KIRSTEN BIEDERMANN ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMA BAJO PRESIÓN

Tamaño: px
Comenzar la demostración a partir de la página:

Download "KIRSTEN BIEDERMANN ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMA BAJO PRESIÓN"

Transcripción

1 40 KIRSTEN BIEDERMANN ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMA

2 balón, masa, balanza, bomba, prsión, as idal, colisión lástica, coficint d rstitución f ísica, matmáticas, TIC Esta unidad s pud utilizar para nsñar a studiants d difrnts dads, principalmnt d primaria y scundaria Cada part s pud adaptar para adcuarla a difrnts nivls Nivl 1: Para primaria (dad: 9 12 años) Nivl 2: Para scundaria (dad: años) Nivl 3: Para scundaria (institutos, dad: años) 1 SUMARIO Aluna vz t has pruntado lo important qu s la prsión dl air dl balón? Esta unidad prsnta distintas actividads cntradas n la prsión La primra actividad mpiza con la mdición d la masa dl air dntro dl balón y dstaca su proporcionalidad dircta con la prsión intrna La sunda studia la dpndncia d la altura máxima alcanzada por l balón dspués d la primra colisión o rbot d la prsión dl air dntro dl balón y al mismo timpo mustra la importancia d la condición d la suprfici dl trrno 2 INTRODUCCIÓN DE CONCEPTOS Nustro objtivo s dstacar qu con xprimntos sncillos los alumnos pudn mdir la masa dl air dntro dl balón y vrificar luo la dpndncia linal ntr prsión y masa sún la ly d los ass idals Por último, studiarán la importancia d la prsión n l procso d rbot y aplicarán la ly d consrvación d la nría mcánica 2 1 Part 1: Masa d air rspcto a prsión Vr los dtalls d las actividads n la part 3 Qué hacn los alumnos Nivl 1: S pudn ralizar dos actividads distintas indpndints La primra s cntra n la masa dl air y n cómo mdir la masa d air dntro dl balón El profsor podría usar un método a bas d pruntas dl tipo: Cómo podéis avriuar la masa d air dntro dl balón? Los alumnos surirán y ralizarán xprimntos, como usar la balanza, hinchar l balón y comprobar la masa dl balón una vz hinchado En la sunda actividad, los alumnos s cntrarán n l volumn y los métodos para avriuar l volumn dl balón (p j, con un cubo d aua) Nivl 2: Mdir la masa d air dntro dl balón a distintas prsions Encontrar la rlación ntr la prsión y la masa d air (supusto: l volumn dl balón no cambia cuando la prsión aumnta) Los alumnos pudn dibujar un ráfico d la masa dl as rspcto a la prsión Los alumnos también pudn mdir l volumn dl balón También pud srvir para avriuar la flotabilidad dl balón (n l air) 41 Nivl 3: Los alumnos pudn hacr los mismos xprimntos qu los dl nivl 2 Compararán su ráfico d dpndncia ntr la masa y la prsión dl air dntro dl balón con la ly d los ass idals y calcularán los distintos parámtros dl as a partir d la pndint dl ráfico 2 2 Part 2: Altura d rbot rspcto a prsión Nivl 1: Cntrars n las difrncias d altura (cualitativamnt): Lanzar dos balons dsd la misma altura y obsrvar l fcto dircto d las distintas prsions dl balón Elir un procdiminto y los datos qu s van a rcopilar, rcor los datos y comntarlos una vz trminado l xprimnto Nivl 2: Cntrars n las difrncias d altura (cualitativamnt): Mdir la altura máxima dspués dl primr rbot, rptir l xprimnto diz vcs buscando la forma d dtctar la altura, p j, hacindo una plícula a alta vlocidad con un smartphon Aprndr sobr l azar y otros factors qu xplican los difrnts rsultados y calcular la altura mdia Nivl 3: Cntrars n l uso d un modlo matmático d caída libr para analizar los datos Empzando con l nivl 2, analizar los datos para ncontrar la pérdida d nría con la fórmula Ep = m h y comparando la nría al principio dl xprimnto (h = 1 m u otro valor) y dspués dl primr contacto dl balón con l sulo Los alumnos pudn calcular también la duración d un rbot y la vlocidad máxima dl primr contacto con l sulo intntar mdirlo Por último, pudn comparar la nría potncial y la cinética (Ep y Ec) y calcular l coficint d rstitución (vr 321) Ep: nría potncial [J] m: masa dl balón [k] m N : aclración ravitacional; = 9,81 s2 = 9,81 k h: altura alcanzada por l balón [m] La Part 2 pud hacrs n distintas suprficis como céspd, l sulo dl imnasio, asfalto, hormión, céspd mojado, céspd corto, céspd alto y arna Los alumnos d todos los nivls dbn prsntar sus hipótsis, dbatirlas y analizar los xprimntos a distintos nivls Yndo más allá, sría intrsant dsarrollar una tabla qu mustr la prsión ncsaria para consuir la misma altura d rbot n difrnts suprficis, por jmplo, n distintos stadios 3 QUÉ HACEN LOS ALUMNOS Esta unidad s divid n dos parts: mdir la masa dl as rspcto a la prsión dntro dl balón y mdir la dpndncia ntr altura dl rbot y la prsión dntro dl balón

3 42 Hay dos formas distintas d mdir la prsión La prsión rlativa s la difrncia ntr la prsión dntro dl balón y la prsión atmosférica (fura dl balón); s utiliza un manómtro para mdir la prsión rlativa Utilizamos sta prsión n la part 1 La prsión absoluta s la cantidad total d prsión Utilizamos sta prsión n la part Part 1: Mdir la masa dl as rspcto a la prsión Equipaminto ncsario: bomba, manómtro (sistma d mdición d prsión), balanza (con una prcisión d 0,1 y un rano d mdidas ntr 0 y 1000 ), boquilla para inflar l balón, vaso para ponr l balón n la balanza, un balón Si l cntro ducativo no tin st quipaminto, l xprimnto pud hacrs con instrumntos baratos (Lo más fácil s qu la bomba llv manómtro Si no, s pud comprar un manómtro barato para numáticos d automóvil; la boquilla s la misma qu la qu s usa para un balón) Procdiminto A continuación dscribimos los dtalls dl procdiminto propusto Alunas parts pudn obviars si no corrspondn al nivl d los alumnos FIG 2 Mdir l nivl para obtnr l volumn d aua Si s toman las mdidas sin la bolsa d plástico rodando l balón, hay qu mdir l volumn dspués d mdir la masa El volumn s pud mdir con distintos nivls d aua dntro dl cubo Si los alumnos no pudn calcular l volumn d aua n l cubo, pudn llnar l cubo compltamnt, mtr l balón dntro dl cubo y mdir l volumn d aua dsalojada En st caso l volumn dl balón vacío s d 1,65 l y l volumn dl balón llno s d 5 l Esto sinifica qu 5 l 1,65 l = 3,35 l d air dntro dl balón Mdir la masa con air dntro Ponr l vaso n la balanza, tararla, ponr l balón n la balanza y mdir la masa En st xprimnto usamos una balanza con una prcisión d 0,1 (ntr 0 y 1000 ), un balón d fútbol y una bomba con manómtro Mdir la masa dl balón sin air dntro (por jmplo m balón = 408,0 ) FIG 1 El balón dntro dl cubo Mdir l volumn dl balón (con y sin air dntro) Para mdir l volumn dl balón, s pud utilizar un cubo llno d aua y mdir los distintos nivls d aua con y sin l balón Hay qu tnr cuidado porqu l balón s d curo y pud absorbr aua, lo qu incrmntaría la masa dl balón Para vitarlo, s pud ponr l balón n una bolsa d plástico La prsión dl aua alrddor dl balón pará la bolsa contra l balón El volumn srá l mismo con y sin bolsa FIG 3 El balón n la balanza

4 43 m: masa [] P: prsión rlativa [Pa] a: coficint d la pndint d la curva [ bar ] V: volumn [m 3 ] n: cantidad d sustancia [mol] M: masa molar [ mol ] R: constant dl as idal, R = 8,31 T: tmpratura [K] J K mol FIG 4 Mdir la masa dl balón vacío Inflar l balón para obtnr la misma prsión dntro qu fura La prsión rlativa, o la difrncia ntr la prsión intrior y xtrior dl balón s P = 0 bar Mdir la masa dl balón m balón = 408,0 (La misma masa qu ants) Análisis: Por qué s la masa iual con y sin air dntro dl balón? Pista: El air qu nos roda s un fluido qu cra una furza con las mismas propidads qu la furza crada cuando mtmos alo n l aua Rspusta: La masa d air dntro dl balón s quilibra con la flotabilidad dl air qu roda l balón Mdir la masa dl mismo balón a difrnt prsión El manómtro dará la prsión rlativa Rcopilar los datos n una hoja d cálculo Por jmplo, s pud mdir la masa para una prsión rlativa P = 0,35 bar; P = 0,5 bar; P = 0,6 bar; P = 0,75 bar; P = 0,9 bar; P = 1,05 bar, o lir otras prsions Dibujar la curva m n rlación con P Encontrar la curva qu mjor s ajust (s una función linal) Encontrar la rlación ntr la pndint d la lína rcta y la ly d los ass idals: P V = n R T Para ayudar a los alumnos a ntndr la ly d los ass idals, l profsor pud dar pistas Primra pista: La curva linal tin la fórmula m total = a P + m balón o m total = m as + m balón Trcra pista: El as (air) s compon aproximadamnt d un 20% d oxíno y un 80% d nitróno M O2 = 32 mol y M N2 = 28 mol 3 2 Part 2: Mdir la altura d rbot rspcto a la prsión Toría T has pruntado si la prsión dl air intrior dl balón s important? Vamos a dmostrar qu l coficint d rstitución (lasticidad) dpnd d sa prsión Qué s l coficint d rstitución? Cuando un balón ca, atrriza a cirta vlocidad rspcto al sulo, lo qu s dnomina vlocidad d aproximación Tras una colisión lástica con l sulo, la vlocidad d sparación tndrá un valor difrnt d la vlocidad d aproximación porqu part d la nría cinética inicial s habrá prdido: = v sparación v aproximación Es muy fácil calcular st coficint si s mid la altura inicial h 1 dsd la qu ca l balón y la altura máxima h 2 qu pud alcanzar cuando l balón rbota contra l sulo Usamos la ly d la consrvación d nría: mh 1 = mv 2 aproximación 2 Por lo tanto: = h 2 h 1 mh 2 = mv2 sparación 2 : coficint d rstitución v: vlocidad [ m s ] m: masa [] : aclración ravitacional; = 9,8 m = 9,8 s 2 h: altura [m] N k Sinifica qu: m as = a P Sunda pista: n as = m as M as

5 El xprimnto Djamos car l balón dsd una altura (h 1 ) y anotamos la altura (h 2 ) dl rbot dspués d tocar l sulo Podmos mdir stas alturas n los vídos Ejmplo d cálculo con la ly d los ass idals: Aquí, la fórmula d la curva s m = 4,5711 P + 408,0 Vmos qu l valor 408 s la masa dl balón vacío n ramos o m total = a P + m balón bar m: masa total [] P: prsión [bar] a: coficint d la pndint d la curva [ bar ] En st caso a= 4,5711 bar FIG 5 Sujtar l balón a la altura h 1 (izquirda); soltar l balón (drcha) El xprimnto pud hacrs con distintos tipos d balón y d suprfici [1] 4 CONCLUSIÓN 4 1 Part 1: Mdir la masa dl as rspcto a la prsión Ejmplo d mdición d la masa rspcto a la prsión d un balón La masa dl balón s m balón = 408,0 a P = 0 bar El volumn dl air n l balón s V = 3,35 l FIG 6 m[] rspcto a P[bar] (prsión rlativa) m [] 0,75 411,5 0,35 409,5 1,05 412,8 0,9 412,1 0,6 411,1 0,5 410,3 m [] ,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 El valor d a pud hallars mdiant la ly d los ass idals: P V = n R T P: prsión [Pa], 1 bar = 10 5 Pa V: volumn [m 3 ] n: cantidad d as [mol] R: constant dl as idal, R = 8,31 T: tmpratura [K] M: masa molar [ mol ] Esto sinifica qu n as = P V o m as = M as V P J K mol y m as = M as P V y ya hmos visto n 321 qu m as = a P, por tanto a = M as V El air s compon d un 20% d oxíno y un 80% d nitróno aprox, así pus M as = M as = M as = 28,8 20 M M N mol mol 100 mol Con st balón V = 3,35 l = 3, m 3 T = 20 C = 293 K a = M as V a = 28,8 mol 3, m 3 8,31 Pa = 3, J K mol 293 K Est s l valor cuando P s mid n Pa Para P n bars, l valor tin qu multiplicars por 10 5 (porqu 1 bar = 10 5 Pa) a = 3,96 bar La curva qu mjor s ajusta s a = 4,57 bar

6 45 Si s comparan los dos rsultados, la dsviación rlativa ntr los dos rsultados s: d = = 0,13 4,57 3,96 4,57 Podmos comntar los rrors asociados a la mdición: La prcisión dl manómtro s 0,05 bar n una mdición aproximada d 1 bar Pud suir habindo air n l balón cuando mdimos l volumn d un balón vacío 4 2 Part 2: Mdir l rbot rspcto a la prsión En nustro xprimnto cambiamos la prsión d air intrior n dos balons distintos y obtuvimos las cifras siuints: FIG 7 Coficint d rstitución rspcto a prsión absoluta P (balón 1) 1,9 0,764 2,0 0,768 2,1 0,774 2,2 0, ,783 2,5 0,789 0,79 0,78 0,77 0,76 0,75 1,8 1,9 2 2,1 2,2 Aquí P s la prsión absoluta n bars Para l primr balón, la dpndncia s linal porqu la variación d la prsión no s tan rand Para l sundo balón obtuvimos una curva Cuando la prsión s dmasiado rand, l balón pird lasticidad y l coficint d rstitución parc llar al límit En stos dos xprimntos s djó car l balón n l sulo y pud vrs qu l coficint d rstitución s más o mnos d 0,77 para una prsión d 3 bar Dspués cambiamos la suprfici, pro la prsión intrior suía sindo 3 bar Sobr céspd, l coficint d rstitución ra infrior: = 0,57 En céspd sintético, l coficint ra d 0,74 [1] 2,3 2,4 2,5 FIG 8 Coficint d rstitución rspcto a prsión absoluta P (balón 2) 1,4 0,695 2,0 0,742 2,5 0,764 3,0 0,774 0,78 0,77 0,76 0,75 0,74 0,73 0,72 0,71 0,70 0,69 0, ,5 3 3,5 5 CONCLUSIÓN Un balón s una buna hrraminta para studiar las lys d los ass, las propidads d la prsión y la ficincia d los rbots Los alumnos pudn studiar las lys d la física con un balón qu forma part dl quipaminto dportivo Pudn vr la rlación ntr las lys d la física, como la ly d los ass idals, y la vida diaria También s intrsant obsrvar qu las actividads d sta unidad pudn nsñars a alumnos d distintas dads, d los 6 a los 18 años Es fácil ncajar stas actividads n cualquir plan d studios 6 OPCIONES DE COOPERACIÓN Podmos compartir los rsultados d distintos xprimntos con balons Para llo, hay qu dscarar l archivo y suir las instruccions [1] Estamos suros d qu los studiants pudn compartir sus idas sobr las difrncias ntr sus mdicions o sus quipos xprimntals Pudn imainars otros xprimntos con l balón: por jmplo, rabar la dformación dl balón cuando choca contra l sulo y la influncia d la prsión n s procso REFERENCIAS [1] wwwscinc-on-stad/ista3_matrials

Cuánto tarda una pelota en dejar de botar?

Cuánto tarda una pelota en dejar de botar? Cuánto tarda una plota n djar d botar? Dr. Guillrmo Bcrra Córdoa Unirsidad Autónoma Chapino Dpto. d Prparatoria Arícola Ára d Física Profsor-Instiador 59595500 xt. 59 E-mail: llrmbcrra@yahoo.com Km. 8.5

Más detalles

Representación esquemática de un sistema con tres fases

Representación esquemática de un sistema con tres fases 6 APLICACIONES 6.1 Sistma con varias fass Una vz consguido l modlo para simular una mmbrana, s planta su uso para simular procsos con más d una. Uno d stos procsos podría sr un sistma con varias fass.

Más detalles

Solución a la práctica 6 con Eviews

Solución a la práctica 6 con Eviews Solución a la práctica 6 con Eviws El siguint modlo d rgrsión rlaciona la nota mdia qu obtinn los alumnos n matmáticas (nota) n un cntro, con l númro d profsors disponibls n l cntro (profsors), l porcntaj

Más detalles

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o

Más detalles

SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla.

SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla. UNIA : Introducción a las drivadas ACTIVIAES-PÁG. 0. Las solucions aparcn n la tabla. [0, ] [, 6] a) f () = b) f () = + c) f () = 9 d) f () = 7, 6 8, 67. El valor d los límits s: f ( h) f () a) lím 6 h

Más detalles

TEMA 5. Límites y continuidad de funciones Problemas Resueltos

TEMA 5. Límites y continuidad de funciones Problemas Resueltos Matmáticas Aplicadas a las Cincias Socials II Solucions d los problmas propustos Tma 7 Cálculo d its TEMA Límits y continuidad d funcions Problmas Rsultos Para la función rprsntada n la figura adjunta,

Más detalles

Guías de Prácticas de Laboratorio

Guías de Prácticas de Laboratorio Guías d Prácticas d Laboratorio Laboratorio d: (5) FÍSICA OPTICA Y ACUSTICA Titulo d la Práctica d Laboratorio: (6) OSCILADOR ARMONICO SIMPLE. LEY DE HOOKE Idntificación: (1) Númro d Páginas: (2) 8 Rvisión

Más detalles

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DISEÑO MECÁNICO PRÁCTICA Nº 3

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DISEÑO MECÁNICO PRÁCTICA Nº 3 DEPARAMENO DE INGENIERIA MECÁNICA INGENIERÍA INDUSRIAL DISEÑO MECÁNICO PRÁCICA Nº 3 DEERMINACIÓN DEL COEFICIENE DE ROZAMIENO ENRE CORREAS Y POLEAS Dtrminación dl coficint d rozaminto ntr corras y polas

Más detalles

CINEMÁTICA (TRAYECTORIA CONOCIDA)

CINEMÁTICA (TRAYECTORIA CONOCIDA) 1º Bachillrato: Cinmática (trayctoria conocida CINEMÁTICA (TRAYECTORIA CONOCIDA (Todos los datos y cuacions, n unidads dl S.I. 1. Un objto tin un moviminto uniform d rapidz 4 m/s. En l instant t=0 s ncuntra

Más detalles

2ª PRUEBA 24 de febrero de 2017

2ª PRUEBA 24 de febrero de 2017 ª PRUEB 4 d fbrro d 017 Pruba xprintal. Mdida d la rlación carga/asa dl lctrón En 1897, J. J. Thopson utilizó un dispositivo xprintal parcido al d la figura 1 para dtrinar por prira vz la rlación ntr la

Más detalles

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.

PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad. Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f

Más detalles

Energía. Reactivos. Productos. Coordenada de reacción

Energía. Reactivos. Productos. Coordenada de reacción CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III)

Más detalles

TEMA 10: DERIVADAS. f = = x

TEMA 10: DERIVADAS. f = = x TEMA 0:. DERIVADA DE UNA FUNCIÓN EN UN PUNTO La siguint gráfica rprsnta la tmpratura n l intrior d la Tirra n función d la profundidad. Vmos qu la gráfica s simpr crcint, s dcir, a mdida qu aumnta la profundidad

Más detalles

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador

Más detalles

+ ( + ) ( ) + ( + ) ( ) ( )

+ ( + ) ( ) + ( + ) ( ) ( ) latrals n. iguals. f. La función CONTINUIDAD f () Es continua n l punto?. Calcular los límits ³ ² 5 Para qu la función sa continua n s db cumplir: f f Calculamos por sparado cada mimbro d la igualdad f

Más detalles

TAMAÑO DE LA MUESTRA

TAMAÑO DE LA MUESTRA Rv. Epidm. Md. Prv. (003), : 8-4 TAMAÑO DE LA MUESTRA Enric Matu, Jordi Casal CRSA. Cntr d Rcrca n Sanitat Animal / Dp. Sanitat i Anatomia Animals, Univrsitat Autònoma d Barclona, 0893-Bllatrra, Barclona

Más detalles

Cálculo de fuerzas y pares de fuerza mediante el principio de los desplazamientos virtuales.

Cálculo de fuerzas y pares de fuerza mediante el principio de los desplazamientos virtuales. c Rafal R. Boix y Francisco Mdina 1 Cálculo d furzas y pars d furza mdiant l principio d los dsplazamintos virtuals. Considrmos un conjunto d N conductors cargados con cargas Q i (i = 1,...,N). San V i

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

. La tasa de variación media es la pendiente del segmento AB, siendo A(a, f(a) ) y B(b, f(b) ) dos puntos de la gráfica de la función:

. La tasa de variación media es la pendiente del segmento AB, siendo A(a, f(a) ) y B(b, f(b) ) dos puntos de la gráfica de la función: º BACHILLERATO D MATEMÁTICAS CC SS TEMA 4.- FUNCIONES. DERIVACIÓN.- CONCEPTO DE DERIVADA Tasa d variación mdia S llama tasa d variación mdia d una función f n l intrvalo [a, b] al cocint. La tasa d variación

Más detalles

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns

Más detalles

MEDICIÓN DE LA BANDA PROHIBIDA DEL SILICIO

MEDICIÓN DE LA BANDA PROHIBIDA DEL SILICIO MEDICIÓN DE LA BANDA PROHIBIDA DEL SILICIO Amador Ana y Rausch Frnando Dpartamnto d física, Univrsidad d Bunos Airs, Bunos Airs, Argntina Nustro trabajo consistió n mdir l ancho d la banda prohibida dl

Más detalles

UNED Tudela Psicometría. Tema 4 Esquema tema 4

UNED Tudela Psicometría. Tema 4 Esquema tema 4 Esquma tma 4 1.- Orintacions didácticas: Tmas antriors: construcción dl tst Tmas 4 al 8: Evaluación d la calidad d la pruba piloto basándos n las rspustas d los sutos: Fiabilidad, validz y calidad d los

Más detalles

INTEGRACIÓN POR PARTES

INTEGRACIÓN POR PARTES UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERA DEPARTAMENTO DE MATEMÁTICA Y ESTADISTICA INTEGRACION INTEGRACIÓN Algunas intgrals qu s nos prsntan nos rsultan un poco compljas, ya por lo

Más detalles

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a:

1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a: EXAMEN DE MATEMÁTICAS II (Eamn Final, Rcupración d Análisis Intgrals) BACHILLERATO EXAMEN FINAL (RMJ5) a) (,5 puntos) Discut l siguint sistma d cuacions n función dl parámtro a: + y + az + ay + z a a +

Más detalles

9 Aplicaciones de las derivadas

9 Aplicaciones de las derivadas 9 Aplicacions d las drivadas Página 69 Optimización B A P' Q' O Q T P Página 71 r a) y' = 0 x = 0 8 Punto ( 0 0) x = 1 8 Punto ( 1 1) En (0 0) hay un punto d inflxión. En (1 1) hay un máximo rlativo. b)

Más detalles

Relaciones importantes para la entropía.

Relaciones importantes para la entropía. rmodinámica II 2I Rlacions importants para la ntropía. Entropía Formalmnt la ntropía s d n a partir d la dsigualdad d Clausius I 0 () n dond:! H indica qu la intgral s va a ralizar n todas las parts d

Más detalles

Aplicaciones de las Derivadas

Aplicaciones de las Derivadas www.slctividad-cgranada.com Tma : Aplicacions d las Drivadas..- Crciminto y dcrciminto d una función Sa f una función dfinida n l intrvalo I. Si la función f s drivabl sobr l intrvalo I, s vrifica: f s

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

2º BACHILLERATO CINETICA QUÍMICA

2º BACHILLERATO CINETICA QUÍMICA VELOCIDAD DE REACCIÓN 1.- Escrib la xprsión d la vlocidad d racción n función d la concntración d cada una d las spcis qu intrvinn n l procso d obtnción d amoniaco. N + 3 H NH 3 d 1 v = [N] = 3 d 1 [H]

Más detalles

LECTURA 09: PRUEBA DEHIPÓTESIS (PARTE III) TEMA 18: PRUEBA DE INDEPENDENCIA CHI CUADRADO

LECTURA 09: PRUEBA DEHIPÓTESIS (PARTE III) TEMA 18: PRUEBA DE INDEPENDENCIA CHI CUADRADO Univrsidad Los Ángls d Chimbot LECTURA 9: PRUEBA DEHIPÓTESIS (PARTE III) TEMA 18: PRUEBA DE INDEPENDENCIA CHI CUADRADO 1. INTRODUCCION: La pruba d indpndncia chi cuadrado s un procdiminto d contrastación

Más detalles

Ejercicios para aprender a integrar Propiedades de las integrales:

Ejercicios para aprender a integrar Propiedades de las integrales: Julián Morno Mstr www.juliwb.s Ejrcicios para aprndr a intgrar Propidads d las intgrals: af d = a f d f ± g( ) d = f d ± g( ) d b a b f d = f d = [ F( ) ] a = F( b) F( a) a b Rglas d intgración: ad = a

Más detalles

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( )

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( ) Cálculo difrncial. Matmáticas II Curso 03/4 Opción A Ejrcicio. Sa la parábola (Puntuación máima: puntos) y 4 4 y un punto ( p, q ) sobr lla con 0 p. Formamos un rctángulo d lados parallos a los js con

Más detalles

TEMA 7 APLICACIONES DE LA DERIVADA

TEMA 7 APLICACIONES DE LA DERIVADA Tma Aplicacions d la drivada Matmáticas CCSSII º Bachillrato 1 TEMA APLICACIONES DE LA DERIVADA RECTA TANGENTE 1 Escrib 0 EJERCICIO 1 : la cuación d la rcta tangnt a la curva f n 0. Ordnada dl punto: f

Más detalles

Ejercicios para aprender a integrar

Ejercicios para aprender a integrar Ejrcicios para aprndr a intgrar Propidads d las intgrals: af ) d = a f d b f ) d = Rglas d intgración: ad = a ( f ± g( ) d = f d ± g( ) d a a b [ F( ) ] = F( b) F( ) ( f d = a b Polinomios y sris d potncias

Más detalles

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA DISPERSIÓN - ESPECTRÓMETRO DE PRISMA OBJETIVOS Invstigación d la rgión visibl dl spctro dl átomo d Hidrógno y dtrminación d la constant d Ridbrg. Calibración d la scala dl spctrómtro d prisma. Dtrminación

Más detalles

Modelos Matemáticos para la optimización y reposición de maquinarias: Caso la Empresa Eléctrica de Milagro

Modelos Matemáticos para la optimización y reposición de maquinarias: Caso la Empresa Eléctrica de Milagro Modlos Matmáticos para la optimización y rposición d maquinarias: Caso la Emprsa Eléctrica d Milagro Edwin Lón Plúas, Csar Gurrro Loor 2 Ingniro n Estadística Informática, 2003 2 Dirctor d Tsis, Matmático,

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

Modelos Box-Jenkins. El paseo aleatorio X t = c + X t 1 + a t no es estacionario. Sin embargo, el proceso diferenciado regularmente

Modelos Box-Jenkins. El paseo aleatorio X t = c + X t 1 + a t no es estacionario. Sin embargo, el proceso diferenciado regularmente Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: Slcción dl El paso alatorio X t = c + X t 1 + a t no s stacionario. Sin mbargo, l procso difrnciado rgularmnt s stacionario. X t X t 1 = c +

Más detalles

Propagación de Errores 2 da edición

Propagación de Errores 2 da edición Propagación d Errors da dición Grmán Blsio - Carlos M. Silva Dpartamnto d Física Instituto Politécnico Suprior 14 d marzo d 016 1 ÍNDICE Índic 1. Ejrcicios 3 1.1. Introducción......................................

Más detalles

lm í d x = lm í ln x + x 1 H = lm í x + e x 2

lm í d x = lm í ln x + x 1 H = lm í x + e x 2 Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg

Más detalles

I, al tener una ecuación. diferencial de segundo orden de la forma (1)

I, al tener una ecuación. diferencial de segundo orden de la forma (1) .6. Rducción d ordn d una cuación difrncial linal d ordn dos a una d primr ordn, construcción d una sgunda solución a partir d otra a conocida 9.6. Rducción d ordn d una cuación difrncial linal d ordn

Más detalles

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS.

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS. FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS. 1.- En ausncia d autoabsorción, la intnsidad d fluorscncia d una mustra s proporcional a la concntración, solo a concntracions bajas. Calcular

Más detalles

Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004

Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004 MÁQUNAS LÉCTRCAS, º ngniros ndustrials xamn Ordinario 14 d Fbrro d 004 Problma 1. Un motor drivación consum una corrint d 0 A cuando gira a 1000 r.p.m., sindo la tnsión d alimntación d 00 V. La rsistncia

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

RADIACTIVIDAD. Hoy, sabemos que los tipos de desintegración de los núcleos son :

RADIACTIVIDAD. Hoy, sabemos que los tipos de desintegración de los núcleos son : RDICTIVIDD El Carbono 4, 4 C, s un misor β - con un priodo d smidsintgración d 576 años. S pid: a) Dscribir todas las formas d dsintgración radiactiva d los núclos xplicando los cambios n los mismos y

Más detalles

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A. PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.. CONCEPTO DE DOSADO. PARÁMETROS GEOMÉTRICOS 3. PARÁMETROS INDICADOS 4. PARÁMETROS EFECTIVOS 5. PARÁMETROS DE PÉRDIDAS MECÁNICAS 6. RESUMEN DE PARÁMETROS 7. OTROS

Más detalles

Tabla de contenido. Página

Tabla de contenido. Página Tabla d contnido Página Ecuacions actas linals Ecuacions difrncials actas Torma 4 Solución d una cuación difrncial acta Ecuacions linals 1 Solución d una cuación linal 1 Rsumn 19 Bibliografía rcomndada

Más detalles

DETERMINACION DE LAS RELACIONES VOLUMÉTRICAS DE LOS SUELOS

DETERMINACION DE LAS RELACIONES VOLUMÉTRICAS DE LOS SUELOS DETERMINACION DE LAS RELACIONES VOLUMÉTRICAS DE LOS SUELOS I. GENERALIDADES: La dtrminación d las rlacions volumétricas d los sulos son importantísimas, para l manjo comprsibl d las propidads mcánicas

Más detalles

Capítulo 5. Conclusiones.

Capítulo 5. Conclusiones. 94 Capítulo 5.. 95 El primr objtivo d la tsis ha sido disñar y construir un quipo óptico n un horno d difusión qu combin la aplicación d altas tmpraturas con mdidas in-situ d transmisión óptica, caractrizando

Más detalles

Para indicar todo lo que se encuentre por encima del nivel del mar, los números naturales o enteros

Para indicar todo lo que se encuentre por encima del nivel del mar, los números naturales o enteros + Dpartamnto d Matmática Trabajo Práctico CONJUNTO DE NÚNEROS ENTEROS Primr Año 1. Traduzcan n cada caso usando númros ntros: a) La mnor tmpratura ristrada n la Tirra fu d casi 83 C bajo cro (.). S produjo

Más detalles

Unidad 11 Derivadas 4

Unidad 11 Derivadas 4 Unidad 11 rivadas SOLUCIONES 1. La solución n cada caso s:. Las drivadas son: f ( ) f () a) [ f () f () lím f (6 ) f (6) 9 b) f (6) lím lím 5 f (0 ) f (0) c) [ f (0) f (0) lím. En cada caso: a) f() no

Más detalles

6toMat A -FICHA Nº4- DEF. y CÁLCULO DE LÍMITES Síntesis Teórico-Práctica Prof. Sergio Weinberger-

6toMat A -FICHA Nº4- DEF. y CÁLCULO DE LÍMITES Síntesis Teórico-Práctica Prof. Sergio Weinberger- 6toMat A -FICHA Nº4- DEF. y CÁLCULO DE LÍMITES Síntsis Tórico-Práctica. 007 Prof. Srgio Winbrgr- DEFINICIÓN DE LÍMITE FINITO: a f () α E( α, ε) E *(a, δ) / E *(a, δ) f () E( α, ε) y Es dcir qu,dado un

Más detalles

INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre:

INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre: INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL TERCERA EVALUACIÓN Sptimbr 7 d Nombr: Parallo: Firma: TEMA ( puntos) Justificando su rspusta, califiqu como vrdadra o falsa, cada proposición: a) La

Más detalles

AT07 PORCENTAJE DE POBLACIÓN EN LA ESCUELA CON UN AVANCE REGULAR POR EDAD. A gn inf. A gn sup PPR = P e PPR

AT07 PORCENTAJE DE POBLACIÓN EN LA ESCUELA CON UN AVANCE REGULAR POR EDAD. A gn inf. A gn sup PPR = P e PPR AT07 PORCENTAJE DE POBLACIÓN EN LA ESCUELA CON UN AVANCE REGULAR POR EDAD FÓRMULA AT07 NOMBREdlINDICADOR Porcntaj d población n la scula con un avanc rgular por dad. FÓRMULAdCÁLCULO PPR = PPR A + inf A

Más detalles

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución: Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada

Más detalles

ESPACIOS VECTORIALES EUCLÍDEOS: Proceso de ortonormalización (Gram-Schmidt)

ESPACIOS VECTORIALES EUCLÍDEOS: Proceso de ortonormalización (Gram-Schmidt) Univrsidad d Jaén Dpartamnto d Matmáticas (Ara d Álgbra) Curso 04/5 PRÁCTICA Nº ESPACIOS VECTORIALES EUCLÍDEOS: Procso d ortonormalización (Gram-Schmidt) En sta práctica vamos a vr como podmos calcular

Más detalles

Implementación de un Regulador PID

Implementación de un Regulador PID Tma 3 Implmntación d un Rgulador PID Gijón - Marzo 22 .4 Accions d Control Clásicas.2 x(t).8.6 x(t) (t) _ P I D 2 3 u(t) Sistma.4.8.6.4.2-5 5 5 2 25 3 (t) -.2 -.4-5 5 5 2 25 3 2.8 - Proporcional ( t) =

Más detalles

Integrales indefinidas. 2Bach.

Integrales indefinidas. 2Bach. Intgrals indfinidas. Bach..- FUNCIÓN PRIMITIVA. INTEGRAL INDEFINIDA. La intgración s la opración invrsa d la drivación. Dada una función f(), dirmos qu F() s una primitiva suya si F ()f(). Nota: La primitiva

Más detalles

PRIMERA PRÁCTICA SONIDO

PRIMERA PRÁCTICA SONIDO PRIMERA PRÁCTICA SONIDO 1. Objtivo gnral: El objtivo d sta práctica s qu l alumno s familiaric con los concptos d amplitud y frcuncia y los llgu a dominar, así como l fcto qu tin la variación d stos parámtros

Más detalles

4 ANALISIS DIMENSIONAL Y SIMILITUD FISICA

4 ANALISIS DIMENSIONAL Y SIMILITUD FISICA 4 ANALISIS IENSIONAL Y SIILITU ISICA www.rivra-001.com Contnido 4.1. Introducción 4.. Qué s un parámtro adimnsional? 4.3. Naturalza adimnsional dl flujo fluido 4.4. El torma d Pi d Buckingham 4.5. Cómo

Más detalles

MOVIMIENTO CIRCULAR UNIFORMEMENTE RETARDADO

MOVIMIENTO CIRCULAR UNIFORMEMENTE RETARDADO MOVIMIENTO CIRCULAR UNIFORMEMENTE RETARDADO Antonio J. Barbro Mariano Hrnándz Alfonso Calra Pablo Muñiz José A. d Toro Mª Mar Artigao Dpto. Física Aplicada. UCLM. 1 Mdidas dl cuadrado d la vlocidad angular

Más detalles

Límites finitos cuando x: ˆ

Límites finitos cuando x: ˆ . Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador

Más detalles

Modelo monocompartimental. Administración endovenosa tipo bolus. Tema 9

Modelo monocompartimental. Administración endovenosa tipo bolus. Tema 9 Modlo monocompartimntal. Administración ndovnosa tipo bolus Tma 9 Índic d contnidos Introducción Ecuacions dl modlo Curvas concntración-timpo Constant d liminación Smivida d liminación Volumn aparnt d

Más detalles

RADIO CRÍTICO DE AISLACIÓN

RADIO CRÍTICO DE AISLACIÓN DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría

Más detalles

MOVIMIENTO CIRCULAR UNIFORMEMENTE RETARDADO

MOVIMIENTO CIRCULAR UNIFORMEMENTE RETARDADO MOVIMIENTO CIRCULAR UNIFORMEMENTE RETARDADO Antonio J. Barbro Mariano Hrnándz Alfonso Calra Pablo Muñiz José A. d Toro Mª Mar Artigao Dpto. Física Aplicada. UCLM. 1 + α θ Mdidas dl cuadrado d la vlocidad

Más detalles

FIZIKA SPANYOL NYELVEN

FIZIKA SPANYOL NYELVEN Fizika spanyol nylvn középszint 08 ÉRETTSÉGI VIZSGA 010. május 18. FIZIKA SPANYOL NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Los xámns

Más detalles

CAPITULO 2. Aplicación de la mecánica cuántica a la resolución de problemas físicos sencillos

CAPITULO 2. Aplicación de la mecánica cuántica a la resolución de problemas físicos sencillos CAPITULO. Aplicación d la mcánica cuántica a la rsolución d problmas físicos sncillos 1) Partícula n un foso d potncial infinito (caja d una dimnsión) I I V() V() V() X l d ( ) + m d d ( ) m + ( E V (

Más detalles

TEMA 11. La integral definida Problemas Resueltos

TEMA 11. La integral definida Problemas Resueltos Matmáticas II (Bachillrato d Cincias) Solucions d los problmas propustos Tma 9 Intgrals dfinidas TEMA La intgral dfinida Problmas Rsultos Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una

Más detalles

tiene por límite L cuando la variable independiente x tiende a x

tiene por límite L cuando la variable independiente x tiende a x UNIDAD (Continuación).- Funcions rals. Límits y continuidad 9. LÍMITES. LÍMITES LATERALES Rcordamos dl año antrior qu una función y f () tin por it L cuando la variabl indpndint tind a, y s notaba por

Más detalles

105 EJERCICIOS de DERIVABILIDAD 2º BACH.

105 EJERCICIOS de DERIVABILIDAD 2º BACH. 105 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

OPCIÓN A. a) Estudiar si A y B tienen inversa y calcularla cuando sea posible (1 punto)

OPCIÓN A. a) Estudiar si A y B tienen inversa y calcularla cuando sea posible (1 punto) San Blas, 4, ntrplanta. 983 30 70 54 OPCIÓN A 4 E.- San A = 3 y B = a) Estudiar si A y B tinn invrsa y calcularla cuando sa posibl ( punto) 0 b) Dtrminar X tal qu AX = B I sindo I = 0 (.5 puntos) a) Una

Más detalles

3.- a) [1,25 puntos] Prueba que f(x) = ex e x

3.- a) [1,25 puntos] Prueba que f(x) = ex e x EXAMEN DE MATEMATICAS II ENSAYO ª (FUNCIONES) Apllidos: Nombr: Curso: º Grupo: A Día: 6-XII-05 CURSO 05-6 Opción A.- a) [,5 puntos] Dmustra qu ln( -3) y -4 son infinitésimos quivalnts n =. b) [,5 puntos]

Más detalles

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.

Más detalles

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÍA DEPARTAMENTO DE CIENCIAS BÁSICAS

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÍA DEPARTAMENTO DE CIENCIAS BÁSICAS NOMBRE DE LA ASIGNATURA FÍSICA TÉRMICA CÓDIGO ASIGNATURA 02112 LABORATORIO No 5 TÍTULO DE LA PRÁCTICA DURACIÓN BIBLIOGRAFÍA SUGERIDA CALORIMETRÍA 2 HORAS. - Sars y Z., Física Univrsitaria, Tomo I, Editorial

Más detalles

Tabla de contenido. Página

Tabla de contenido. Página Tabla d contnido Página Ecuacions d ordn suprior Ecuacions homogénas d sgundo ordn con coficints constants Caso. Raícs rals distintas 6 Caso. Raícs compljas conjugadas 6 Caso. Raícs rals iguals 7 Rsumn

Más detalles

168 Termoquímica y Cinética. Aspectos Teóricos

168 Termoquímica y Cinética. Aspectos Teóricos 168 Trmoquímica y Cinética 3..- Cinética química Aspctos Tóricos Como ya s ha indicado antriormnt, la trmodinámica tin como objtivo conocr n qu condicions una racción s pud producir d forma spontána. Sin

Más detalles

CALCULO INTEGRAL. Ejercicios. 1 a Parte: Diferenciales. Rumbo al examen de recuperación. Faus2016. x 1

CALCULO INTEGRAL. Ejercicios. 1 a Parte: Diferenciales. Rumbo al examen de recuperación. Faus2016. x 1 En los problmas complt la tabla siguint para cada función. d d DIVISION DE INGENIERIA ELECTRONICA.. Rumbo al amn d rcupración a Part: CALCULO INTEGRAL Ejrcicios Difrncials Dfinición. Faus6 Supóngas qu

Más detalles

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos

Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos Análisis Intgral dfinida Matmáticas II TEMA La intgral dfinida Problmas Propustos y Rsultos Intgrals dfinidas Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una primitiva d cada función hay

Más detalles

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto

LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto LÍMITES, CONTINUIDAD, ASÍNTOTAS. LÍMITE DE UNA FUNCIÓN.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f ) = l S l: El it cuando tind a c d f) s l c Significa: l s l valor al qu s aproima

Más detalles

Prof. Jesús Olivar. Resumen de Cálculo II ING. PETRÓLEO

Prof. Jesús Olivar. Resumen de Cálculo II ING. PETRÓLEO Prof. Jsús Olivar Rsumn d Cálculo II ING. PETRÓLEO.- FUNCIÓN PRIMITIVA. INTEGRAL INDEFINIDA. La intgración s la opración invrsa d la drivación. Dada una función f, dirmos qu F s una primitiva suya si F

Más detalles

Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar

Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar M. n C. Víctor Manul Silva García, M. n C. Eduardo Vga

Más detalles

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR CURSO: FISICA SEMANA 3 TEMA: CINEMATICA I V1 V t v v 1 Cinmática Es una part d la mcánica qu s ncarga d studiar única y xclusivamnt l moviminto d los curpos sin considrar las causas qu lo originan. ELEMENTOS

Más detalles

Por sólo citar algunos ejemplos, a continuación se mencionan las aplicaciones más conocidas de la integral:

Por sólo citar algunos ejemplos, a continuación se mencionan las aplicaciones más conocidas de la integral: APLICACIONES DE LA INTEGRAL UNIDAD VI Eistn muchos campos dl conociminto n qu istn aplicacions d la intgral. Por la naturalza d st concpto, pud aplicars tanto n Gomtría, n Física, n Economía incluso n

Más detalles

Escuela de Ingeniería Técnica Civil. Arquitectura Técnica. Materiales II

Escuela de Ingeniería Técnica Civil. Arquitectura Técnica. Materiales II 3.- METALES 06 Durabilidad 1 Introducción La corrosión s la dstrucción d un matrial sólido a causa d fnómnos químicos o lctroquímicos qu sul prsntars n la suprfici dl mtal. En gnral los matrials mtálicos

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

Tema 1. Termodinámica Estadística. Problemas

Tema 1. Termodinámica Estadística. Problemas ma. rmodinámica Estadística Problmas jrcicios E.- S tin un sistma formado por partículas iguals, con 6 nivls nrgéticos no dgnrados. a) Calcular l númro acto d microstados (M) n los trs casos siguints:

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

e 2/x +1 3) (1p) Halla las asíntotas de la siguiente función, estudia su posición relativa y expresa ésta gráficamente: ln f(x)= x+1

e 2/x +1 3) (1p) Halla las asíntotas de la siguiente función, estudia su posición relativa y expresa ésta gráficamente: ln f(x)= x+1 CURSO 7-8. Primra part. d mayo d 8. ) (p) Estudia las discontinuidads d la función: f() / - / + ) (p) Dada la siguint función, s pid: a) La drivada simplificada. b) La cuación d la tangnt d inflión: +

Más detalles

Primer Examen Parcial Tema A Cálculo Vectorial Septiembre 26 de 2017

Primer Examen Parcial Tema A Cálculo Vectorial Septiembre 26 de 2017 Primr Examn Parcial Tma A Cálculo Vctorial Sptimbr 6 d 17 Est s un xamn individual, no s prmit l uso d libros, apunts, calculadoras o cualquir otro mdio lctrónico Rcurd apagar y guardar su tléfono clular

Más detalles

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,

Más detalles

Estas pruebas permiten verificar que la población de la cual proviene una muestra tiene una distribución especificada o supuesta.

Estas pruebas permiten verificar que la población de la cual proviene una muestra tiene una distribución especificada o supuesta. PRUEBAS DE BONDAD DE AJUSTE Estas prubas prmitn vrificar qu la población d la cual provin una mustra tin una distribución spcificada o supusta. Sa X: variabl alatoria poblacional f 0 (x) la distribución

Más detalles

91 EJERCICIOS de DERIVABILIDAD 2º BACH.

91 EJERCICIOS de DERIVABILIDAD 2º BACH. 9 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad:. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

V V V { r r ry [ - r r. José Gutierrez Abascal, Madrid. Tfn (91) FAX (91) Figura 2a. Figural. Figura 2b. ...,1 o...,.

V V V { r r ry [ - r r. José Gutierrez Abascal, Madrid. Tfn (91) FAX (91) Figura 2a. Figural. Figura 2b. ...,1 o...,. APUCACIONDEUNEJERCICIODEPRAcriCASDECALCULODINAMICOALPROYECTODEPUENTES AJarcón, E.; Hurta, M C.; Gómz Lra M- S. Cátdra d Estructuras (E. T.5...). Univrsidad Politécnica d Madrid. José Gutirrz Abascal,.

Más detalles

SOBRE LAS CONSTANTES DE LA FÍSICA

SOBRE LAS CONSTANTES DE LA FÍSICA SOBRE LAS CONSTANTES DE LA FÍSICA En l dsarrollo tmporal d los procsos físicos xistn magnituds, dimnsionals o adimnsionals, qu stando implicadas n llos, s mantinn invariants n l timpo. Son las constants

Más detalles

Rutas críticas para la elaboración del trabajo de titulación en las diferentes modalidades. Planes de estudio 2012

Rutas críticas para la elaboración del trabajo de titulación en las diferentes modalidades. Planes de estudio 2012 Rutas críticas trabajo d titulación n las difrnts modalidads. Ruta Crítica d la Modalidad: Inform d Prácticas Profsionals smana y mdia smana y mdia 2 Smanas Analizar con dtall los documntos normativos

Más detalles

CASO DE ESTUDIO N 3. Aplicaciones de los conceptos de interferencia y termoelasticidad para encajar un eje a un núcleo

CASO DE ESTUDIO N 3. Aplicaciones de los conceptos de interferencia y termoelasticidad para encajar un eje a un núcleo CAPITULO 3 TENSIONES Y DEFORMACIONES. REVISIÓN DE PRINCIPIOS FÍSICOS CASO DE ESTUDIO N 3 Aplicacions d los concptos d intrfrncia y trmolasticidad para ncajar un j a un núclo 1. Introducción En la Figura

Más detalles

98 EJERCICIOS de DERIVABILIDAD 2º BACH.

98 EJERCICIOS de DERIVABILIDAD 2º BACH. 98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

Técnica de grabado químico Graduación profunda en el materia. Contraste perfecto. Resistencia al desgaste y a los productos químicos.

Técnica de grabado químico Graduación profunda en el materia. Contraste perfecto. Resistencia al desgaste y a los productos químicos. Rlas y rltas Rlas y rltas UNA ESPECAA ACOM, UN SAVOR ARE RGUROSO ominio d la fabricación sd 1918, la fabricación d las rltas s raliza n nustras fábricas d rancia. Elcción riurosa d las matrias primas para

Más detalles

Física atómica y nuclear

Física atómica y nuclear Física atómica y nuclar Exprimntos introductorios Carga spcífica dl lctrón LD Hojas d Física Dtrminación d la carga spcífica dl lctrón P6.1.3.1 Objtivos dl xprimnto Estudio d la dsviación d los lctrons

Más detalles