Físca II. Defcoes Báscas: -Error absoluto (o error): Itervalo xe dode co máxma probabldad se ecuetra

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

PARÁMETROS ESTADÍSTICOS ... N

PARÁMETROS ESTADÍSTICOS ... N el blog de mate de ada: ESTADÍSTICA pág. 6 PARÁMETROS ESTADÍSTICOS MEDIDAS DE CENTRALIZACIÓN Las tablas estadístcas y las represetacoes grácas da ua dea del comportameto de ua dstrbucó, pero ese cojuto

Más detalles

Intensificación en Estadística

Intensificación en Estadística GRADO EN VETERINARIA DEPARTAMENTO DE ESTADÍSTICA E IO 0-0 IV Curso Cero Itesfcacó e Estadístca Itroduccó a la fucó Sumatoro Itroduccó Cocepto de fucó sumatoro Aplcacoes Itroduccó Cocepto de fucó sumatoro

Más detalles

Inferencia Estadística

Inferencia Estadística Ifereca Estadístca Poblacó y muestra Coceptos y defcoes Muestra Aleatora Smple (MAS) Cosderemos ua poblacó, cuya fucó de dstrbucó esta dada por F(), la cual está costtuda por u úmero fto de posbles valores,

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases Curso de Estadístca Udad de Meddas Descrptvas Leccó 3: Meddas de Tedeca Cetral para Datos Agrupados por Clases Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor Objetvos 1. Der el cocepto

Más detalles

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo Estadístca Tema : Meddas de Tedeca Cetral. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 1 Parámetros y Estadístcos Parámetro: Es ua catdad umérca calculada sobre ua poblacó La altura meda de los dvduos

Más detalles

4 METODOLOGIA ADAPTADA AL PROBLEMA

4 METODOLOGIA ADAPTADA AL PROBLEMA 4 MEODOLOGA ADAPADA AL PROBLEMA 4.1 troduccó Báscamete el problema que se quere resolver es ecotrar la actuacó óptma sobre las tesoes de los geeradores, la relacó de tomas de los trasformadores y el valor

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Capítulo 9 MEDIDAS DE TENDENCIA CENTRAL Ua medda de tedeca cetral, es u resume estadístco que muestra el cetro de ua dstrbucó; es decr, por lo geeral, busca el cetro de esa dstrbucó. Exste dferetes tpos

Más detalles

CÁLCULO NUMÉRICO (0258)

CÁLCULO NUMÉRICO (0258) CÁLCULO NUÉRICO (58) Tema 4. Apromacó de Fucoes Juo. Ecuetre los polomos de meor grado que terpola a los sguetes cojutos de datos plateado y resolvedo u sstema de ecuacoes leales: 7 y 5-4 7 y 4 9 6.5.7.

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

( ) ( ) ( )( ) ( )( ) ( )

( ) ( ) ( )( ) ( )( ) ( ) Oetvos El alumo coocerá aplcará y comparará alguos métodos de terpolacó umérca de ucoes. Al al de esta práctca el alumo podrá:. Oteer ua ucó que cotega u couto dado de putos e u plao utlzado los métodos

Más detalles

Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGNIFICADO.

Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGNIFICADO. Tema 60.Parámetros estadístcos. Calculo propedades y sgfcado Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGIFICADO.. Itroduccó. Defcó de estadístca. Estadístca descrptva y estadístca ferecal.

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

Análisis Numérico y Programación. Unidad III. -Interpolación mediante trazadores: Lineales, cuadráticos y cúbicos

Análisis Numérico y Programación. Unidad III. -Interpolación mediante trazadores: Lineales, cuadráticos y cúbicos Aálss Numérco y Programacó Udad III -Iterpolacó medate trazadores: Leales, cuadrátcos y cúbcos Prmavera 9 Aálss Numérco y Programacó Coceptos geerales Problema geeral: Se tee u cojuto dscreto de valores

Más detalles

Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética

Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética Objetvos Itroduccó a las meddas de poscó (tedeca cetral o tpsmo): Moda y Medaa Meda artmétca tca Cuartles,, decles y percetles Meddas de poscó Defcó: : refereca a u lugar específco de ua dstrbucó, epresado

Más detalles

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS Estadístca Tema. Seres Estadístcas. Dstrbucoes de frecuecas. Pág. I. ANÁLISIS DESCIPTIVO DE UN CONJUNTO DE DATOS Seres Estadístcas. Dstrbucoes de frecuecas.. Defcó de Estadístca... Coceptos geerales...2

Más detalles

Análisis amortizado. Técnicas Avanzadas de Programación - Javier Campos 205

Análisis amortizado. Técnicas Avanzadas de Programación - Javier Campos 205 Aálss amortzado Téccas Avazadas de Programacó - Javer Campos 205 Aálss amortzado El pla: Coceptos báscos: Método agregado Método cotable Método potecal Prmer ejemplo: aálss de tablas hash dámcas Motículos

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles

ERRORES EN LAS MEDIDAS (Conceptos elementales)

ERRORES EN LAS MEDIDAS (Conceptos elementales) ERRORES E LAS MEDIDAS (Coceptos elemetales). Medda y tpos de errores ormalmete, al realzar varas meddas de ua magtud físca, se obtee e ellas valores dferetes. E muchas ocasoes, esta dfereca se debe a causas

Más detalles

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS Sugerecas para que mparte el curso Ha llegado el mometo e que es coveete resolver ejerccos aplcado

Más detalles

Introducción a la Inferencia Estadística. Dept. of Marine Science and Applied Biology Jose Jacobo Zubcoff

Introducción a la Inferencia Estadística. Dept. of Marine Science and Applied Biology Jose Jacobo Zubcoff Itroduccó a la Ifereca Estadístca Dept. of Mare cece ad Appled Bology Jose Jacobo Zubcoff Modelos de Regresó mple Que tpo de relacó exste etre varables Predccó de valores a partr de ua de ellas Varable

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

Objetivos. El alumno conocerá y aplicará el concepto de arreglos unidimensionales para resolver problemas que requieren algoritmos de tipo numérico.

Objetivos. El alumno conocerá y aplicará el concepto de arreglos unidimensionales para resolver problemas que requieren algoritmos de tipo numérico. Objetvos El alumo coocerá y aplcará el cocepto de arreglos udmesoales para resolver problemas que requere algortmos de tpo umérco. Al fal de esta práctca el alumo podrá:. Maejar arreglos udmesoales.. Realzar

Más detalles

Orden de la tirada. Figura 1: Frecuencia relativa de cara para una sucesión de 400 tiradas.

Orden de la tirada. Figura 1: Frecuencia relativa de cara para una sucesión de 400 tiradas. Estadístca (Q) Dra. Daa M. Kelmasky 99. Teoremas límte Frecueca Relatva 0.5 0.6 0.7 0.8 0.9.0 0 00 00 300 400 Orde de la trada Fgura : Frecueca relatva de cara para ua sucesó de 400 tradas. La fgura muestra

Más detalles

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos 4. SEGUNDO MÓDULO 4. Resume de Datos E estadístca descrptva, a partr de u cojuto de datos, se busca ecotrar resumes secllos, que permta vsualzar las característcas esecales de éstos. E ua expereca, u dato

Más detalles

al nivel de significación α P6: Conclusión: Se debe interpretar la decisión tomada en Paso 5.

al nivel de significación α P6: Conclusión: Se debe interpretar la decisión tomada en Paso 5. 5. NÁLISIS DE VRINZ CONTENIDOS: OBJETIVOS: 5... Prueba de aálss de varaza. 5.. Comparacoes múltples. Determar los pasos a segur al realzar ua prueba de aálss de varaza Platear hpótess para la prueba de

Más detalles

ANalysis Of VAriance ANOVA Análisis de la Varianza. Teresa Villagarcía

ANalysis Of VAriance ANOVA Análisis de la Varianza. Teresa Villagarcía ANalyss Of VArace ANOVA Aálss de la Varaza Teresa Vllagarcía El objetvo del dseño de expermetos Estudar s determados factores fluye sobre ua varable de uestro terés. Por ejemplo: Redmeto de u proceso dustral.

Más detalles

Modelos de Regresión Simple

Modelos de Regresión Simple Itroduccó a la Ifereca Estadístca Dept. of Mare cece ad Appled Bology Jose Jacobo Zubcoff Modelos de Regresó mple Que tpo de relacó exste etre varables Predccó de valores a partr de ua de ellas Varable

Más detalles

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE)

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE) Comsó Ecoómca para Amérca Lata y el Carbe (CEPAL Dvsó de Estadístcas y Proyeccoes Ecoómcas (DEPE Cetro de Proyeccoes Ecoómcas (CPE Estmacó Putual de Parámetros Chrsta A. Hurtado Navarro Mayo, 006 Estmacó

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

Estadística Espacial. José Antonio Rivera Colmenero

Estadística Espacial. José Antonio Rivera Colmenero Estadístca Espacal José Atoo Rvera Colmeero 1 Descrptores del patró putual Tedeca cetral 1. Meda cetral (Meda espacal). Meda cetral poderada 3. Medaa cetral (medaa espacal) o se utlza amplamete por su

Más detalles

MEDIDAS DE CENTRALIZACIÓN

MEDIDAS DE CENTRALIZACIÓN Educagua.com MEDIDAS DE CETRALIZACIÓ Las meddas de cetralzacó so estadístcos que releja algú valor global de la sere estadístca. Las prcpales meddas de cetralzacó so: Meda artmétca smple. Meda artmétca

Más detalles

Ensayos de control de calidad

Ensayos de control de calidad Esayos de cotrol de caldad Fecha: 0170619 1. lcace. Este procedmeto es aplcable e la evaluacó del desempeño del persoal que ejecuta pruebas e la Dvsó de Laboratoros de Ifraestructura de la Coordacó de

Más detalles

Qué es ESTADISTICA? OBJETIVO. Variabilidad de las respuestas. Las mismas condiciones no conducen a resultados exactamente similares PROBLEMA SOLUCIÓN

Qué es ESTADISTICA? OBJETIVO. Variabilidad de las respuestas. Las mismas condiciones no conducen a resultados exactamente similares PROBLEMA SOLUCIÓN Qué es ESADISICA? Es u couto de la rama de las Matemátcas Es algo aburrdo que mplca u motó de cuetas 3 Es u couto de téccas que se puede usar para probar cualquer cosa 4 Es u couto de coocmetos téccas

Más detalles

Universidad de Cantabria

Universidad de Cantabria Smulacó dámca Pedro Corcuera Dpto. Matemátca Aplcada Cecas de la Computacó Uversdad de Catabra corcuerp@uca.es Ídce Geeral Smulacó de cotrol PID Smulacó de cotrol de vel Ajuste de cotroladores PID Smulacó

Más detalles

Respuesta. Si 100 manzanas es una muestra suficientemente grande podemos ocupar el TCL. Por lo tanto:

Respuesta. Si 100 manzanas es una muestra suficientemente grande podemos ocupar el TCL. Por lo tanto: Curso: Estadístca Iferecal (ICO 8306) Profesores: Esteba Calvo, Pablo Huechapa y Omar Ramos Ayudates: José T. Meda, Fabo Salas y Daela Vlches PROBLEMA Cosdere que Ud. es dueño de u campo que produce mazaas,

Más detalles

Estadística aplicada al Periodismo

Estadística aplicada al Periodismo Estadístca aplcada al Perodsmo Temaro de la asgatura Itroduccó. Aálss de datos uvarates. Aálss de datos bvarates. Seres temporales y úmeros ídce. Probabldad y Modelos probablístcos. Itroduccó a la fereca

Más detalles

LECTURA 02: DISTRIBUCIONES DE FRECUENCIAS (PARTE I) DISTRIBUCIONES DE FRECUENCIAS EN PUNTOS AISLADOS

LECTURA 02: DISTRIBUCIONES DE FRECUENCIAS (PARTE I) DISTRIBUCIONES DE FRECUENCIAS EN PUNTOS AISLADOS Uversdad Católca Los Ágeles de Cmbote LECTURA 0: DISTRIBUCIONES DE FRECUENCIAS (PARTE I) DISTRIBUCIONES DE FRECUENCIAS EN PUNTOS AISLADOS TEMA : DISTRIBUCIONES DE FRECUENCIAS: DEFINICIÓN Y CLASIFICACIÓN

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

Test de Hipótesis. Error de tipo I: Rechazar H 0 siendo H 0 Verdadera. Error de tipo II: No rechazar H 0 siendo H 0 Falsa

Test de Hipótesis. Error de tipo I: Rechazar H 0 siendo H 0 Verdadera. Error de tipo II: No rechazar H 0 siendo H 0 Falsa Error tpo I: Rechazar H sedo H Verdara Test Hpótess Error tpo II: No rechazar H sedo H Falsa Nvel Sgfcacó: = P(error tpo I = P(Rechazar H sedo H Verdara Probabldad error tpo II: = P(error tpo II = P(No

Más detalles

CAPÍTULO III TÉCNICAS DE SIMULACIÓN ESTADÍSTICA. Los datos sintéticos son elementos de suma importancia en los sistemas de diseño en

CAPÍTULO III TÉCNICAS DE SIMULACIÓN ESTADÍSTICA. Los datos sintéticos son elementos de suma importancia en los sistemas de diseño en CAPÍTULO III TÉCNICAS DE SIMULACIÓN ESTADÍSTICA 3. Itroduccó Los datos stétcos so elemetos de suma mportaca e los sstemas de dseño e presas de almaceameto, ya que se evalúa el propósto del sstema co sumo

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

Apéndice 1. Ajuste de la función gamma utilizando el método de máxima probabilidad ( maximum likelihood )

Apéndice 1. Ajuste de la función gamma utilizando el método de máxima probabilidad ( maximum likelihood ) Apédces Apédces 357 Apédce. Ajuste de la fucó gamma utlzado el método de máma probabldad mamum lkelhood Se descrbe a cotuacó el ajuste de la fucó gamma utlzado e el apartado.2..2 pága 28. Véase Burguess

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.

Más detalles

DISTRIBUCIÓN DE LA MEDIA Y EL TEOREMA DEL LÍMITE CENTRAL

DISTRIBUCIÓN DE LA MEDIA Y EL TEOREMA DEL LÍMITE CENTRAL Smposo de Metrología 4 al 7 de Octubre DISTRIBUCIÓ DE LA MEDIA Y EL TEOREMA DEL LÍMITE CETRAL Wolfgag A. Schmd Cetro acoal de Metrología Tel.: (44) 4, e-mal: wschmd@ceam.mx Resume: De acuerdo al Teorema

Más detalles

1. Los postulados de la Mecánica Cuántica. 2. Estados Estacionarios. 3. Relación de Incertidumbre de Heisenberg. 4. Teorema de compatibilidad.

1. Los postulados de la Mecánica Cuántica. 2. Estados Estacionarios. 3. Relación de Incertidumbre de Heisenberg. 4. Teorema de compatibilidad. Parte : MECÁNICA CUÁNTICA 1. Los postulados de la Mecáca Cuátca.. Estados Estacoaros. 3. Relacó de Icertdumbre de Heseberg. 4. Teorema de compatbldad. 1 U breve repaso de Mecáca Clásca 1. Partícula clásca:

Más detalles

Objetivos. El alumno será capaz de programar algoritmos que incluyan el manejo de arreglos utilizando funciones.

Objetivos. El alumno será capaz de programar algoritmos que incluyan el manejo de arreglos utilizando funciones. Objetvos El alumo será capaz de programar algortmos que cluya el maejo de arreglos utlzado fucoes. Al fal de esta práctca el alumo podrá:. Realzar etosamete programas que haga uso de arreglos como parámetros

Más detalles

ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA 3.5 Ojvas Este tpo de represetacó gráfca se costruye a partr de las frecuecas acumuladas (absolutas o relatvas) para varables cotuas o dscretas, co muchos

Más detalles

Comportamiento Mecánico de Sólidos Capítulo II. Introducción al análisis tensorial. Tensores. x 3 A 3. Figura 1. Componentes de un vector.

Comportamiento Mecánico de Sólidos Capítulo II. Introducción al análisis tensorial. Tensores. x 3 A 3. Figura 1. Componentes de un vector. Comportameto Mecáco de Sóldos Capítulo II. Itroduccó al aálss tesoral. Itroduccó al aálss tesoral esores Es aquella catdad físca que después de ua trasformacó de coordeadas (que obedezca certas reglas),

Más detalles

4º MEDIO: MEDIDAS DE POSICIÓN

4º MEDIO: MEDIDAS DE POSICIÓN 4º MEDIO: MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co

Más detalles

Apuntes preparados por el profesor Sr. Rosamel Sáez Espinoza con fines de docencia

Apuntes preparados por el profesor Sr. Rosamel Sáez Espinoza con fines de docencia Aputes preparados por el profesor Sr. Rosamel Sáez Espoza co fes de doceca La meda Sea u cojuto de observacoes x 1,..., x, o agrupados. Se defe la meda o promedo, medate: x 1 La meda utlza todas las observacoes,

Más detalles

CENTRO DE MASA centro de masas centro de masas

CENTRO DE MASA centro de masas centro de masas CENTRO DE ASA El cetro de masas de u sstema dscreto o cotuo es el puto geométrco que dámcamete se comporta como s e él estuvera aplcada la resultate de las fuerzas exteras al sstema. De maera aáloga, se

Más detalles

Estadística Contenidos NM 4

Estadística Contenidos NM 4 Cetro Educacoal Sa Carlos de Aragó. Sector: Matemátca. Prof.: Xmea Gallegos H. 1 Estadístca Cotedos NM 4 Udad: Estadístca y Probabldades. Apredzajes Esperados: * Recooce dferetes formas de orgazar formacó:

Más detalles

Experimento: TEORÍA DE ERRORES. UNIVERSIDAD DE ATACAMA Facultad de Ciencias Naturales Departamento de Física I. OBJETIVOS

Experimento: TEORÍA DE ERRORES. UNIVERSIDAD DE ATACAMA Facultad de Ciencias Naturales Departamento de Física I. OBJETIVOS Epermeto: I. OJETIVOS UNIVERSIDD DE TM Facultad de ecas Naturales Departameto de Físca TEORÍ DE ERRORES Idetfcar errores sstemátcos y accdetales e u proceso de medcó. ompreder los coceptos de eacttud y

Más detalles

G - Métodos de Interpolación

G - Métodos de Interpolación ESCUELA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS G - Métodos de Iterpolacó Polomo de terpolacó de Lagrage. Polomo de terpolacó

Más detalles

Números Complejos PREGUNTAS MÁS FRECUENTES

Números Complejos PREGUNTAS MÁS FRECUENTES Repaso de º de Bachllerato Números Complejos PREGUNTAS MÁS FRECUENTES. Qué es la udad magara? Es u elemeto del que coocemos úcamete su cuadrado:.obvamete, o se trata de u úmero real.. Qué es u úmero complejo?

Más detalles

Probabilidad ( A) Los axiomas de la probabilidad. φ = el conjunto vacío A B = A y no B C

Probabilidad ( A) Los axiomas de la probabilidad. φ = el conjunto vacío A B = A y no B C Los axomas de la probabldad obabldad El prmer paso para descrbr la certdumbre es cosderar el cojuto de posbles resultados obtedos a partr de u expermeto aleatoro. Este cojuto es llamado espaco muestral

Más detalles

2.4 Pruebas estadísticas para los números pseudoaleatorios

2.4 Pruebas estadísticas para los números pseudoaleatorios Capítulo Números pseudoaleatoros.4 Pruebas estadístcas para los úmeros pseudoaleatoros 34 E la seccó. se presetaro dversos algortmos para costrur u cojuto r, pero ése es sólo el prmer paso, ya que el cojuto

Más detalles

TEMAS CUESTIONARIO DE AUTOEVALUACIÓN

TEMAS CUESTIONARIO DE AUTOEVALUACIÓN TEMAS 1-2-3 CUESTIOARIO DE AUTOEVALUACIÓ 2.1.- Al realzar los cálculos para obteer el Ídce de G se observa que: p 3 > q 3 y que p 4 >q 4 etoces: La prmera desgualdad es falsa y la seguda certa. La prmera

Más detalles

1.3. Longitud de arco.

1.3. Longitud de arco. .. Logtud de arco. Defcó. Sea C ua curva suave defda paramétrcamete por la fucó vectoral f : R R / f () t = ( f() t, f() t,, f ( t) ) e el espaco R, co t [ a, b], que se recorre exactamete ua vez cuado

Más detalles

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ TEOREMA DE BERNOULLI GENERALIZADO > 0 Dada ua sucesó x1, x, x3,... x dos a dos depedetes, co ua msma dstrbucó de probabldad y co esperaza µ y varaza lím Se verfca que P x µ = 1 ó lím P x µ > = 0 El límte,

Más detalles

La Metodología de la Verosimilitud Empírica

La Metodología de la Verosimilitud Empírica La Metodología de la Verosmltud Empírca Gozalo Delgado Facultad de Matemátcas, Uversdad Autóoma de Guerrero Méxco deggozalo@aol.com Probabldad y Estadístca Superor Resume Se expoe la metodología de la

Más detalles

MEDIDAS DE FORMA Y CONCENTRACIÓN

MEDIDAS DE FORMA Y CONCENTRACIÓN MEDIDAS DE FORMA Y CONCENTRACIÓN 4..- Asmetría: coefcetes de asmetría de Fsher y Pearso. Otros Coefcetes de asmetría. 4.2.- La ley ormal. 4..- Curtoss o aplastameto: coefcete de Fsher. 4.4.- Meddas de

Más detalles

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN INTRODUCCIÓN CONTENIDO DEFINICIÓN DE ESTADÍSTICA ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS POBLACIÓN VARIABLE: Cualtatvas o Categórcas y Cuattatvas (Dscretas y Cotuas) MUESTRA TAMAÑO MUESTRAL DATO DISTRIBUCIONES

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor árbara Cáovas Coesa Estadístca Descrptva 1 Cálculo de Probabldades Trata de descrbr y aalzar alguos caracteres de los dvduos de u grupo dado, s extraer coclusoes para u grupo mayor Poblacó Idvduo o Udad

Más detalles

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

1 Estadística. Profesora María Durbán

1 Estadística. Profesora María Durbán Tema 5: Estmacó de Parámetros Tema 5: Estmacó de Parámetros 5. Itroduccó y coceptos báscos 5. Propedades de los estmadores 5.4 Dstrbucó de u estmador e el muestreo Objetvos del tema: Al fal del tema el

Más detalles

02 ) 2 0 en el resto. Tiempo (meses) Ventilador adicional No No Si No Si Si Si Si No Si Tipo carcasa A C B A B A B C B C

02 ) 2 0 en el resto. Tiempo (meses) Ventilador adicional No No Si No Si Si Si Si No Si Tipo carcasa A C B A B A B C B C Ua empresa motadora de equpos electrócos está realzado u estudo sobre aluos de los compoetes que utlza. E partcular mde el tempo de vda e meses reales de los procesadores que mota, dode a aluos de ellos

Más detalles

Interpolación polinómica.

Interpolación polinómica. 5 Iterpolacó polómca Itroduccó E muchas ocasoes e dferetes ramas de la geería, a la hora de resolver u problema, los datos de que se dspoe se ecuetra e tablas, como por ejemplo tablas estadístcas E la

Más detalles

x x x x x Y se seguía operando

x x x x x Y se seguía operando . INTRODUCCIÓN. DEFINICIONES UNIDAD : Números complejos Cuado se teta resolver ecuacoes de segudo grado como por ejemplo x 4x 0, se observa que o 4 6 5 4 6 tee solucoes reales x x, pues o exste raíces

Más detalles

Tema 1. La medida en Física. Estadística de la medida Cifras significativas e incertidumbre

Tema 1. La medida en Física. Estadística de la medida Cifras significativas e incertidumbre Tema. La medda e Físca Estadístca de la medda Cfras sgfcatvas e certdumbre Cotedos Herrameta para represetar los valores de las magtudes físcas: los úmeros Sstemas de udades Notacó cetífca Estadístca de

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate

Más detalles

SEMESTRE DURACIÓN MÁXIMA 2.5 HORAS DICIEMBRE 10 DE 2008 NOMBRE

SEMESTRE DURACIÓN MÁXIMA 2.5 HORAS DICIEMBRE 10 DE 2008 NOMBRE UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS PROBABILIDAD ESTADÍSTICA SEGUNDO EAMEN FINAL RESOLUCIÓN SEMESTRE 009- DURACIÓN

Más detalles

que queremos ajustar a los datos. Supongamos que la función f( x ) describe la relación entre dos cantidades físicas: x e y = f( x)

que queremos ajustar a los datos. Supongamos que la función f( x ) describe la relación entre dos cantidades físicas: x e y = f( x) APROXIMACIÓN DISCRETA DE MÍNIMOS CUADRADOS Las leyes físcas que rge el feómeo que se estuda e forma expermetal os proporcoa formacó mportate que debemos cosderar para propoer la forma de la fucó φ ( x)

Más detalles

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD 1. CONCEPTO DE ESTADÍSTICA : Es la ceca que estuda la terpretacó de datos umércos. a) Proceso estadístco : Es aquél que a partr de uos datos umércos, obteemos

Más detalles

n p(a ) = n p(a ) = n k Nº de casos favorables de A Nº de casos posibles de E p(a) = Capítulo PROBABILIDAD 1. Introducción

n p(a ) = n p(a ) = n k Nº de casos favorables de A Nº de casos posibles de E p(a) = Capítulo PROBABILIDAD 1. Introducción Capítulo VII PROBABILIDAD 1. Itroduccó Se dcaba e el capítulo ateror que cuado u expermeto aleatoro se repte u gra úmero de veces, los posbles resultados tede a presetarse u úmero muy parecdo de veces,

Más detalles

UNIDAD DIDÁCTICA 13: Estadística Descriptiva

UNIDAD DIDÁCTICA 13: Estadística Descriptiva Utat d accés accés a la uverstat dels majors de 5 ays Udad de acceso acceso a la uversdad de los mayores de 5 años UNIDAD DIDÁCTICA 13: Estadístca Descrptva ÍNDICE: DESARROLLO DE LOS CONTENIDOS 1 Itroduccó

Más detalles

MUESTREO EN POBLACIONES FINITAS (1) Dos aspectos básicos de la inferencia estadística, no vistos aún:

MUESTREO EN POBLACIONES FINITAS (1) Dos aspectos básicos de la inferencia estadística, no vistos aún: A. Morllas - p. - MUESTREO E POBLACIOES FIITAS () Dos aspectos báscos de la fereca estadístca, o vstos aú: Proceso de seleccó de la muestra Métodos de muestreo Tamaño adecuado e poblacoes ftas Fabldad

Más detalles

Laboratorio de Física PRÁCTICA 1

Laboratorio de Física PRÁCTICA 1 PRELABORATORIO: MEDICIÓN - Medr. - Aprecacó. - Meddas drectas. - Meddas drectas. MEDIDAS DE LONGITUD - Cta métrca. - Verer. - Torllo mcrométrco. MEDIDAS DE TIEMPO - Croómetro. Error. - Error sstemátco.

Más detalles

Aplicación de Boostrapping en Regresión I

Aplicación de Boostrapping en Regresión I Aplcacó de Boostrappg e Regresó I U modelo de regresó leal basado e observacoes (x,y ) es de la forma y =x β+e (=,,..) dode y so los valores observados de la varable de respuesta y, y los x so vectores

Más detalles

7. Muestreo con probabilidades desiguales.

7. Muestreo con probabilidades desiguales. 7. Muestreo co probabldades desguales. 7. Itroduccó. 7.. Probabldades de clusó. 7.. Pesos del dseño muestral. 7.. Alguos métodos co probabldades desguales. 7. Estmacó de la meda, proporcó total poblacoales.

Más detalles

METODOLOGÍA DE CÁLCULO DEL INDICADOR DE FLOTA EN OPERACIÓN (IFO)

METODOLOGÍA DE CÁLCULO DEL INDICADOR DE FLOTA EN OPERACIÓN (IFO) METODOLOGÍA DE CÁLCULO DEL INDICADOR DE FLOTA EN OPERACIÓN (IFO) I. Descrpcó del cálculo de los dcadores IFO CIFO La flota e operacó se medrá a través de los mecasmos IFO y CIFO, de acuerdo a lo establecdo

Más detalles

Escrito. 1) Transforma a las bases indicadas:

Escrito. 1) Transforma a las bases indicadas: Escrto ) Trasforma a las bases dcadas: a. 765 base (0) b. AB base 7 0 (6) base ) Halla los dígtos a y b sabedo que: aam 6 ( 5 ) mam( 6 ) 3) Trasforma a la base dcada usado ua tabla de correspodeca.. 00

Más detalles

1.2. Medidas de Concentración

1.2. Medidas de Concentración .. Meddas de Cocetracó Matlde Machado.. Meddas de Cocetracó La gra mayora de los mercados se ecuetra etre los extremos de competeca perfecta (cocetracó mma) y moopolo (cocetracó máxma). Las meddas de cocetracó

Más detalles

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada. MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:

Más detalles