Ejemplo: Para indicar el conjunto (que llamaremos M), formado por los números 4, 6 y 8, escribimos: M = { 4, 6, 8}

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ejemplo: Para indicar el conjunto (que llamaremos M), formado por los números 4, 6 y 8, escribimos: M = { 4, 6, 8}"

Transcripción

1 NÚMEROS REALES. BREVE REPASO DE LA TEORÍA DE CONJUNTOS En est unidd utilizremos ls notciones l terminologí de conjuntos. L ide de conjunto se emple mucho en mtemátic se trt de un concepto básico del que no dremos un definición forml. Podemos decir que un conjunto es un grupción de objetos distintos (pero con lgun crcterístic en común), los que reciben el nombre de elemento. Generlmente se nombr un conjunto con un letr múscul, un elemento de ese conjunto con un letr minúscul. Un conjunto puede especificrse de dos mners: ) hciendo un list de los elementos del conjunto (enumerción), en cuo cso lo describiremos utilizndo un notción de uso universl. Pr indicr el conjunto (que llmremos M), formdo por los números 4, 6 8, escribimos: M { 4, 6, 8} b) estbleciendo un propiedd que crcterice los elementos del conjunto (comprensión). Pr indicr el mismo conjunto M escribimos: M { / es un número pr comprendido entre 9} o bien M { / N < < 9} Recordr que: / : se lee tl que : se lee : se lee pertenece < : se lee menor que : se lee o

2 A menudo result de grn utilidd pr visulizr ciertos conjuntos, representrlos medinte un recinto plno limitdo por un líne cerrd, cundo se representn los elementos del conjunto se conviene en hcerlo mrcndo un punto interior. Est representción se llm digrm de Venn. Se emple el símbolo pr indicr que un elemento específico pertenece l conjunto; el símbolo pr indicr que un elemento específico no es elemento de un conjunto. A {,,, 4, } A { / es un número nturl menor que 6 } A { / N < 6 } donde A ; A ; 6 A A Ddos los conjuntos A B, si todo elemento de A es elemento de B se indic A B ( A está incluído en B, o A es prte de B). Mientrs que si A no es prte de B, es decir que h lgún elemento de A que no es elemento de B, se escribe A B. A {, } B {,,,4 } B A....4 A B Se dice que dos conjuntos A B son igules ( se escribe A B ) si A B poseen elementos idénticos, es decir si A B B A. Mientrs que si h lgún elemento de A que no es elemento de B ó si h lgún elemento de B que no es elemento de A se dice que A B.

3 símbolo. El conjunto que no tiene elementos se denomin conjunto vcío se represent con el Ejemplos: A { / N } ó A B { : < 0 } ó B Se llm conjunto universl (o referencil) se denot con U l conjunto que contiene todos los elementos de todos los conjuntos considerdos del tem trtdo. U { / N} A { / N es pr } B { / N es impr } Se llm complemento de A (respecto de U l conjunto de elementos de U que no están en A. Pr indicr el complemento del conjunto A, usremos el símbolo A. U {,,, 4,, 6, 7, 8, 9} U A {, {,, 4, 4, 6,, 8} 6, 7, 8, 9} A {,,, 7, 9} A B {, {, 4, 6,, 8}, 4, } A B {,, {, 6, 7, 9} 8, 9 } B {,,, 4, } B { 6, 7, 8, 9 } Operciones entre conjuntos Alguns operciones entre conjuntos que utilizremos son: unión, intersección diferenci. L unión de dos conjuntos A B (representd A B ) es el conjunto de elementos que se encuentrn en A o en B o en mbos. En símbolos: A B { / A B }

4 A { / Z - < } A {-, -, 0,, } B { / Z 0 } B { 0,,,, 4, } A B {-, -, 0,,,, 4, } L intersección de dos conjuntos A B (representd A B ) es el conjunto de elementos que se encuentrn tnto en A como en B ( o se los elementos comunes A B). En símbolos: A B { / A B } A { / Z - < } A {-, -, 0,, } B { / Z 0 } B { 0,,,, 4, } A B { 0,, } L diferenci entre los conjuntos A B (representd A B ) es el conjunto formdo por los elementos de A que no son elementos de B. En símbolos: A - B { / A B } A { / Z - < } A {-, -, 0,, } B { / Z 0 } B { 0,,,, 4, } A - B {-, - } B - A {, 4, } 4

5 A modo de resumen de ls operciones vists,se present el siguiente ejemplo: A {,,, 4,, 6, 7, 8} B {, 4, 6, 0, } ) A B {,,, 4,, 6, 7, 8, 0, } ) A B {, 4, 6} ) A B {,,, 7, 8} 4) B A {0, } Est situción se puede representr medinte el digrm de Venn siguiente. A B Cd zon sombred corresponde l operción indicd A B A B A B A B A B A B A - B B - A

6 . LOS NÚMEROS REALES.. Conjunto de los números reles Aunque l Mtemátic v más llá del estudio de los números, comenzremos trbjndo con el conjunto de los números reles. Recordremos que el conjunto de los números nturles o enteros positivos, se compone de: N {,,, 4,... }; que N es un subconjunto del conjunto de los enteros: Z {..., -, -, 0,,,, 4,...}. El conjunto Z inclue tnto los enteros positivos como los negtivos el número cero, el cul no es ni negtivo ni positivo. A su vez el conjunto de enteros es un subconjunto del conjunto de los números rcionles (que denotremos con Q): p Q { / p q son enteros, q 0 }. El conjunto Q está compuesto de todos los cocientes de dos q enteros, siempre que el denomindor no se cero. El conjunto de los números rcionles no es suficiente pr solucionr ciertos problems elementles lgebricos geométricos. Por ejemplo no h un número rcionl p / q pr el p que, o se que el número q no es un número rcionl, pertenece l conjunto de los números irrcionles, es decir l conjunto de números reles que no puede epresrse como cociente de dos enteros. Otros ejemplos de números irrcionles: π, e,, - 7. Luego podemos firmr que: N Z Q R. R N Z Q 6

7 .. Sistem de números reles El sistem de números reles consiste en un conjunto de elementos denomindos números reles dos operciones conocids como dición multiplicción. El conjunto de números reles se represent R. L operción de l dición se represent con el símbolo (+), l multiplicción por ( ). Si b son elementos del conjunto R, + b design l sum de de b, mientrs que. b design su producto. El sistem de números reles se puede describir completmente por un conjunto de ioms (enuncido forml que se d por cierto sin necesidd de demostrrlo). Con estos ioms podemos deducir ls propieddes de los números reles de ls cules siguen ls operciones lgebrics de dición, sustrcción, multiplicción división. PROPIEDADES BÁSICAS Ls propieddes básics del sistem de números reles con respecto ls operciones de dición multiplicción son ls siguientes: Sen, b c dos números reles: Adición Multiplicción ) Le clusurtiv (le de cierre) + b es un número rel. b es un número rel ) L sum es socitiv + ( b + c) ( + b) + c El producto es socitivo. ( b. c) (. b). c ) L sum es conmuttiv + b b + El producto es conmuttivo. b b. 4) Eiste elemento neutro pr l sum A Eiste elemento neutro pr el producto.. ) Pr cd número rel eiste un único número rel (llmdo negtivo o inverso ditivo de ), representdo por (-) tl que: + (-) - 0 Pr cd número rel 0 eiste un único número rel (llmdo recíproco o inverso multiplictivo de ),representdo por / o tmbién por tl que:.. 7

8 86) Propiedd distributiv ( el producto es distributivo respecto de l sum). ( b + c ) (.b) +(.c) b + c ( + b ) c (.b) +(.c) c + bc OTRAS PROPIEDADES Muchs otrs propieddes de los números reles pueden demostrrse prtir de ls propieddes básics. Alguns que utilizremos son ls siguientes: ) Le cnceltiv ( o nultiv) Si + c b + c entonces b Si.c b.c, entonces b b) (Si b, entonces + c b + c ) ( Si b, entonces.c b.c) c) Si. b 0 0 ó b 0 d) Pr los números b, l diferenci b se define como: b + ( - b ) Si b 0, el cociente / b se define : b. b b En el cociente b, se llm numerdor b se llm denomindor. Con frecuenci el cociente de dos números reles se llm frcción. Recordr que b no está definid pr b 0. No tods ls propieddes que funcionn pr l dición l multiplicción son válids pr l sustrcción l división. Hremos un list de otrs propieddes importntes. e) ( -). - f) - (- ) g) (- ). b. (- b) - (.b) - b h) (- ) ( - b ) b i) ( + b) (- ) + (- b) b j) ( - ) - k) ( b) - b 8

9 .. Los números reles l rect Al conjunto R se le impone un condición denomind iom de completitud (que no estudiremos hor). Sin embrgo dremos un interpretción geométric l conjunto de números reles sociándolos los puntos de un rect horizontl llmd eje. El iom de completitud grntiz un correspondenci biunívoc (de uno uno) entre el conjunto R el conjunto de puntos en el eje. Se elige un punto en el eje pr que represente el punto 0. Este punto recibe el nombre de origen. Se seleccion luego un unidd de distnci. Entonces cd número positivo quedrá representdo por un punto situdo un distnci de uniddes l derech del origen, cd número negtivo se representrá por un punto un distnci de uniddes l izquierd del origen. Eiste un correspondenci biunívoc entre R los puntos del eje, es decir, cd número rel le corresponde un único punto en el eje cd punto en el eje se le soci un único número rel. A l rect R se l denomin rect de números reles o rect numéric Orden en los reles Eiste un ordenmiento en el conjunto R por medio de un relción denotd por los símbolos < ( menor que ) > ( mor que ) que se definen sí: < b si sólo si b es positiv. > b si sólo si b es positiv. L relción de orden sí definid verific ls siguientes propieddes. PROPIEDADES BÁSICAS DEL ORDEN: Sen, b, c R, se cumple : ) Un sólo un de ls siguientes firmciones es verdder: < b, ó > b, ó b ) Si > 0 b > 0, entonces + b > 0. ) Si > 0 b > 0, entonces b > 0. 9

10 Son de uso universl ls siguientes notciones: b si sólo si: < b, o bien b. b si sólo si : > b, o bien b. < b < c pr indicr que < b b < c. b c pr indicr que b b c. OTRAS PROPIEDADES DEL ORDEN EN R Muchs otrs propieddes reltivs l orden pueden demostrrse prtir de ls básics; lguns son ls siguientes: O ) b b b. O ) b b c c. O ) Si > b b > c, entonces > c. (le de trnsitividd) Si < b b < c, entonces < c. O 4) Lees de monotoní de l sum ) Si > b entonces + c > b + c. b) Si < b entonces + c < b + c. c) Si < b c < d entonces + c < b + d. O ) Lees de monotoní del producto: ) Si > b c > 0, entonces c > b c. b) Si < b c > 0, entonces c < b c. c) Si > b c < 0, entonces c < b c. d) Si < b c < 0, entonces c > b c. O 6) Si 0 < <b entonces < b, (donde b bb ) O 7) Si < b< 0 entonces b <. O 8) Si 0 entonces > 0.. 0

11 .. Intervlos Pr indicr que un número se encuentr entre b, o se si < < b. Esto puede escribirse de l siguiente mner: < < b. Tmbién son utilizds ls epresiones: b, < b, < b. Al conjunto formdo por todos los vlores reles de que cumplen con lgun de ls condiciones nteriores se lo denomin intervlo, tiene un notción determind se lo puede representr en l rect numéric. (, b) { R : < < b} (intervlo bierto) [, b] { R : b} (intervlo cerrdo) (, b] { R : < b} (intervlo semibierto l izquierd o semicerrdo) [, b) { R : < b} (intervlo semibierto l derech o semicerrdo) Ejemplos: A { / R - < < } (-, ) B { / R - } [-, ] - - C { / R - < } [-, ) - D { / R - < } (-, ] Otros intervlos: [, + ) { R : } - (, + ) { R : > } (-, ] { R : } (-, ) { R : < } (-, + ) { R } R

12 .6. Otrs operciones: potencición rdicción Potencición Así como un sum repetid se podí escribir 4, el producto repetido se puede escribir En generl, pr culquier entero positivo n, el símbolo n represent el producto de n fctores de. n donde n es el eponente es l bse nveces Tmbién pr culquier entero positivo n definimos - n n De ls propieddes vists del producto surgen ls siguientes PROPIEDADES DE LA POTENCIACIÓN ) m. n m + n b) ( m ) n m. n c) (. ) m m. m d) m m m e) m n m n Ejemplos: ( )... (. )

13 Rdicción Ls ríces de los números reles se definen por el enuncido n r si sólo si r n donde r son números reles no negtivos n es un entero positivo, ó r son números reles negtivos n es un número entero positivo impr. Al número n se lo denomin l ríz enésim de. L epresión n se llm rdicl; el número n es el índice del rdicl se llm rdicndo. El símbolo se llm signo rdicl. PROPIEDADES DE LA RADICACIÓN Ls propieddes siguientes se utilizn pr operr simplificr epresiones que contengn rdicles. Sen m n números positivos e números reles. Entonces: ) ( n ) n b) n. n n. n c) n n d) n m m.n Ejemplos: ) b) ó. 8 8 ( ) c) 8 4 d)

14 Al rcionlizr un denomindor estmos encontrndo un epresión equivlente l dd que no tiene rdicles en el denomindor. Pr ello bst multiplicr l epresión dd por, escrito en form especil ( 7 ) 7 Si un frcción contiene epresiones del tipo ( + ) ó ( ) bstrá multiplicr por un epresión conveniente pr obtener otr epresión, equivlente l dd, pero que no conteng rdicles en el denomindor. Ejemplos: ) ( 7 + ) ( 7 + ) ( 7 + ( 7 ) ( ) 7 4 ) b) ( ) ( ) c) + +. ( ) ( ) ( ) ( ) ( ) 4

15 Eponentes rcionles El concepto de ríz enésim de un número nos permite mplir l definición de eponentes enteros eponentes rcionles, veces es más cómodo trbjr con eponentes rcionles que con rdicles. Si el vlor n está definido, diremos que: Análogmente n n m m n n n m Ejemplos: ) 64 ( ) 6 64 ( ) ( ) 4 6 b) ( ) ( ) ( ) 8 c) d)

16 PROPIEDADES Ls propieddes de l potencición vists pr eponentes enteros positivos tmbién son válids pr los eponentes rcionles o se si e son números reles decudos, r p son números rcionles se cumple que: ) r. p r + p b) ( r ) p r. p c) (. ) r r. r d) r r r e) p r p r Ejemplos:.) b)

17 .7 Vlor bsoluto El vlor bsoluto de un número rel se design medinte, se define como: si 0 si < 0 Geométricmente el vlor bsoluto de un número es l distnci entre ese número el origen. L epresión d represent quellos vlores de cu distnci l origen es d. Gráficmente: -d d 0 - d d Ejemplos 4, esto puede interpretrse: los números cu distnci l origen es igul >, esto se lee: los números cu distnci l origen es mor -d d 0 - d d Análogmente, se define l distnci (no dirigid) entre dos números como: - En prticulr si 0, - 0 tendrímos l distnci l origen como se definió ntes. Ejemplo L epresión - se lee los números cu distnci es. Los números que stisfcen est iguldd son: - 8, tl como se muestr en l siguiente figur:

18 Not: Si es un número negtivo l epresión ( ) + L epresión + < 4 se lee los números cu distnci - es menor que 4. Los números que stisfcen est desiguldd son los que pertenecen l intervlo: (-,) tl como se muestr en l siguiente figur: Propieddes del vlor bsoluto. 0 ( > 0 si 0 0 si 0) (desiguldd tringulr) Otrs propieddes de vlor bsoluto < < 7. Observción 8

SISTEMA DE NÚMEROS REALES

SISTEMA DE NÚMEROS REALES SISTEMA DE NÚMEROS REALES. BREVE REPASO DE LA TEORÍA DE CONJUNTOS En est unidd utilizremos ls notciones l terminologí de conjuntos. L ide de conjunto se emple mucho en mtemátic se trt de un concepto básico

Más detalles

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por.

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por. Se distinguen distints clses de números: Números Reles Los números nturles son {1; 2; 3; }, el conjunto de todos ellos se represent por. El primer elemento es el 1 y no tiene último elemento Todo número

Más detalles

Conjuntos numéricos. Intervalos. Operaciones en el conjunto de números reales.

Conjuntos numéricos. Intervalos. Operaciones en el conjunto de números reales. Fich Técnic Conjuntos numéricos Intervlos Operciones en el conjunto de números reles Índice de tems: Conjuntos numéricos Intervlos Operciones y propieddes Módulo o vlor bsoluto de un número rel Conjuntos

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES FUNDAMENTOS DEL ÁLGEBRA CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES NOMBRE ID SECCIÓN SALÓN Prof. Evelyn Dávil Tbl de contenido TEMA A. CONJUNTOS NUMÉRICOS... REGLA PARA LA SUMA DE NÚMEROS REALES...

Más detalles

Formalización de los Números Reales. M. en I. Gerardo Avilés Rosas

Formalización de los Números Reales. M. en I. Gerardo Avilés Rosas Formlizción de los Números Reles M. en I. Gerrdo Avilés Ross Agosto de 016 Tem Formlizción de los Números Reles Objetivo: El lumno plicrá ls propieddes de los números reles y sus subconjuntos, pr demostrr

Más detalles

NÚMEROS REALES 1º Bachillerato CC. SS.

NÚMEROS REALES 1º Bachillerato CC. SS. Números Reles NÚMEROS REALES 1º Bchillerto CC. SS. Reles R Irrcionles I Enteros Rcionles Z Q Nturles Nturles N 1,,,... EnterosZ, 1, 0, 1,... Rcionles Q 7,, 6'... 5 N Irrcionles I π,, 7'114... Números Reles

Más detalles

Números Naturales. Los números enteros

Números Naturales. Los números enteros Números Nturles Con los números nturles contmos los elementos de un conjunto (número crdinl). O bien expresmos l posición u orden que ocup un elemento en un conjunto (ordinl). El conjunto de los números

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

Los números racionales:

Los números racionales: El número rel MATEMÁTICAS I 1 1. EL CONJUNTO DE LOS NÚMEROS REALES. LA RECTA REAL 1.1. El conjunto de los números reles. Como y sbes los números nturles surgen de l necesidd de contr, expresr medids, pr

Más detalles

NÚMEROS REALES, R. Es el conjunto de números que se obtiene al unir el conjunto de los números racionales con el conjunto de los números irracionales.

NÚMEROS REALES, R. Es el conjunto de números que se obtiene al unir el conjunto de los números racionales con el conjunto de los números irracionales. NÚMEROS REALES, R CPR. JORGE JUAN Xuvi-Nrón Es el conjunto de números que se obtiene l unir el conjunto de los números rcionles con el conjunto de los números irrcionles. R= QI Los números reles poseen

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

NÚMEROS REALES 1. RECTA NUMÉRICA REAL. Indicadores 2. RELACIÓN DE ORDEN. Contenido. Números Reales

NÚMEROS REALES 1. RECTA NUMÉRICA REAL. Indicadores 2. RELACIÓN DE ORDEN. Contenido. Números Reales Indicdores NÚMEROS REALES Identific ls propieddes de los números reles, determinndo el vlor de verdd de proposiciones. Clcul el vlor de epresiones lgebrics usndo ls propieddes del vlor bsoluto. Evlú y

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 4 a 21

SOLUCIONES DE LAS ACTIVIDADES Págs. 4 a 21 TEMA. NÚMEROS REALES SOLUCIONES DE LAS ACTIVIDADES Págs. Págin. Actividd personl, por ejemplo:,...,...,...,9...,8.... ) No, pues un deciml puede tener un número limitdo de cifrs o ser periódico. Por ejemplo,,

Más detalles

Presentación Axiomática de los Números Reales

Presentación Axiomática de los Números Reales Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. 1 Prte I Presentción Axiomátic de los Números Reles 1. Axioms de los Números Reles 1.1. Axioms de Cuerpo Aceptremos l existenci de un conjunto R cuyos elementos

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio NUMEROS IRRACIONALES Conocemos hst hor distintos conjuntos numéricos: - Los n nturles: (, 8,.978), representdos por l letr N - Los n enteros: ( -, -, 8, 68), representdos por l letr Z - Los n rcionles

Más detalles

FICHA 1 3/2008. Propiedades Adición (+) Multiplicación (. ) Conmutativa A1 a + b = b + a M1 a.b =b.a

FICHA 1 3/2008. Propiedades Adición (+) Multiplicación (. ) Conmutativa A1 a + b = b + a M1 a.b =b.a FICHA 1 3/2008 Existe un conjunto de números llmdos reles en el que están definids 2 operciones: Adición (+) y multiplicción (.). Est estructur se indic sí: (R, +,. ) (Axiom de Cuerpo) Sen, b y c reles

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Septiembre de 2015 Conjuntos Numéricos ) Los Números

Más detalles

Tema 1. Funciones y matrices básico

Tema 1. Funciones y matrices básico Tem Funciones y mtrices básico FUENTE Y REFERENCIAS Funciones Introducción ls funciones Cuestiones repsr Funciones y tipos de funciones Mtriz cudrd Mtriz digonl Mtriz identidd Trz de un mtriz Mtriz trnspuest

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

2 Números racionales positivos

2 Números racionales positivos Progrm Inmersión, Verno 0 Nots escrits por Dr. M Nots del cursos. Bsds en los pronturios de MATE 00 y MATE 0 Clse #: miércoles, de junio de 0. Números rcionles positivos. Consceptos básicos del conjunto

Más detalles

EXPONENTES Y RADICALES

EXPONENTES Y RADICALES . UNIDAD EXPONENTES Y RADICALES Objetivo generl. Al terinr est Unidd resolverás ejercicios probles en los que pliques ls lees de los eponentes de los rdicles. Objetivos específicos:. Recordrás l notción

Más detalles

TEMA : INTERVALOS. Clases de intervalos Notación de conjuntos

TEMA : INTERVALOS. Clases de intervalos Notación de conjuntos TEMA : INTERVALOS L rect rel: el conjunto de números reles se puede representr medinte los puntos de un rect horizontl, que se denomin rect rel, donde cd punto le corresponde un único número rel. Al número

Más detalles

Límite y Continuidad de Funciones

Límite y Continuidad de Funciones CAPÍTULO 6 Límite Continuidd de Funciones 6.1. Límite de un función L noción de ite es l bse del cálculo. Decir que f) = L signific que es posible hcer que los vlores de f) sen tn cercnos l número L como

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS Mtemátic Unidd - UNIDAD N : EXPRESIONES ALGEBRAICAS POLINOMIOS ÍNDICE GENERAL DE LA UNIDAD Epresiones Algebrics Enters...... Polinomios..... Actividdes... 4 Vlor Numérico del polinomio........ 4 Concepto

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES Se dice que un función y f() tiene límite "L" cundo l tiende "" y lo representmos por: f() L cundo pr tod sucesión de números reles que se proime "" tnto como quermos, los vlores correspondientes

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA:

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: EDISON MEJÍA MONSALVE. TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA DURACION 8

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

RESUMEN 01 NÚMEROS. Nombre : Curso. Profesor :

RESUMEN 01 NÚMEROS. Nombre : Curso. Profesor : RESUMEN 01 NÚMEROS Nomre : Curso : Profesor : PÁGINA 1 Números Los elementos del conjunto N = {1, 2, 3, 4, 5, } se denominn Números Nturles. Los Números Crdinles corresponden l unión del conjunto de los

Más detalles

Los Números Racionales

Los Números Racionales Cpítulo 12 Los Números Rcionles El conjunto de los números rcionles constituyen un extesión de los números enteros, en el sentido de que incluyen frcciones que permiten resolver ecuciones del tipo x =

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES Unidd didáctic 7. Funciones reles de vrible rel Autors: Glori Jrne, Espernz Minguillón, Trinidd Zbl CONCEPTOS BÁSICOS Se llm función rel de vrible rel culquier plicción f : D R con D Œ R, es decir, culquier

Más detalles

LÍMITES CONCEPTO INTUITIVO DE LÍMITE

LÍMITES CONCEPTO INTUITIVO DE LÍMITE Mrí Teres Szostk Ingenierí Comercil Mtemátic II Clse Nº, LÍMITES El concepto de ite, es uno de los pilres en que se bs el Análisis Mtemático, se encontrb en 8 en estdo potencil, ern más principios intuitivos

Más detalles

17532 = Hemos usado el 10 como base, pero podíamos haber usado cualquiera. Por ejemplo el 9, entonces.

17532 = Hemos usado el 10 como base, pero podíamos haber usado cualquiera. Por ejemplo el 9, entonces. Tem 1.- V de números 1.1.- Números pr contr. Un de ls primers ctividdes intelectules que reliz el ser humno es l de contr: el número de flechs, el número de ovejs, el número de enemigos, etc. En Mtemátics

Más detalles

recta numérica U Figura 1.1

recta numérica U Figura 1.1 Cpítulo 1 Rect numéric L rect numéric es un objeto mtemático que formliz l cint de medir o ls regls. En un rect ilimitd se elige un punto que se llm origen y un unidd, es decir decimos que el segmento

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: EDISON MEJÍA MONSALVE.

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: EDISON MEJÍA MONSALVE. INSTITUCION EDUCATIVA LA RESENTACION NOMBRE ALUMNA: AREA : ASIGNATURA: DOCENTE: TIO DE GUIA: MATEMATICAS MATEMATICAS EDISON MEJÍA MONSALVE. CONCETUAL - EJERCITACION ERIODO GRADO 8 A/B N FECHA Enero / 0

Más detalles

Módulo 12 La División

Módulo 12 La División Módulo L División OBJETIVO: Epresrá lguns propieddes de l división usndo propieddes de l división los inversos; epresr un numero rcionl de l form deciml frcción común vicevers. L división es un operción

Más detalles

Z := Z {0} a partir de este nuevo conjunto construimos el producto cartesiano

Z := Z {0} a partir de este nuevo conjunto construimos el producto cartesiano Cpítulo 4 Números Rcionles. Luego de construir los Números Nturles, se presentron ciertos problems como Cuál es el resultdo de 3 menos 5?, pr poder encontrr un solución se creó prtir de N el conjunto de

Más detalles

COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti

COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti COLEGIO SAN FRANCISCO DE SALES - 0 - Prof. Cecili Glimerti MATEMÁTICA AÑO B GUÍA N - NÚMEROS IRRACIONALES NUMEROS IRRACIONALES Conocemos hst hor distintos Conjuntos Numéricos: - Los n nturles: (, 8,.8),

Más detalles

Estructuras algebraicas. Departamento de Álgebra. Apuntes de teoría

Estructuras algebraicas. Departamento de Álgebra.   Apuntes de teoría ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 2015/2016 Apuntes de teorí Autor: Jun González-Meneses. Revisión: Jvier Herrer y José Mrí Uch Tem 3: Anillos. Recordemos que un nillo es un tern (A,

Más detalles

Capitulo II. Números Reales

Capitulo II. Números Reales Cpitulo II. Números Reles Ojetivo. El lumno plicrá ls propieddes de los números reles y sus suconjuntos, pr demostrr lguns proposiciones por medio del método de inducción mtemátic y pr resolver inecuciones.

Más detalles

2 es racional y se llegará a una contradicción.

2 es racional y se llegará a una contradicción. Instituto de Enseñnz Superior Simón Bolívr Profesordo pr l Educción Secundri en Mtemátic Profesores: Olg Peñloz y Víctor Plzzesi. Espcio Curriculr: Elementos de l Aritmétic y el Álgebr. Clse 4: Si se pudiern

Más detalles

Universidad de Antioquia

Universidad de Antioquia 1. Introducción Números reles Instituto de Mtemátics * Fcultd de Ciencis Excts y Nturles Unviersidd de Anquioqui Medellín, 24 de julio de 2011 El mtemático lemán Julius Wilhelm Richrd Dedekind (6 de octubre

Más detalles

TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN:

TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: TEMA LOS NÚMEROS REALES. LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los números rcionles: Se crcterizn porque pueden epresrse: En form de frcción, es decir, como cociente de dos números enteros: Q,

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

Módulo 14 Multiplicación de expresiones algebraicas. Exponentes

Módulo 14 Multiplicación de expresiones algebraicas. Exponentes Módulo 14 Multiplicción de expresiones lgebrics. Exponentes OBJETIVO: Identificr potenci, bse exponente de un expresión lgebric. Multiplicr dividir polinomios. Recordemos lguns definiciones básics. Un

Más detalles

TEMA 0: CONCEPTOS BÁSICOS.

TEMA 0: CONCEPTOS BÁSICOS. TEMA : CONCEPTOS BÁSICOS.. Intervlos:. Intervlos. 2. Propieddes de ls potencis.. Propieddes de los rdicles. Operciones con rdicles. Rcionlizción. 4. Conceptos de un polinomio. Fctorizción de polinomios..

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

Tema 1: Números reales.

Tema 1: Números reales. Tem : Números reles. Ejercicio. Representr los siguientes conjuntos numéricos: ) Números myores que. b) x / x c) x / x x d) Números menores que excluyendo el 0. e) / x x / x x / x ) (, ) b) [,) 0 c) [,]

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES RAÍCES FUNCIÓN RAÍZ CUADRADA

UNIDAD: ÁLGEBRA Y FUNCIONES RAÍCES FUNCIÓN RAÍZ CUADRADA C u r s o : Mtemátic Mteril N 7 UNIDAD: ÁLGEBRA Y FUNCIONES RAÍCES FUNCIÓN RAÍZ CUADRADA GUÍA TEÓRICO PRÁCTICA Nº DEFINICIÓN : Si n es un entero pr positivo es un rel no negtivo, entonces n es el único

Más detalles

Módulo 16 Simplificación de fracciones

Módulo 16 Simplificación de fracciones Módulo 6 Simplificción de frcciones OBJETIVO: Mnejrá ls cutro operciones fundmentles con epresiones lgebrics frccionris, simplificrls hst trnsformrls en irreductibles y epresrá proposiciones en lenguje

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso Colegio Técnico Ncionl Arq. Rúl Mrí Benítez Perdomo Mtemátic Primer Curso Rdicción Se un número rel culquier, n un número nturl mor que 1, se llm ríz n esim de todo número rel, que stisfce l ecución n

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD

Más detalles

(a;b] = {x / x R a x b}

(a;b] = {x / x R a x b} Intervlos y Entornos L geometrí nlític estlece un correspondenci entre puntos de un rect y números reles, de tl form que cd número rel le corresponde un punto de l rect y cd punto de l rect un único número

Más detalles

POLINOMIO GRADO TERM. INDEP. ORDENAR COMPLETAR 2x-x x 3 8-x 4 x+4x 4 2x-1+x 5

POLINOMIO GRADO TERM. INDEP. ORDENAR COMPLETAR 2x-x x 3 8-x 4 x+4x 4 2x-1+x 5 SECRETARIA DE EDUCACIÓN DE BOGOTÁ D.C. COLEGIO CARLOS ALBÁN HOLGUÍN I.E.D. Resolución de Aproción (SED N 8879 de Dic. 7 de 001 Resolución de Jornd Complet (SED N 08 de Nov. 17 de 01 En sus niveles Preescolr,

Más detalles

LA FUNCIÓN LOGARÍTMICA

LA FUNCIÓN LOGARÍTMICA LA FUNCIÓN LOGARÍTMICA.- Definición.- Se denomin ritmo en bse de un número, l eponente que es preciso elevr pr que resulte. debe ser un número positivo y distinto de l unidd. Pr epresr que y es el ritmo

Más detalles

Polinomios 3º Año Cód P r o f. Ma r í a d e l L u j á n Matemática M a r t í n e z P r o f. Mi r t a R o s i t o Dpto.

Polinomios 3º Año Cód P r o f. Ma r í a d e l L u j á n Matemática M a r t í n e z P r o f. Mi r t a R o s i t o Dpto. Polinomios Mtemátic º Año Cód. 0-8 P r o f. M r í d e l L u j á n M r t í n e z P r o f. M i r t R o s i t o Dpto. de Mtemátic POLINOMIOS Polinomios. Generliddes Llmremos polinomios de grdo n en l vrible,

Más detalles

IES Fernando de Herrera Curso 2012 / 13 Primer trimestre 4º ESO 16 de octubre de 2012 Números reales. Potencias y radicales NOMBRE:

IES Fernando de Herrera Curso 2012 / 13 Primer trimestre 4º ESO 16 de octubre de 2012 Números reales. Potencias y radicales NOMBRE: IES Fernndo de Herrer Curso 01 / 1 Primer trimestre º ESO 16 de octubre de 01 Números reles. Potencis rdicles NOMBRE: 1) ) Representr en un mism rect rel: 1 9 1/ 0 1 Decir qué números representn b: 0 1

Más detalles

Multiplicar y dividir radicales

Multiplicar y dividir radicales Multiplicr y dividir rdicles 1 Repso Simplificr: 000 4 0 18 1000 4 4 4 10 4 0 0 ( ( ) 0 8) 0 0 0 8 Multiplicción de rdicles Si y son números reles, n n n n n Podemos decir que cundo multiplicmos rdicles

Más detalles

es una matriz de orden 2 x 3.

es una matriz de orden 2 x 3. TEMA 7: MATRICES. 7.. Introducción l concepto de mtriz. 7.. Tipos de mtrices. 7.. El espcio vectoril de ls mtrices de orden m x n. 7.. INTRODUCCIÓN AL CONCEPTO DE MATRIZ. Se define mtriz de orden m x n

Más detalles

TEMA 1: NÚMEROS REALES. 2. Indica el menor conjunto numérico al que pertenecen los siguientes números:

TEMA 1: NÚMEROS REALES. 2. Indica el menor conjunto numérico al que pertenecen los siguientes números: I.E.S. Tierr de Ciudd Rodrigo Deprtmento de Mtemátics Conjuntos numéricos. Relción entre ellos.. Complet: TEMA : NÚMEROS REALES Números reles. Indic el menor conjunto numérico l que pertenecen los siguientes

Más detalles

Ecuaciones de 1 er y 2º grado

Ecuaciones de 1 er y 2º grado Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Myo de 2015 Operciones Básics con Frcciones Número

Más detalles

SISTEMA DE NUMEROS REALES

SISTEMA DE NUMEROS REALES SISTEMA DE NUMEROS REALES 1.1 Conjuntos Es una agrupación de objetos distintos (pero con algunas características en común), los que reciben el nombre de elementos. Generalmente se nombra a un conjunto

Más detalles

El conjunto de los números reales se forma mediante la unión del conjunto de los números racionales y el conjunto de los números irracionales.

El conjunto de los números reales se forma mediante la unión del conjunto de los números racionales y el conjunto de los números irracionales. El conjunto de los números reles (R) El conjunto de los números reles se form medinte l unión del conjunto de los números rcionles y el conjunto de los números irrcionles. Propieddes del conjunto R R =

Más detalles

a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1.

a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1. 1) NÚMEROS NATURALES Son números que sirven pr contr. Descomposición polinómic de un número. Ej : 1.34.567 1: Uniddes de millón : Centens de millr 3: Decens de millr 4: Uniddes de millr 5: Centens 6: Decens

Más detalles

(Apuntes en revisión para orientar el aprendizaje)

(Apuntes en revisión para orientar el aprendizaje) (Apuntes en revisión pr orientr el prendizje) Cpítulo I Funciones INTRODUCCIÓN Uno de los conceptos de myor importnci y trscendenci en ls mtemátics es el de función, que constituye un herrmient fundmentl

Más detalles

1. NÚMEROS RACIONALES

1. NÚMEROS RACIONALES IES Jun Grcí Vldemor Deprtmento de Mtemátics 4º ESO Mtemátics B. NÚMEROS RACIONALES Desde l prición de ls socieddes humns los números desempeñn un ppel fundmentl pr ordenr y contr los elementos de un conjunto.

Más detalles

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR log. a a. log. log. log. 1 log ) b 1; b > 0, b 1. Sandovalich, Hugo Alexis 1

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR log. a a. log. log. log. 1 log ) b 1; b > 0, b 1. Sandovalich, Hugo Alexis 1 CEPREUNF CICLO REGULAR 07-08 Sen 9 CURSO: MATEMÀTICA TEMA: LOGARITMOS-INECUACIONES- VALOR ABSOLUTO-RELACIONES Y FUNCIONES A. Definición: Es un núero, que represent l eponente de l se de un potencición

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

1. DEFINICIÓN Y CLASIFICACIÓN DE MATRICES

1. DEFINICIÓN Y CLASIFICACIÓN DE MATRICES Mtrices. . DEFINICIÓN Y CLSIFICCIÓN DE MTRICES Ls mtrices son utilizds por primer vez hci el ño por Jmes Joseph Sylvester. El desrrollo inicil de l teorí mtricil se debe l mtemático británico Willim Rown

Más detalles

SECCIÓN 3 DESCRIPCIÓN DE LOS NÚMEROS REALES

SECCIÓN 3 DESCRIPCIÓN DE LOS NÚMEROS REALES SEMANA I I I Números Positivos y Negtivos Representción gráfic: SECCIÓN DESCRIPCIÓN DE LOS NÚMEROS REALES -5-4 - - - 0 4 5 Sentido izquierdo Sentido derecho El cero represent l usenci de l cntidd, y es

Más detalles

Funciones Algebraicas

Funciones Algebraicas 1 1r Unidd s 1. Dominio de Polinomiles y Rcionles Cundo los pensmientos brumn nuestr mente es momento de tomr un pus, respirr, y reformulr ides. Unos minutos pr desconectrse resultn de provecho pr volver

Más detalles

TEMA 3. MATRICES Y DETERMINANTES

TEMA 3. MATRICES Y DETERMINANTES TEMA. MATRICES Y DETERMINANTES. DEFINICIÓN Un mtriz es un tbl de números ordendos en fils y columns de l siguiente form: n A m mn que es un mtriz de m fils y n columns, donde el elemento ij es el número

Más detalles

TEMA 1. LOS NÚMEROS REALES

TEMA 1. LOS NÚMEROS REALES TEMA. LOS NÚMEROS REALES. Operciones con números nturles. Los números nturles son los que se utilizn pr contr 0,,,,,, Con los números nturles podemos relizr diferentes operciones, como - Sum + = 8 - Rest

Más detalles

Matemáticas II TEMA 7 Repaso del conjunto de los números reales y de funciones reales

Matemáticas II TEMA 7 Repaso del conjunto de los números reales y de funciones reales Mtemátics II TEMA 7 Repso del conjunto de los números reles y de funciones reles El conjunto de los números reles El conjunto de los números reles, R, es el más mplio de los números usules Puede considerrse

Más detalles

Elementos de la Aritmética y el Álgebra

Elementos de la Aritmética y el Álgebra GUÍA 1: Conjuntos Numéricos Profesores: Olg Peñloz y Víctor Plzzesi Alumno: Año 018 CONJUNTOS NUMÉRICOS INTRODUCCIÓN Aún en ls etps más primitivs de l evolución humn se h desrrolldo en el hombre el sentido

Más detalles

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado 56 CAPÍTULO. CÁLCULO ALGEBRAICO SECCIÓN.4 Resolución de Ecuciones de Segundo Grdo Introducción Hemos estudido cómo resolver ecuciones lineles, que son quells que podemos escribir de l form x + b = 0. Si

Más detalles

REPASO DE ECUACIONES (4º ESO)

REPASO DE ECUACIONES (4º ESO) TIPOS DE ECUACIONES.- REPASO DE ECUACIONES ( ESO) Eisten diversos tipos de ecuciones, entre ells estudiremos: Polinómics: En ells, l incógnit prece solmente en epresiones polinómics. El grdo de un ecución

Más detalles

0, , , , ,9 9

0, , , , ,9 9 UNIDAD 1: Los números reles EJERCICIOS Y ACTIVIDADES-PÁG. 1 1. Expres como deciml ls siguientes frcciones y clsific los números decimles obtenidos: 5 0, 71485 es un periódico puro. 7 5 1, 6 es un deciml

Más detalles

RECUPERACIÓN DE MATEMÁTICAS 1ª EVALUACIÓN. 4º DE ESO

RECUPERACIÓN DE MATEMÁTICAS 1ª EVALUACIÓN. 4º DE ESO RECUPERACIÓN DE MATEMÁTICAS ª EVALUACIÓN. 4º DE ESO TEMA ª.- Nos dicen que l medid de un cmpo de form rectngulr es de 4,6 m de lrgo por 8,4 m de ncho. Sin embrgo, no estmos seguros de que ls cifrs decimles

Más detalles

Números racionales son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresar en forma de fracción.

Números racionales son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresar en forma de fracción. MATEMÁTICAS ºACT TEMA. EL NÚMERO REAL. NÚMEROS RACIONALES. Números rcionles son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresr en form de frcción. Los números

Más detalles

el blog de mate de aida: MATE I. Cónicas pág. 1

el blog de mate de aida: MATE I. Cónicas pág. 1 el blog de mte de id: MATE I. Cónics pág. 1 SECCIONES CÓNICAS Un superficie cónic se obtiene l girr un rect g (llmd genertriz), lrededor de otr rect e, llmd eje de giro, l que cort en un punto V (vértice).

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidd de Cádiz Deprtmento de Mtemátics MATEMÁTICAS pr estudintes de primer curso de fcultdes y escuels técnics Tem 1 Nociones mtemátics básics. Los números. Operciones Elbordo por l Profesor Doctor

Más detalles

Héctor Palma Valenzuela. Dpto. de Matemática UdeC Definición e interpretación geométrica

Héctor Palma Valenzuela. Dpto. de Matemática UdeC Definición e interpretación geométrica Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. L Integrl.-. Definición e interpretción geométric Dd un función continu f :[, b] R ynonegtiv (f (), [, b]), vmos considerr l región del plno bjo l gráfic de

Más detalles

NÚMEROS RACIONALES ABSOLUTOS

NÚMEROS RACIONALES ABSOLUTOS NÚMEROS RACIONALES ABSOLUTOS Frcción: es un pr ordendo de números nturles con l segund componente distint de cero. (, ) pr ordendo frcción es un frcción N N EQUIVALENCIA DE FRACCIONES * Frcciones diferentes,

Más detalles

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez Polinomios Operciones Regl de Ruffini Ríces o ceros Descomposición Frcciones lgebrics Ecuciones rcionles Repso de polinomios Ejercicios Ddos los polinomios P(, Q( R( clculr: P( Q( Q( R( P( Q( R( d P( Q

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES MTRICES Y DETERMINNTES. Definición de mtriz.. Tipos de mtrices.. Sum de mtrices.. Producto de un número rel por un mtriz.. Producto de mtrices.. Ejercicios. Determinnte de un mtriz. 8. Menor complementrio

Más detalles

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu

Más detalles

TEMA 3: Expresiones algebraicas. Polinomios. Tema 3: Expresiones algebraicas. Polinomios 1

TEMA 3: Expresiones algebraicas. Polinomios. Tema 3: Expresiones algebraicas. Polinomios 1 TEMA Epresiones lgerics. Polinomios Tem Epresiones lgerics. Polinomios ESQUEMA DE LA UNIDAD.- Operciones con polinomios...- Sum rest de polinomios...- Producto de polinomios...- Potenci de polinomios..-

Más detalles

open green road Guía Matemática FRACCIONES ALGEBRAICAS profesor: Nicolás Melgarejo .co

open green road Guía Matemática FRACCIONES ALGEBRAICAS profesor: Nicolás Melgarejo .co Guí Mtemátic FRACCIONES ALGEBRAICAS profesor: Nicolás Melgrejo.co . Introducción El mnejo lgebrico es un herrmient básic que nos permite comunicr ides en el mbiente científico sin importr l lengu que ellos

Más detalles

TEMA 2: LÍMITES Y CONTINUIDAD

TEMA 2: LÍMITES Y CONTINUIDAD MATEMATICAS TEMA CURSO 4/5 CONCEPTO DE LÍMITE: Límite de un función en un punto: TEMA : LÍMITES Y CONTINUIDAD El símbolo ( y se lee tiende hci ) y signific que elegimos vlores muy próimos l vlor, (tn próimos

Más detalles

ANTES DE COMENZAR RECUERDA

ANTES DE COMENZAR RECUERDA 00 ANTES DE COMENZAR RECUERDA Clsific estos números según el tipo l que pertenecen. 0,,009 0,00,9 0, es un número deciml periódico puro. es un número entero.,009 es número deciml periódico mixto. 0,00

Más detalles

INECUACIONES: solución y representación Parte 1: Desigualdades y sus propiedades

INECUACIONES: solución y representación Parte 1: Desigualdades y sus propiedades Proyecto Alinz de Mtemátics y Ciencis del Turo (AMCT) INECUACIONES: solución y representción Prte 1: Desigulddes y sus propieddes Mrlio Predes, Ph.D. 14 de noviemre de 2009 Año cdémico, 2009-2010 Este

Más detalles