Práctica 5: El telemicroscopio

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Práctica 5: El telemicroscopio"

Transcripción

1 LABORATORIO DE ÓPTICA (ÓPTICA INSTRUMENTAL) CURSO 009/10 Práctica 5: El telemicroscopio 5.1 Objetivo de la práctica El objetivo de esta práctica es el estudio y comprensión de los fundamentos ópticos del telemicroscopio, en sus diferentes configuraciones, y la medida de magnitudes fundamentales de éste, tales como el aumento visual, el campo visual o la profundidad de enfoque. 5. Material necesario Banco de óptica de 100 cm. Fuente de iluminación de luz blanca. Pantalla milimetrada de papel vegetal. Objeto Test con escala 0 30 mm (cuadrícula de mm ). Objetivo de distancia fal f ob = 100 mm y diámetro φ ob = 10 mm. Lente de ojo de distancia fal f É = 50 mm y diámetro φ E = 10 mm. Lente de campo de de distancia fal f F = 75 mm y diámetro φ F = 1 mm. Ocular de distancia fal f óc = 50 mm y diámetro φ = 6 mm. Lente de aproximación de distancia fal f ć = 00 mm y diámetro φ c = 1 mm. Lente ojo de distancia fal f Á = 00 mm y diámetro φ A = 10 mm. Dos soportes para objetos. Diafragma iris. Siete deslizadores. Reglilla milimetrada. Hoja de papel vegetal. 5.1

2 Laboratorio de Óptica (Óptica Instrumental) Figura 5.1: Modelo a escala de objeto y pantalla utilizados. La estructura del objeto permite comprobar si la imagen está derecha o invertida. 5.3 Introducción teórica Un telemicroscopio es un instrumento óptico especialmente adaptado para ser utilizado como ayuda de baja visión, que permite la observación de objetos situados a una distancia intermedia. En particular, el telemicroscopio está constituido por el acoplamiento entre un anteojo (que puede ser de tipo Kepler o de tipo alileo) de pos aumentos y una lente convergente de potencia media, a la que se denomina lente de aproximación o tapadera de lectura. Tal y como se muestra en el esquema de la Fig. 5., en el que se ha representado un telemicroscopio de Kepler con ular doble, un objeto situado en el plano fal objeto de la lente de aproximación (que coincide con el plano fal objeto del sistema total), proporciona una imagen final en el infinito que puede ser observada, sin necesidad de acomodar, por un ojo situado sobre la pupila de salida del instrumento. La tapadera de lectura se sitúa pegada al objetivo por un doble motivo: minimizar el tamaño del telemicroscopio y maximizar el campo visual. Para el caso del telemicroscopio de alileo el esquema es similar, pero se sustituye el ular convergente por uno divergente y el ojo se sitúa pegado al ular Figura 5.: Esquema del telemicroscopio de Kepler con ular doble. A continuación se enumera toda una serie de parámetros óptico-geométricos del telemicroscopio. TELEMICROSCOPIO DE KEPLER: i) Posición y tamaño de la pupila de salida: a' p f E' = a' p F donde a' p ob + f E' = 50 ii) Aumento normal: T = K. K c φob ob, φ PS = y K =. (5.1) K E (5.) 5.

3 Práctica nº 5: El telemicroscopio φe iii) Campo visual: ρ m = c. (5.3) f ob ' E e F iv) Profundidad de enfoque: e = f 1 1 ' c ' f T donde T' =. ' c ' f f f c (5.4) K r p K K TELEMICROSCOPIO DE ALILEO: i) Posición y tamaño de la pupila de salida: a' p e = donde e = ob + φob ob, φ PS = + y =, (5.5) 50 ii) Aumento normal: T =. (5.6) φob iii) Campo visual: ρ m = f c'. (5.7) e iv) Profundidad de enfoque: C e = f 1 1 c ' T donde ' T =. ' c ' f e f e f c (5.8) r + p Desarrollo de la práctica Durante la realización de la práctica se debe tener mucho cuidado en que el sistema óptico esté perfectamente centrado para evitar, en lo posible, aberraciones. Para ello, todos los elementos se deben colar centrados a la altura de la fuente de iluminación. Para comenzar se realizarán las experiencias que se propongan para el caso del telemicroscopio de Kepler Determinación de la posición y tamaño de la pupila de salida Para determinar la posición y tamaño de la pupila de salida, y teniendo en cuenta que la lente de aproximación no interviene en la limitación de apertura, hay que obtener la imagen del objetivo a través del ular. Para ello en primer lugar se monta, tal y como se muestra en la Fig. 5.3, un telemicroscopio de Kepler constituido por la lente de aproximación de fal c = 00 mm, el objetivo de fal ob = 100 mm y el ular constituido por la lente de campo de fal F = 75 mm y la lente de ojo de fal 50 mm E =. Para que la montura del objetivo actúe como objeto difusor, se ilumina el objetivo con la luz difundida por una hoja de papel vegetal pegada a éste. A continuación se desplaza la pantalla, situada detrás del ular, hasta que aparezca sobre ésta nítidamente enfada sobre ella la imagen de la montura del objetivo. Dado que el diámetro de esta imagen es menor que el diámetro del ular, se puede asegurar que dicha imagen constituye la pupila de salida del telemicroscopio. 5.3

4 Laboratorio de Óptica (Óptica Instrumental) Figura 5.3: Predimiento para la medida de la posición y tamaño de la pupila de salida. La lente de aproximación se sitúa pegada al objetivo del anteojo. El diámetro de la pupila de salida, φ PS, se debe medir con la escala milimetrada de la pantalla, mientras que el valor de la emergencia pupilar, a ' p, se mide con la reglilla. Los valores medios que se obtengan experimentalmente se deben comparar con los valores predichos por la teoría. a p' a '( p mm ) φ PS ( mm) φ PS ( mm) Tabla Distancia de enfoque y profundidad de enfoque Se define la distancia de enfoque como la distancia entre el objeto y el telemicroscopio para la primera posición en que se obtiene une imagen nítida. Para determinar tanto la distancia de enfoque como la profundidad de enfoque del telemicroscopio, en primer lugar se sustituye la pantalla por un diafragma iris cuya posición coincidirá, por tanto, con la pupila de salida del telemicroscopio. Seguidamente, se sitúa el ojo pegado al diafragma (que debe dejarse abierto), y el objeto unos 50 mm por delante de la lente de aproximación. A continuación se desplaza lentamente el objeto hacia el instrumento hasta alcanzar la primera posición en que se observa una imagen nítida, midiendo entonces la distancia entre la lente de aproximación y el objeto. Esta distancia, a R, constituye la distancia de enfoque. A partir de esta posición, se continúa desplazando el objeto hacia el telemicroscopio hasta alcanzar la última posición en que se observe una imagen nítida, midiendo también en este caso la distancia, a P, entre el instrumento y el objeto. La diferencia entre los dos valores anteriores proporciona la profundidad de enfoque. Cada observador ha de realizar cuatro medidas la segunda y la cuarta desplazando el objeto en sentido contrario. Estos datos se anotarán en la libreta de laboratorio en una tabla similar a la Tabla 5.. Los valores medios obtenidos se deben comparar con los valores teóricos correspondientes a un valor de la amplitud de acomodación A m = 10 D (usual para un observador de unos 0 años). a R = a a e a P e P R Tabla 5.: Datos experimentales para la medida de la profundidad de enfoque 5.4

5 Práctica nº 5: El telemicroscopio Campo visual Para determinar el campo visual del telemicroscopio es necesario volver a situar el objeto a la distancia de enfoque, tal y como se muestra en la Fig. 5.4, y cerrar al máximo el diafragma iris. Al observar a través del telemicroscopio se comprobará que la imagen está invertida, lo cual supone un serio inconveniente para este tipo de instrumento cuya principal aplicación es la de facilitar la lectura a los individuos afectados por problemas de baja visión. En un caso real este problema se soluciona invirtiendo la imagen con la ayuda de prismas inversores. El aspecto de la imagen que se observa es similar al de la imagen que se muestra en la figura. Para hallar el campo visual bastará entonces con evaluar el diámetro de la porción de objeto visible en el ejemplo de la figura el diámetro del campo objeto de iluminación media sería ρ m = 1 mm. También en este caso se debe comparar el valor experimental con el predicho por la teoría. Figura 5.4: Dispositivo para la medida del campo visual del telemicroscopio. A la derecha se muestra un ejemplo de imagen. En este ejemplo el campo visual vale ρ m = 1 mm Aumento normal del telemicroscopio Para medir este parámetro, es necesario hacer uso de un ojo artificial constituido por una lente de fal A = 00 mm, que hace las veces del acoplamiento córnea-cristalino, y una pantalla milimetrada, que hace las veces de retina Tal y como se muestra en la Fig. 5.5, este ojo artificial se sitúa en el dispositivo de modo que la posición de la lente coincida con la pupila de salida del telemicroscopio. A continuación, con ayuda de la reglilla, se sitúa la retina en el plano fal imagen de la lente ojo. Si la práctica se ha realizado correctamente, sobre la retina aparecerá nítidamente enfada la imagen del objeto. Si no es así, se debe corregir ligeramente la posición del objeto. Si medimos entonces el tamaño, y ' r, de la imagen retiniana, correspondiente a una porción de tamaño y del objeto test, se puede calcular tanω ' = y ' / a' = y' /. r r r A Figura 5.5: Dispositivo para la medida del aumento normal del telemicroscopio. 5.5

6 Laboratorio de Óptica (Óptica Instrumental) A continuación se calcula el valor de ω A mediante el ciente tanω A = y / 50, siendo y el tamaño de la porción del objeto seleccionada. El valor del aumento visual del telemicroscopio se obtiene aplicando T = tan ω'/ tanωa. También en este caso se debe comparar el valor experimental con el predicho por la teoría. y = 4.0 mm y = 6.0 mm y = 8.0 mm tan( w ) y/ 50 A = y' r tan( w') = y' r/ A T T Tabla 5.3: Datos experimentales para la medida del aumento visual Comparación entre el telemicroscopio de Kepler y el de alileo En este apartado vamos a comparar las características de los dos tipos de telemicroscopio existentes para el caso en que ambos tengan el mismo aumento. Para ello se realizarán las mediciones descritas en los apartados 1,, 3 y 4 para el telemicroscopio de galileo constituido por: Lente de aproximación de fal c = 00 mm, objetivo de fal ob = 100 mm y ular de fal = 50 mm. Para la medida del campo visual el ojo del observador ha de situarse pegado al ular. Figura 5.6: En el telemicroscopio de alileo el ular divergente se sitúa a una distancia e= f ob ' + f ' del objetivo. 5.6

Práctica 3: Sistemas telescópicos. Objeto lejano.

Práctica 3: Sistemas telescópicos. Objeto lejano. LABORATORIO DE ÓPTICA (ÓPTICA INSTRUMENTAL) CURSO 2009/10 Práctica 3: Sistemas telescópicos. Objeto lejano. 3.1 Objetivo de la práctica El objetivo de esta práctica es el conocimiento y manejo de los distintos

Más detalles

Práctica 1: La lupa. 1.1 Objetivo de la práctica. 1.2 Material necesario LABORATORIO DE ÓPTICA (ÓPTICA INSTRUMENTAL) CURSO 2009/10

Práctica 1: La lupa. 1.1 Objetivo de la práctica. 1.2 Material necesario LABORATORIO DE ÓPTICA (ÓPTICA INSTRUMENTAL) CURSO 2009/10 LBORTORIO DE ÓPTIC (ÓPTIC INSTRUMENTL) CURSO 2009/10 Práctica 1: La lupa 11 Objetivo de la práctica El objetivo de esta práctica es la comprensión de los fundamentos de la lupa Para ello se realiza la

Más detalles

TEMA 6.- EL MICROSCOPIO

TEMA 6.- EL MICROSCOPIO TEMA 6.- EL MICROSCOPIO 1/ 48 Introducción. Estructura del microscopio. Aumento visual. Distancia de enfoque. Campo visual. Profundidad de enfoque. Diafragma de campo y retículos. Los oculares. Apertura

Más detalles

TEMA 5.- LA LUPA (MICROSCOPIO SIMPLE)

TEMA 5.- LA LUPA (MICROSCOPIO SIMPLE) 1/ 27 TEM 5.- L LUP (MICROSCOPIO SIMPLE) Introducción. umento visual. Distancia de visión equivalente. Potencia equivalente. Valores normalizados del aumento visual. Campo visual. Profundidad de enfoque.

Más detalles

PRÁCTICA Nº 4. Miopía, parte 2: neutralización óptica de un ojo miope

PRÁCTICA Nº 4. Miopía, parte 2: neutralización óptica de un ojo miope Departamento de Óptica, Farmacología y Anatomía PRÁCTICAS DE ÓPTICA VISUA I MIOPÍA, PARTE 2, curso 2011-12 PRÁCTICA Nº 4 Miopía, parte 2: neutralización óptica de un ojo miope OBJETIVO: Usando un modelo

Más detalles

Imagen retiniana: posición y tamaño.

Imagen retiniana: posición y tamaño. Tema IV. Imagen retiniana: posición y tamaño. La imagen retiniana es invertida y menor que el objeto (como son las imágenes formadas por una lente convexa) y es reinvertida psicológicamente en la corteza

Más detalles

TEMA 4: ACOMODACIÓN Y PRESBICIA

TEMA 4: ACOMODACIÓN Y PRESBICIA TEMA 4: ACOMODACIÓN Y PRESBICIA ACOMODACIÓN Y PRESBICIA 1.- Acomodación: concepto y definición. Amplitud y recorrido de acomodación 2.- Modificaciones del ojo durante la acomodación 3.- El ojo teórico

Más detalles

GUIÓN DE LA SESIÓN DE PRÁCTICAS Nº 1 Medida de focales.

GUIÓN DE LA SESIÓN DE PRÁCTICAS Nº 1 Medida de focales. GUIÓN DE LA SESIÓN DE PRÁCTICAS Nº 1 Medida de focales. Objetivos de la práctica: Medida de la distancia focal de una lente convergente por tres métodos distintos (uno de los cuales permite la localización

Más detalles

SESIÓN Nº 1: MEDIDA DE FOCALES.

SESIÓN Nº 1: MEDIDA DE FOCALES. Sesión nº 1: Medida de Focales. SESIÓN Nº 1: MEDIDA DE FOCALES. TRABAJO PREVIO 1. Conceptos fundamentales 2. Cuestiones 1. Conceptos fundamentales Aproximación paraxial: aproximación de ángulos con el

Más detalles

ÓPTICA GEOMÉTRICA MODELO 2016

ÓPTICA GEOMÉTRICA MODELO 2016 ÓPTICA GEOMÉTRICA MODELO 2016 1- Se desea obtener una imagen virtual de doble tamaño que un objeto. Si se utiliza: a) Un espejo cóncavo de 40 cm de distancia focal, determine las posiciones del objeto

Más detalles

FORMACIÓN DE IMÁGENES CON LENTES

FORMACIÓN DE IMÁGENES CON LENTES Laboratorio de Física General (Optica) FORMACIÓN DE IMÁGENES CON LENTES Fecha: 09/09/2014 1. Objetivo de la práctica Estudio de la posición y el tamaño de la imagen de un objeto formada por una lente delgada.

Más detalles

1. Un faro sumergido en un lago dirige un haz de luz hacia la superficie del lago con î = 40º

1. Un faro sumergido en un lago dirige un haz de luz hacia la superficie del lago con î = 40º 1. Un faro sumergido en un lago dirige un haz de luz hacia la superficie del lago con î = 40º. Encuentra el ángulo refractado ( n agua = 1, 33 ).. Encuentra el ángulo límite para la reflexión total interna

Más detalles

TEMA 1.- INTRODUCCIÓN A LA ÓPTICA INSTRUMENTAL

TEMA 1.- INTRODUCCIÓN A LA ÓPTICA INSTRUMENTAL 1/ 16 TEMA 1.- INTRODUCCIÓN A LA ÓPTICA INSTRUMENTAL Introducción. Clasificación de los Instrumentos Ópticos. Características generales de los Instrumentos Ópticos. El ojo como receptor de la información

Más detalles

FICHAS COMPLEMENTARIAS. REFLEXIÓN

FICHAS COMPLEMENTARIAS. REFLEXIÓN FICHAS COMPLEMENTARIAS. REFLEXIÓN I.- DESCRIPCIÓN DE LOS COMPONENTES Para realizar las prácticas de óptica vas a usar: 1.- Banco óptico: es una base metálica sobre la que colocar los diferentes montajes.

Más detalles

FORMACIÓN DE IMÁGENES CON LENTES DELGADAS

FORMACIÓN DE IMÁGENES CON LENTES DELGADAS FORMACIÓN DE IMÁGENES CON LENTES DELGADAS MATERIAL - Banco de óptica de 90 cm. - Fuente de iluminación. - Objeto difusor con escala 20 30 mm (cuadrícula de 1.0 2.0 mm ). - Transparencia retículo de 20

Más detalles

ÓPTICA GEOMÉTRICA Tipos de imágenes Imagen real Imagen virtual Imágenes en los espejos planos

ÓPTICA GEOMÉTRICA Tipos de imágenes Imagen real Imagen virtual Imágenes en los espejos planos ÓPTICA GEOMÉTRICA Tipos de imágenes Imagen real, es cuando está formada sobre los propios rayos. Estas imágenes se pueden recoger sobre una pantalla. Imagen virtual, es cuando está formada por la prolongación

Más detalles

1 1 1 s s 10 14s. Problema 95

1 1 1 s s 10 14s. Problema 95 Problema 95 Una lente convergente de de distancia focal se utiliza para formar la imagen de un objeto luminoso lineal colocado perpendicularmente a su eje óptico y de tamaño y = 1. a) Dónde hay que colocar

Más detalles

ÓPTICA GEOMÉTRICA DIOPTRIO PLANO

ÓPTICA GEOMÉTRICA DIOPTRIO PLANO DIOPTRIO PLANO Ejercicio 1. Junio 2.013 Un objeto se encuentra delante de un espejo plano a 70 cm del mismo. a. Calcule la distancia al espejo a la que se forma la imagen y su aumento lateral. b. Realice

Más detalles

A-PDF Manual Split Demo. Purchase from to remove the watermark

A-PDF Manual Split Demo. Purchase from  to remove the watermark 0 A-PD Manual Split Demo. Purchase from www.a-pd.com to remove the watermark 86 ÓPTIA GEOMÉTRIA j Sigue practicando. a) onstruya gráficamente la imagen obtenida en un espejo cóncavo de un objeto situado

Más detalles

LABORATORIO DE ÓPTICA (ÓPTICA INSTRUMENTAL)

LABORATORIO DE ÓPTICA (ÓPTICA INSTRUMENTAL) LBORTORIO D ÓPTIC (ÓPTIC INSTRUMNTL) INORMCIÓN SOBR L XMN D LBORTORIO NORMTIV DL XMN 1- La duraión máxima del examen es de 1'30 horas 2- l examen onsta de dos uestiones relativas a dos de los uatro instrumentos

Más detalles

TEMA IV.- PRINCIPIOS ÓPTICOS

TEMA IV.- PRINCIPIOS ÓPTICOS Master en Optometría y Ciencias de la Visión ª Edición (99-0) TEMA IV.- PRINCIPIOS ÓPTICOS En este tema, vamos a describir las principales características de los instrumentos ópticos más utilizados, como

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 1 octubre 2013

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 1 octubre 2013 2014-Modelo A. Pregunta 4.- Utilizando una lente convergente delgada que posee una distancia focal de 15 cm, se quiere obtener una imagen de tamaño doble que el objeto. Calcule a qué distancia ha de colocarse

Más detalles

ÓPTICA GEOMÉTRICA. ESPEJOS Y LENTES

ÓPTICA GEOMÉTRICA. ESPEJOS Y LENTES 80 0 ÓPTICA GEOMÉTRICA. ESPEJOS Y LENTES j Actividades. Define los siguientes conceptos: dioptrio, eje óptico, radio de curvatura, imagen real y centro óptico. Dioptrio: conjunto formado por dos medios

Más detalles

Guía Óptica. Área de Físico-Química. 4to año 2016

Guía Óptica. Área de Físico-Química. 4to año 2016 Guía Óptica Área de Físico-Química 4to año 2016 Pág. 1 de 10 Espejos Reflexión de la luz: Es el fenómeno que se observa cuando un rayo de luz incide sobre una superficie y se refleja. En este fenómeno

Más detalles

COMPROBACIÓN DE RELACIONES PARAXIALES

COMPROBACIÓN DE RELACIONES PARAXIALES SESIÓN 4: COMPROBACIÓN DE RELACIONES PARAXIALES TRABAJO PREVIO CONCEPTOS FUNDAMENTALES Aproximación paraxial Aproximación de ángulos con el eje óptico pequeños (sen σ σ, tg σ σ). En aproximación paraxial

Más detalles

Junio Pregunta 5A.- a) b) Junio Pregunta 3B.- a) b) Modelo Pregunta 4A.- a) b) Septiembre Pregunta 4B.

Junio Pregunta 5A.- a) b) Junio Pregunta 3B.- a) b) Modelo Pregunta 4A.- a) b) Septiembre Pregunta 4B. Junio 2013. Pregunta 5A.- A 10 cm de distancia del vértice de un espejo cóncavo de 30 cm de radio se sitúa un objeto de 5 cm de altura. a) Determine la altura y posición de la imagen b) Construya la imagen

Más detalles

TEMA 8.- INSTRUMENTACIÓN ÓPTICA PARA BAJA VISIÓN

TEMA 8.- INSTRUMENTACIÓN ÓPTICA PARA BAJA VISIÓN 1/ 27 EMA 8.- INSRUMENACIÓN ÓPICA PARA BAJA VISIÓN Concepto de baja visión. Ayudas convencionales para visión cercana. Ayudas convencionales para visión intermedia. Ayudas ópticas no convencionales. 8.1.-

Más detalles

PRÁCTICA Nº 2. Presbicia, parte 2: Neutralización óptica de un ojo emétrope présbita

PRÁCTICA Nº 2. Presbicia, parte 2: Neutralización óptica de un ojo emétrope présbita Departamento de Óptica, Farmacología y Anatomía PRÁCTICAS DE ÓPTICA VISUAL I PRESBICIA, PARTE 2, curso 2011-12 PRÁCTICA Nº 2 Presbicia, parte 2: Neutralización óptica de un ojo emétrope présbita OBJETIVO:

Más detalles

TEMA 7.- SISTEMAS TELESCÓPICOS

TEMA 7.- SISTEMAS TELESCÓPICOS 1/ 6 TEMA 7.- SISTEMAS TELESCÓPICOS Introducción. La condición aocal. Anteojo Astronómico. Aumento visual. Campo angular. Diaragma de campo y retículos. Proundidad de enoque. Oculares dles. Sistema inversor.

Más detalles

Guía: Lentes F2 ByG - Q 2º Cuat 2010

Guía: Lentes F2 ByG - Q 2º Cuat 2010 Guía: Lentes F2 ByG - Q 2º Cuat 2010 Objetivos: En la presente práctica se evaluarán las características de sistemas formadores de imágenes como es el caso de lentes delgadas convergentes. Se analizarán

Más detalles

Capítulo 1 SEMINARIO ÓPTICA GEOMÉTRICA

Capítulo 1 SEMINARIO ÓPTICA GEOMÉTRICA Capítulo 1 SEMINARIO 1. Un foco luminoso se encuentra situado en el fondo de una piscina de 3,00 metros de profundidadllena de agua. Un rayo luminoso procedente del foco que llega al ojo de un observador

Más detalles

TEMA 2 EL OJO TEÓRICO

TEMA 2 EL OJO TEÓRICO TEMA 2 EL OJO TEÓRICO 2.1.-Constantes ópticas del ojo 2.2.-Aproximaciones en el modelo del ojo teórico: sistema centrado, aproximación paraxial 2.3.-La córnea: potencia, planos principales y focales 2.4.-El

Más detalles

PRÁCTICAS DE ÓPTICA VISUAL I ASTIGMATISMO, PARTE 2, curso PRÁCTICA Nº 8. Astigmatismo, parte 2: Visión del ojo astígmata sin neutralizar

PRÁCTICAS DE ÓPTICA VISUAL I ASTIGMATISMO, PARTE 2, curso PRÁCTICA Nº 8. Astigmatismo, parte 2: Visión del ojo astígmata sin neutralizar Departamento de Óptica, Farmacología y Anatomía PRÁCICAS DE ÓPICA VISUAL I ASIGMAISMO, PARE 2, curso 20-2 PRÁCICA Nº 8 Astigmatismo, parte 2: Visión del ojo astígmata sin neutralizar OBJEIVO Construir

Más detalles

Física 2 ByG / curso de verano 2017 Guía 2: Óptica geométrica. Dioptras, espejos, lentes delgadas e instrumentos.

Física 2 ByG / curso de verano 2017 Guía 2: Óptica geométrica. Dioptras, espejos, lentes delgadas e instrumentos. Guía 2: Óptica geométrica. Dioptras, espejos, lentes delgadas e instrumentos. A. Dioptras Espacio objeto : Espacio imagen : semi-espacio de donde viene la luz el otro semi-espacio, hacia donde avanza la

Más detalles

Tema II. Modelos teóricos del ojo humano: esquemático, simplicado y reducido. Pupilas.

Tema II. Modelos teóricos del ojo humano: esquemático, simplicado y reducido. Pupilas. Tema II. Modelos teóricos del ojo humano: esquemático, simplicado y reducido. Pupilas. En este tema, una vez fijados los parámetros ópticos del ojo, vamos a calcular la posición de sus planos principales

Más detalles

1. Dada una dioptra esférica, establecidas las siguientes convenciones de signos:

1. Dada una dioptra esférica, establecidas las siguientes convenciones de signos: Física 2 Biólogos y Geólogos -Curso de Verano 2012 Serie 2: Objetos. Formación de imágenes. Imágenes. Dioptras esféricas y planas. Espejos esféricos y planos. Lentes delgadas, sistemas de lentes o instrumentos.

Más detalles

TEMA 3: IMÁGENES FORMADAS POR EL OJO

TEMA 3: IMÁGENES FORMADAS POR EL OJO TEMA 3: IMÁGENES FORMADAS POR EL OJO IMÁGENES FORMADAS POR EL OJO 3.1.- Imagen dióptrica e imagen retiniana 3.2.- Tamaño de la imagen retiniana 3.3.- Grado de borrosidad de la imagen retiniana 3.4.- Profundidad

Más detalles

FÍSICA. BLOQUE 3: Ondas y Óptica ÓPTICA GEOMÉTRICA 2º CURSO

FÍSICA. BLOQUE 3: Ondas y Óptica ÓPTICA GEOMÉTRICA 2º CURSO BLOQUE 3: Ondas y Óptica ÓPTICA GEOMÉTRICA El estudio de la Óptica Geométrica, se restringe al marco de la aproximación paraxial. Las ecuaciones de los sistemas ópticos se presentan desde un punto de vista

Más detalles

Seminario de Física. 2º bachillerato LOGSE. Unidad 6. Óptica

Seminario de Física. 2º bachillerato LOGSE. Unidad 6. Óptica A) Óptica Física 1.- Un haz de luz roja penetra en una lámina de vidrio de 30 cm de espesor con un ángulo de incidencia de 45 º. a) Explica si cambia el color de la luz al penetrar en el vidrio y determina

Más detalles

ÓPTICA GEOMÉTRICA. Es el fenómeno que se observa cuando un rayo de luz incide sobre una superficie y se refleja. Su estudio se basa en dos leyes:

ÓPTICA GEOMÉTRICA. Es el fenómeno que se observa cuando un rayo de luz incide sobre una superficie y se refleja. Su estudio se basa en dos leyes: ONDAS LUMINOSAS La luz que nos llega del sol (luz blanca), está compuesta por rayos de luz de diferentes colores. Este conjunto de rayos constituye lo que se llama espectro visible, el cual, es una zona

Más detalles

TEMA II EL OJO TEÓRICO

TEMA II EL OJO TEÓRICO TEMA II EL OJO TEÓRICO I - El ojo como sistema óptico: ojos teóricos. II - La córnea II. - La córnea en el ojo teórico II. - La córnea simplificada III - El cristalino IV - El ojo teórico de Legrand IV.

Más detalles

SESIÓN Nº 2: COMPROBACIÓN DE RELACIONES PARAXIALES. REFRACTOMETRÍA POR EFECTO PFFUND.

SESIÓN Nº 2: COMPROBACIÓN DE RELACIONES PARAXIALES. REFRACTOMETRÍA POR EFECTO PFFUND. Sesión nº 2: Comprobación de relaciones paraxiales. Refractometría por Efecto Pffund. SESIÓN Nº 2: COMPROBACIÓN DE RELACIONES PARAXIALES. REFRACTOMETRÍA POR EFECTO PFFUND. TRABAJO PREVIO 1. Conceptos fundamentales

Más detalles

Física 2 Biólogos y Geólogos. Instrumentos Ópticos

Física 2 Biólogos y Geólogos. Instrumentos Ópticos Física 2 Biólogos y Geólogos Curso de Verano 2007 Guía de laboratorio N 3 Instrumentos Ópticos Objetivos Construir un microscopio compuesto sencillo y determinar su aumento. Emplear un microscopio de laboratorio:

Más detalles

TEMA 2 EL OJO TEÓRICO

TEMA 2 EL OJO TEÓRICO TEMA 2 EL OJO TEÓRICO MODELIZACIÓN DEL OJO HUMANO 2.1.-Constantes ópticas del ojo 2.2.-Aproximaciones en el modelo del ojo teórico: sistema centrado, aproximación paraxial 2.3.-La córnea: potencia, planos

Más detalles

ANEXO A. PRESENTACIONES DE ACTIVIDADES DE APRENDIZAJE ACTIVO

ANEXO A. PRESENTACIONES DE ACTIVIDADES DE APRENDIZAJE ACTIVO 37 ANEXO A. PRESENTACIONES DE ACTIVIDADES DE APRENDIZAJE ACTIVO 1. Introducción a la óptica geométrica 2. Leyes de la reflexión 3. Leyes de la refracción 4. Reflexión Interna Total 5. Formación de imágenes

Más detalles

R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2

R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2 E=hf;p=mv;F=dp/dt;I=Q/t;Ec=mv 2 /2; TEMA 6: ÓPTICA F=KQq/r 2 ;L=rxp;x=Asen(ωt+φo);v=λf c 2 =1/εoµo;A=πr 2 ;T 2 =4π 2 /GMr 3 ;F=ma; L=dM/dtiopasdfghjklzxcvbvv=dr/dt; M=rxF;sspmoqqqqqqqqqqqp=h/λ; Ejercicios

Más detalles

2 - El Microscopio. De los instrumentos de óptica conocidos con el nombre de microscopio existen:

2 - El Microscopio. De los instrumentos de óptica conocidos con el nombre de microscopio existen: 2 - El Microscopio El desarrollo del microscopio en los últimos tres siglos, ha permitido ampliar el campo de la investigación biológica, y se ha convertido en el instrumento básico para abrir nuevas fronteras

Más detalles

1.- LENTES. OBJETIVOS: MATERIAL:

1.- LENTES. OBJETIVOS: MATERIAL: 1.- LENTES. OBJETIVOS: - Comprobar experimentalmente el mecanismo de formación de imágenes con una lente convergente. - Identificar en el laboratorio los conceptos básicos de la óptica geométrica: lentes,

Más detalles

Formación de imágenes en lentes convergentes

Formación de imágenes en lentes convergentes Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Formación de imágenes en lentes convergentes Objetivos. Estudiar un sistema óptico simple. 2. Determinar experimentalmente

Más detalles

PROBLEMA EXPERIMENTAL 1

PROBLEMA EXPERIMENTAL 1 Física Aplicada a Farmacia. //00 PROBLEMA EXPERIMENTAL 3 puntos El constantán es una aleación de cobre y níquel cuya resistividad es constante en un amplio rango de temperaturas. Esta resistividad debe

Más detalles

MEDICIÓN DE LA DENSIDAD DE UN SÓLIDO

MEDICIÓN DE LA DENSIDAD DE UN SÓLIDO PRÁCTICA DE LABORATORIO I-03 MEDICIÓN DE LA DENSIDAD DE UN SÓLIDO OBJETIVOS Entender cómo funciona un vernier y aprender a usarlo. Combinar las mediciones de volumen y masa para determinar la densidad

Más detalles

Hipermetropía: concepto, clasificación, punto remoto, grado de ametropía.

Hipermetropía: concepto, clasificación, punto remoto, grado de ametropía. Tema VI. Hipermetropía: concepto, clasificación, punto remoto, grado de ametropía. La hipermetropía es una ametropía esférica en la que los rayos procedentes de un punto objeto distante (rayos paralelos

Más detalles

Lentes delgadas (aprox. paraxial + delgadas)

Lentes delgadas (aprox. paraxial + delgadas) Lentes delgadas (aprox. paraxial + delgadas) Formación de imágenes con lentes CONVERGENTES O POSITIVAS Objeto más allá del foco: Imagen REAL, INVERTIDA Objeto más cerca del foco: Imagen VIRTUAL, DERECHA,

Más detalles

LAS LENTES PROGRESIVAS

LAS LENTES PROGRESIVAS IMAGEN PERIODISMO CON VISIÓN COMPENDIO DE OFTÁLMICA / LAS LENTES PROGRESIVAS LAS LENTES PROGRESIVAS CAPÍTULO 1 DE 4 Fig. 1: Los présbitas una población en aumento. Introducción Desde su introducción por

Más detalles

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Juego de demostración de óptica de laser U17300 y juego complementario Instrucciones de servicio 1/05 ALF Índice Página Exp. Nr. Experimento Equipo 1 Introducción 2 Volumen de suministro

Más detalles

Física II- Curso de Verano. Clase 7

Física II- Curso de Verano. Clase 7 Física II- Curso de Verano Clase 7 Formación de imágenes: ESPEJOS PLANOS Leyes de reflexión Imagen virtual, formada por la prolongación de los rayos Distancia imagen = distancia objeto d o =d i No invierte

Más detalles

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC:

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC: ÓPTICA GEOMÉTRICA Conceptos generales: Imágenes reales. No se ven a simple vista, pero pueden recogerse sobre una pantalla. Se forman por la intersección de rayos convergentes. Imágenes virtuales. No existen

Más detalles

PRÁCTICA Nº 1. Presbicia, parte 1: zonas de visión nítida para un ojo emétrope présbita

PRÁCTICA Nº 1. Presbicia, parte 1: zonas de visión nítida para un ojo emétrope présbita Departamento de Óptica, Farmacología y Anatomía PRÁCTICAS DE ÓPTICA VISUAL I PRESBICIA, PARTE 1, curso 2011-12 PRÁCTICA Nº 1 Presbicia, parte 1: zonas de visión nítida para un ojo emétrope présbita OBJETIVO:

Más detalles

TEMA 4: OPTICA. Ojo normal! 4.4 El ojo como sistema óptico Características del ojo normal (emétrope): Córnea: parte protuberante del ojo

TEMA 4: OPTICA. Ojo normal! 4.4 El ojo como sistema óptico Características del ojo normal (emétrope): Córnea: parte protuberante del ojo Ojo normal! Características del ojo normal (emétrope): Córnea: parte protuberante del ojo Figura 32.45 Tipler 5ª Ed. Características del ojo normal (emétrope): Córnea: parte protuberante del ojo Iris:

Más detalles

Práctica de Óptica Geométrica

Práctica de Óptica Geométrica Práctica de Determinación de la distancia focal de lentes delgadas convergentes y divergentes 2 Pre - requisitos para realizar la práctica.. 2 Bibliografía recomendada en referencia al modelo teórico 2

Más detalles

PRÁCTICAS DE ÓPTICA VISUAL I ASTIGMATISMO, PARTE 1, curso 2011-12 PRÁCTICA Nº 7

PRÁCTICAS DE ÓPTICA VISUAL I ASTIGMATISMO, PARTE 1, curso 2011-12 PRÁCTICA Nº 7 Departamento de Óptica, Farmacología y natomía PÁCICS DE ÓPIC VISUL I SIGMISMO, PE, curso 0- PÁCIC Nº 7 stigmatismo, parte : Visualización y caracterización del conoide de Sturm OBJEIVO Construir un modelo

Más detalles

TRABAJO PRÁCTICO DE LABORATORIO N 1 Tema: Aplicación de la teoría de los errores de mediciones directas e indirectas

TRABAJO PRÁCTICO DE LABORATORIO N 1 Tema: Aplicación de la teoría de los errores de mediciones directas e indirectas TRABAJO PRÁCTICO DE LABORATORIO N 1 Tema: Aplicación de la teoría de los errores de mediciones directas e indirectas OBJETIVOS Familiarizarse con el uso de instrumentos de medición. Adquirir conceptos

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u)

Más detalles

Física II (Biólogos y Geólogos)

Física II (Biólogos y Geólogos) Física II (Biólogos y Geólogos) SERIE 4. Difracción 1. Para un haz de luz de longitud de onda que incide en forma normal sobre una placa con una rendija de ancho b, la intensidad observada sobre una pantalla

Más detalles

EL OJO músculo ciliar, acomodación o adaptación. Applet payaso

EL OJO músculo ciliar, acomodación o adaptación. Applet payaso EL OJO El globo ocular mide unos 25mm de diámetro y se mantiene en su posición gracias a los músculos oculares. Está envuelto por una membrana compuesta de varias capas. 8 2 3 9 5 4 6 7 1. Esclerótica

Más detalles

Campo Magnético. Campo creado por un Solenoide. Determinar la relación longitud/radio de un solenoide para que pueda ser considerado como infinito.

Campo Magnético. Campo creado por un Solenoide. Determinar la relación longitud/radio de un solenoide para que pueda ser considerado como infinito. CAMPO MAGNÉTICO Campo Magnético Campo creado por un Solenoide 1. OBJETIVOS Determinar la relación longitud/radio de un solenoide para que pueda ser considerado como infinito. Estudiar el comportamiento

Más detalles

GANANCIA EN CIRCUITOS AMPLIFICADORES. LAURA MAYERLY ÁLVAREZ JIMÉNEZ ( ) MARÍA ALEJANDRA MEDINA OSPINA ( ) RESUMEN

GANANCIA EN CIRCUITOS AMPLIFICADORES. LAURA MAYERLY ÁLVAREZ JIMÉNEZ ( ) MARÍA ALEJANDRA MEDINA OSPINA ( ) RESUMEN GANANCIA EN CIRCUITOS AMPLIFICADORES. LAURA MAYERLY ÁLVAREZ JIMÉNEZ (20112007038) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN Observar la amplificación del transistor mediante un análisis y diseño

Más detalles

0,20. y n s 0,80. la imagen es virtual, derecha y mayor para hacer la construcción gráfica hay que saber los valores de las distancias focales

0,20. y n s 0,80. la imagen es virtual, derecha y mayor para hacer la construcción gráfica hay que saber los valores de las distancias focales 0. Un dioptrio esférico cóncavo de 0 cm de radio tiene un índice de refracción,6 y está rodeado de aire. Un objeto de 3 cm de altura se coloca a una distancia de 0 cm del vértice del dioptrio. Calcular

Más detalles

TEMA IV EL OJO EMÉTROPE. VI - Tamaño de la imagen sobre la retina de un objeto extenso

TEMA IV EL OJO EMÉTROPE. VI - Tamaño de la imagen sobre la retina de un objeto extenso TEMA IV EL OJO EMÉTRO I - Concepto de ojo emétropre II - Punto remoto III - La ecuación de Gauss en el ojo emétrope IV - Imagen de un punto enfocado V - El círculo de desenfoque VI - Tamaño de la imagen

Más detalles

Bolilla 12: Óptica Geométrica

Bolilla 12: Óptica Geométrica Bolilla 12: Óptica Geométrica 1 Bolilla 12: Óptica Geométrica Los contenidos de esta bolilla están relacionados con los principios primarios que rigen el comportamiento de los instrumentos ópticos. La

Más detalles

Óptica Geométrica. Física III - Primer Semestre de Fernando Cuturrufo - Karina Ávalos

Óptica Geométrica. Física III - Primer Semestre de Fernando Cuturrufo - Karina Ávalos Óptica Geométrica - Primer Semestre de 2018 Fernando Cuturrufo - Karina Ávalos 1. Un espejo cóncavo tiene un radio de curvatura con un valor absoluto de 20 cm. Halle por medios gráficos la imagen de un

Más detalles

SESIÓN Nº 3: MICROSCOPIO.

SESIÓN Nº 3: MICROSCOPIO. Sesión nº 3:Microscopio. SESIÓN Nº 3: MICROSCOPIO. TRABAJO PREVIO 1. Conceptos fundamentales 2. Cuestiones 1. Conceptos fundamentales Microscopio compuesto Elementos constituyentes El microscopio compuesto

Más detalles

TIPOS DE CALIBRADORES TIPOS DE MEDIDAS. Medida de Profundidades. Calibrador para medir diámetros en troncos. Medida de Diámetro Exterior

TIPOS DE CALIBRADORES TIPOS DE MEDIDAS. Medida de Profundidades. Calibrador para medir diámetros en troncos. Medida de Diámetro Exterior TALLER No. 1 PARTE A INSTRUCTIVO SOBRE INSTRUMENTOS DE MEDICION: EL PIE DE REY Docente: Jesús Enrique Durán V. 1.1 El calibrador / Pie de Rey / Nonio / Vernier Es un instrumento que se utiliza para tomar

Más detalles

ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ

ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ 1 ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ INTRODUCCIÓN TEÓRICA: La característica fundamental de una onda propagándose por un medio es su velocidad (v), y naturalmente, cuando la onda cambia

Más detalles

PROBLEMAS DE ÓPTICA (Selectividad) FÍSICA 2º Bachillerato

PROBLEMAS DE ÓPTICA (Selectividad) FÍSICA 2º Bachillerato PROBLEMAS DE ÓPTICA (Selectividad) FÍSICA 2º Bachillerato 1. (Junio 1997 ) a) Describe el funcionamiento óptico de un microscopio y analiza las características de sus imágenes. Deduce la expresión de su

Más detalles

Óptica Geométrica. Física III - Segundo Semestre de Fernando Cuturrufo - Karina Ávalos

Óptica Geométrica. Física III - Segundo Semestre de Fernando Cuturrufo - Karina Ávalos Óptica Geométrica - Segundo Semestre de 2017 Fernando Cuturrufo - Karina Ávalos 1. Un espejo cóncavo tiene un radio de curvatura con un valor absoluto de 20 cm. Halle por medios gráficos la imagen de un

Más detalles

ENUNCIADOS. Cuestiones

ENUNCIADOS. Cuestiones ENUNCIADOS Cuestiones 1 a) Enuncie las Leyes de la reflexión y de la refracción de la luz y efectúe los esquemas gráficos correspondientes. b) Defina el concepto de ángulo límite y explique el fenómeno

Más detalles

Física 2 Biólogos y Geólogos - Curso de Verano

Física 2 Biólogos y Geólogos - Curso de Verano Física 2 Biólogos y Geólogos - Curso de Verano Serie 2: Objetos. Formación de imágenes. Imágenes. Dioptras esféricas y planas. Espejos esféricos y planos. Lentes delgadas, sistemas de lentes o instrumentos.

Más detalles

Física II (Biólogos y Geólogos) SERIE 3. Difracción

Física II (Biólogos y Geólogos) SERIE 3. Difracción Física II (Biólogos y Geólogos) SERIE 3 Difracción 1. Partiendo de la expresión de la intensidad observada sobre una pantalla, explique el significado de cada uno de los términos que aparece en dicha expresión

Más detalles

El ángulo de desviación es el que forma el rayo incidente con el rayo emergente. 19, 46º

El ángulo de desviación es el que forma el rayo incidente con el rayo emergente. 19, 46º Prisma y láminas plano parlelas PROBLEMAS RESUELTOS SOBRE ÓPTICA GEOMÉTRICA. Sobre un prisma de vidrio de 30º e índice de refracción,5 incide un rayo de luz monocromática perpendicularmente a una de las

Más detalles

IV - ÓPTICA PAU.98 PAU.98

IV - ÓPTICA PAU.98 PAU.98 1.- Dónde debe colocarse un objeto para que un espejo cóncavo forme imágenes virtuales?. Qué tamaño tienen estas imágenes?. Realiza las construcciones geométricas necesarias para su explicación PAU.94

Más detalles

PRÁCTICA Nº.- LENTES.

PRÁCTICA Nº.- LENTES. PRÁCTICA Nº.- LENTES. Objetivo: Estudiar la ormación de imágenes de lentes delgadas y determinar la distancia ocal y la potencia de una lente convergente y de una lente divergente. undamento teórico: La

Más detalles

Objetivos. Introducción. β α

Objetivos. Introducción. β α Objetivos Medir el espectro emitido por una lámpara de sodio utilizando redes de difracción. Determinar los límites del espectro visible usando una fuente de luz blanca. Introducción Una red de difracción

Más detalles

BACHILLERATO FÍSICA 9. ÓPTICA GEOMÉTRICA. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA 9. ÓPTICA GEOMÉTRICA. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA 9. ÓPTICA GEOMÉTRICA R. Artacho Dpto. de Física y Química Índice CONTENIDOS 1. Introducción a la óptica geométrica 2. Óptica de la reflexión. Espejos planos y esféricos 3. Óptica de

Más detalles

Reflexión y refracción en superficies planas y curvas

Reflexión y refracción en superficies planas y curvas Física II (Biólogos y Geólogos) SERIE 1 Reflexión y refracción en superficies planas y curvas 1. Considere un conjunto de 10 superficies planas paralelas separadas entre sí por la misma distancia d. Cada

Más detalles

MEDICIÓN Y PROPAGACIÓN DE ERRORES. Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada.

MEDICIÓN Y PROPAGACIÓN DE ERRORES. Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada. LABORATORIO Nº 1 MEDICIÓN Y PROPAGACIÓN DE ERRORES I. LOGROS Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada. Aprender a calcular el error propagado e incertidumbre

Más detalles

Óptica Geométrica. Los medios materiales pueden ser: Transparentes Opacos Translúcidos

Óptica Geométrica. Los medios materiales pueden ser: Transparentes Opacos Translúcidos Óptica Geométrica La Óptica estudia las propiedades y la naturaleza de la luz y sus interacciones con la materia. La luz se puede propagar en el vacío o en otros medios. La velocidad a la que se propaga

Más detalles

1. Medidor de potencia óptica

1. Medidor de potencia óptica En este anexo se va a hablar del instrumental de laboratorio más importante utilizado en la toma de medidas. Este instrumental consta básicamente de tres elementos: el medidor de potencia óptica, el osciloscopio

Más detalles

MANUAL DE LENTES PROGRESIVAS CAPÍTULO 1 L a s L e n t e s P r o g r e s i v a s

MANUAL DE LENTES PROGRESIVAS CAPÍTULO 1 L a s L e n t e s P r o g r e s i v a s CAPÍTULO 1 L a s L e n t e s P r o g r e s i v a s CAPÍTULO 1 Las Lentes Progresivas OBJETIVO Proporcionar al présbita una corrección adecuada a sus necesidades. Utilizar la misma gafa para todas las distancias.

Más detalles

Medida de la Intensidad del Campo Magnético de Imanes

Medida de la Intensidad del Campo Magnético de Imanes Medida de la Intensidad del Campo Magnético de Imanes Objetivos Estudio de la dependencia de la componente axial del campo magnético y determinación del momento magnético de diferentes imanes con simetría

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D.

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO 2011-2012 PRIMERA EVALUACIÓN DE FÍSICA D Nombre: Paralelo: PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u) 1)

Más detalles

PROBLEMAS DE ÓPTICA GEOMÉTRICA E INSTRUMENTAL

PROBLEMAS DE ÓPTICA GEOMÉTRICA E INSTRUMENTAL PROBLEMAS DE ÓPTICA GEOMÉTRICA E INSTRUMENTAL Unidad 6: 6.3 Asociación de dioptrios Jaume Escofet Unidad 6: 6.3 Asociación de dioptrios Uso de este material Copyright 2011 by Jaume Escofet El autor autoriza

Más detalles