Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015
|
|
- Eugenia Pérez Benítez
- hace 5 años
- Vistas:
Transcripción
1 Colegio Diocesno Sgrdo Corzón de Jesús EJERCICIOS MATEMÁTICAS º ESO VERANO º. Amplific ls siguientes frcciones pr que tods tengn denomindor b c d º. Cuál de ls siguientes frcciones es un frcción mplificd de b c d º. Simplific todo lo que pueds, hst llegr l irreducible, cd un de ls siguientes frcciones b c d 8 8 e 8 º. Simplific por el método del máimo común divisor, y. º. Dds ls dos frcciones siguientes y, Es lgun irreducible Justific tu respuest. º. Busc un frcción equivlente que teng como numerdor un número myor que y otr con denomindor menor que. º. Hll el término que flt pr que los siguientes pres de frcciones sen equivlentes 8 b c d p d y 8º. Escribe un frcción equivlente que cumpl que Su denomindor se. b Su numerdor se. c Su denomindor se.
2 º. Pon el signo <, > o según correspond 8 b e 8 8 c º. Orden de myor menor, reduciéndols previmente igul denomindor, ls siguientes lists de frcciones 8,,, b,,, º. Clcul, plicndo l jerrquí de ls operciones y dndo el resultdo lo más simplificdo posible 8 b 8 c 8 8 d e f 8 g º. Un pintor prepr un mezcl de l siguiente mner por cd litros de pintur blnc ñde de gu. Otro pintor hce l mezcl siguiente por cd litros de pintur ech de gu. Cuál de ls dos mezcls es más concentrd b En un bidón hy litros de un de ests mezcls. Si l hizo el primer pintor, cuántos litros hy de pintur Y si l hizo el segundo º. Entre un viud y sus dos hijos se reprtió, como herenci, un terreno de lbrnz de H. A l señor le correspondieron los / del totl y cd uno de los hijos, / del resto. Cuánts H de terreno le tocron l mdre y cuánts cd hijo b ué frcción de l totlidd obtuvieron cd uno de los chicos c Y entre los dos º. Clcul el vlor de ls siguientes potencis b c d e f g h i j 8 d l
3 m n o p q r s t º. Clcul el vlor de ls siguientes operciones con potencis b c d e f g h i j 8 º. Epres como potenci únic no hce flt clculr su vlor - b c - - d - - e f 8 g h - - i j l m n º. Sen P ;. Clcul P. b P. c ué relción eiste entre los resultdos 8º. Sen P ; ; R. Clcul P b P c R d R P
4 º. Clcul el resultdo de ls siguientes operciones b c d º. Clcul el cociente y el resto de ls divisiones b c d º. Utilizndo l regl de Ruffini, hz ls siguientes divisiones hllndo cociente y resto - - b - c - - d - e - º. Fctorizr los siguientes polinomios f P - - g P h P 8-8- i P j P - -8 P - - º. Resuelve ls siguientes ecuciones b c - d e - - f - - º. Resuelve ls siguientes ecuciones - b c - d - - d - e - -
5 f g - h - i - - º. Resolver ls siguientes ecuciones de segundo grdo 8 b c d 8 e f g h i j l º. Resolver ls siguientes ecuciones de primer grdo con un incógnit f e d c b j i h g m l º. Resolver ls siguientes ecuciones de primer grdo con un incógnit f e d c b
6 j i h g m l 8º. Resuelve estos sistems por el método de sustitución º. Resuelve los siguientes sistems por el método de igulción º. Resuelve los siguientes sistems por el método de reducción º. Resuelve por el método que consideres más decudo º. Clculr un número sbiendo que el doble y el triple de dicho número sumn. º. Si un número le rests se reduce su tercer prte. Clculrlo. º. Clculr un número cuy tercer prte, sumd con su quint prte nos de. º. L sum de tres números consecutivos es 8. Clculrlos.
7 º. Clculr un número cuy mitd es uniddes menor que su triple. º. Si l dinero que tengo hor le ñdier su curt prte y demás euros, tendrí euros. Clculr el dinero que tengo. 8º. L sum del doble de l edd de Luis más ños es igul. Clculr l edd de Luis. º. Un mdre tiene ños y su hijo. Clculr cuántos ños deben trnscurrir pr que l edd de l mdre se el triple de l del hijo. º. Andre tiene ños, su hermno Pco, y su pdre ños. Clculr cuántos ños hn de psr pr que l edd del pdre se l sum de ls eddes de los hijos. º. Un hijo tiene ños menos que su pdre y éste tiene cinco veces l edd del hijo. Clculr l edd que tiene cd uno. º. Un hijo tiene ños menos que su pdre. Dentro de diez ños, l edd del pdre será el doble que l del hijo. Clculr l edd de cd uno.
PENDIENTE MATEMÁTICAS DE 2º ESO CUADERNILLO I
PENDIENTE MATEMÁTICAS DE º ESO CUADERNILLO I Fech de entreg de enero Fech del primer emen de enero NOMBRE CURSO Bloques temáticos Criterios de evlución Ejercicios.- Números enteros. I, II Del l.- Sistem
TEMA 1: ACTIVIDADES Y AUTOEVALUACIONES RESUELTAS
MÓDULO - Ámbito Científico-Tecnológico TEMA : ACTIVIDADES Y AUTOEVALUACIONES RESUELTAS Actividd p.: Clcul el vlor numérico de ls siguientes epresiones lgebrics pr los vlores de ls letrs que se indicn:
EJERCICIOS DE LA ASIGNATURA DE ALGEBRA
EJERCICIOS DE LA ASIGNATURA DE ALGEBRA 1 INTRODUCCION Estimdo estudinte, el prendizje de est rm de l mtemátic, requiere que se dominen completmente los siguientes conocimientos y procedimientos prendidos
Colegio La Inmaculada Misioneras Seculares de Jesús Obrero. TEMA 2: actividades
º E.S.O. TEMA : ctividdes. Sc del rdicndo l myor cntidd posible de fctores: 0 0 0 800.. Epres como rdicl:. Simplific los siguientes rdicles: 8. Ps estos números de notción científic form ordinri:, 0 =,
1 Agrupa aquellos monomios de los que siguen que sean semejantes, y halla su suma: , cuando:
Agrup quellos monomios de los que siguen que sen semejntes, y hll su sum: m, bn y, m, bm, b my, m, n by, mb Son semejntes el º, el º y el º, su sum es: Tmbién lo son el º y el º: bn y 0 Lo mismo ocurre
ACTIVIDADES VERANO 4º ESO opción A a b) 3 2 x. 121x 169y. 8 y. a Expresa en forma de potencia: a) Expresa en forma de radical:
ACTIVIDADES VERANO º ESO opción A 01 NOMBRE: Grupo: 1.- Expres en form de potenci: ) 1 x c) b b.- Expres en form de rdicl: ) = =.- Reduce común índice: ) x,, 8.- Clcul ls siguientes ríces: 1 ) 81 0, 000081.-
OBJETIVOS MÍNIMOS REQUERIDOS
MATEMÁTICAS 0 OBJETIVOS MÍNIMOS REQUERIDOS - Operciones cominds con números enteros. - Potencis ríces cudrds. - Operciones con frcciones. - Operciones con números decimles. - Ecuciones de primer segundo
( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.
Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l
T1 Números. 2. Escribe en forma de inecuaciones o sistemas de inecuaciones e intervalos los números que verifican las desigualdades:
T Números. Escribe en form de intervlos los números que verificn ests desigulddes y represéntlos: ) x < o x 6 x > y x < 6 x - y x > x < o x -. Escribe en form de inecuciones o sistems de inecuciones e
a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1.
1) NÚMEROS NATURALES Son números que sirven pr contr. Descomposición polinómic de un número. Ej : 1.34.567 1: Uniddes de millón : Centens de millr 3: Decens de millr 4: Uniddes de millr 5: Centens 6: Decens
Cálculo del valor decimal de una fracción Para obtener el valor de una fracción se divide el numerador entre el denominador. 2 5
LECCIÓN : FRACCIONES.- QUÉ ES UNA FRACCIÓN? UNA FRACCIÓN ES...... L epresión un prte un cntidd enter. Términos un frcción: DENOMINADOR: Es el número que se coloc bjo l r frcción e indic el número totl
c Ejemplo: 25 9x 2 = 0 x
1.- ECUACIONES POLINÓMICAS Ecuciones de º grdo Son ecuciones donde l incógnit está elevd. Ecuciones de º grdo complets Son del tipo x + bx + c = 0, con b, c 0. Pr resolverls usmos l fórmul b b 4c x L expresión
3. Resuelve y simplifica: 6. Resuelve y simplifica: Nombre y apellidos : Materia: MATEMATICAS (PENDIENTES) Curso: 2º ESO.
Nombre y pellidos : Mteri: MATEMATICAS PENDIENTES) Curso: º ESO ª entreg Fech: INSTRUCCIONES: Pr est primer entreg deberás trbjr losejercicios del l que quí te djuntmos pr ello debes yudrte de tu cuderno
MATEMATICAS 3º ESO EJERCICIOS DE RECUPERACION DE LA 1ª EVALUACION
MATEMATICAS º ESO EJERCICIOS DE RECUPERACION DE LA 1ª EVALUACION FRACCIONES Ejercicio 1: resuelve l siguiente operción psndo cd número deciml frcción previmente: ' '1'6 '1 0'15 Ejercicio : simplific ls
POTENCIAS Y LOGARITMOS DE NÚMEROS REALES
www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (
3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8
POTENCIAS. Hll sin clculdor +.. Simplific utilizndo ls propieddes de ls potencis: b c ) 0 b c. Epres los siguientes rdicles medinte potencis de eponente frccionrio y simplific: ). Resuelve sin utilizr
Unidad 1: Números reales.
Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y
Matemáticas Unidad: Las Fracciones
Mtemátics Unidd: Ls Frcciones Ejercicio nº 1.- Escribe, en cd cso, l frcción del todo que corresponde l prte indicd: De un docen de huevos se hn roto. Qué frcción se h roto? b En un urbnizción se hn construido
UNIDAD I FUNDAMENTOS BÁSICOS
Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Myo de 2015 Operciones Básics con Frcciones Número
TEMA 3: Polinomios y fracciones algebraicas. Tema 3: Polinomios y fracciones algebraicas 1
TEMA Polinomios y frcciones lgerics Tem Polinomios y frcciones lgerics ESQUEMA DE LA UNIDAD.- Operciones con polinomios...- Sum y rest de polinomios...- Producto de polinomios...- División de polinomios..-
el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES
el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,
I.E.S. El Burgo de Las Rozas
I.E.S. El Burgo de Ls Rozs NÚMEROS ENTEROS Y FRACCIONES. Clcul ) [ ( ) ] ( ) [ + (+)]( ) + ( )( ) c) ( ) ( ) ( ) d) [ ( + ( + ( ))) + ] e) ( ) ( ) ( ) f) ( + ) [ + ( ) ( ) + ] g) [ ( 0) ] h) ( + ) [ (
6 7 8 DESEA PEDIR REPUESTAS DE ESTA GUÍA? LLAME l 099 y 009 o escribe l mil cesrlf007@hotmil.com Bs 000 Operciones Combinds en Q ) 8 8 ) ) 0 7 ) 6 ) 0 9 6) 8 9 7) ( ) 0 8 8 8) 9) 8 0) 7 Ecuciones ) - =
MATEMÁTICAS B Curso º de E.S.O
MATEMÁTICAS B Curso - º de E.S.O Cálculo de proiliddes Estdístic L Dirección Generl de tráfico h recogido l siguiente informción reltiv l número de mults diris impuests por eceso de velocidd en cierto
TEMA 0: CONCEPTOS BÁSICOS.
TEMA : CONCEPTOS BÁSICOS.. Intervlos:. Intervlos. 2. Propieddes de ls potencis.. Propieddes de los rdicles. Operciones con rdicles. Rcionlizción. 4. Conceptos de un polinomio. Fctorizción de polinomios..
NÚMEROS REALES 1º Bachillerato CC. SS.
Números Reles NÚMEROS REALES 1º Bchillerto CC. SS. Reles R Irrcionles I Enteros Rcionles Z Q Nturles Nturles N 1,,,... EnterosZ, 1, 0, 1,... Rcionles Q 7,, 6'... 5 N Irrcionles I π,, 7'114... Números Reles
56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado
56 CAPÍTULO. CÁLCULO ALGEBRAICO SECCIÓN.4 Resolución de Ecuciones de Segundo Grdo Introducción Hemos estudido cómo resolver ecuciones lineles, que son quells que podemos escribir de l form x + b = 0. Si
Potencias y radicales
Potencis y rdicles. Rdicles Definición Llmmos ríz n-ésim de un número ddo l número que elevdo n nos d. por ser n n Un rdicl es equivlente un potenci de eponente frccionrio en l que el denomindor de l frcción
Apellidos: Nombre: Curso: 1º Grupo: C Día: 10 - XI- 14 CURSO Resuelve las siguientes ecuaciones y comprueba las soluciones obtenidas:
EXAMEN DE MATEMÁTICAS ALGEBRA Apellidos: Nombre: Curso: º Grupo: C Dí: - XI- 4 CURSO 4-5. Hll el vlor de log log ), 4 log log b) log4 6 -log -log log 7 4 6. Clcul x pr que se cumpl: ) log 6,45,5 b) 5 +,58.
TEMA 1. NÚMEROS REALES
TEMA. NÚMEROS REALES. El número que indic los dís del ño es un número muy curioso. Es el único número que es sum de los cudrdos de tres números nturles consecutivos y que demás es sum de los cudrdos de
Los números enteros y racionales
Los números enteros y rcionles Objetivos En est quincen prenderás : Representr y ordenr números enteros Operr con números enteros Aplicr los conceptos reltivos los números enteros en problems reles Reconocer
1Soluciones a los ejercicios y problemas
Soluciones los ejercicios y problems ) 8 : 8 ) 8 8 : ) 8 8 : Pág PÁGINA 8 Clcul y comprueb con l clculdor ) ) : : ) ) ) 8 [ 0 )] ) ) : ) [ 0 ] : : 0 88 8 ) ) ) 8 [ ) 0) : ) ] : ) 8 8 Reduce un frcción
TEMA 3: ECUACIONES ECUACIONES DE 2º GRADO Las ecuaciones de 2º grado son de la forma ax 2 +bx+c=0 y su solución es:
TEMA : ECUACIONES ECUACIONES DE º GRADO Ls ecuciones de º grdo son de l form +b+c=0 y su solución es: b b 4c Cundo b=o o c=0 son incomplets y se resuelven de l siguiente form. Cso b=0, por ejemplo: 6 7=0
RECUPERACIÓN DE MATEMÁTICAS 1ª EVALUACIÓN. 4º DE ESO
RECUPERACIÓN DE MATEMÁTICAS ª EVALUACIÓN. 4º DE ESO TEMA ª.- Nos dicen que l medid de un cmpo de form rectngulr es de 4,6 m de lrgo por 8,4 m de ncho. Sin embrgo, no estmos seguros de que ls cifrs decimles
I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez
Polinomios Operciones Regl de Ruffini Ríces o ceros Descomposición Frcciones lgebrics Ecuciones rcionles Repso de polinomios Ejercicios Ddos los polinomios P(, Q( R( clculr: P( Q( Q( R( P( Q( R( d P( Q
IES CINCO VILLAS TEMA 8 ALGEBRA Página 1
SOLUCIONES MÍNIMOS CURSO º ESO TEMA 8 ALGEBRA Ejercicio nº.- Epres de form lgeric los siguientes enuncidos mtemáticos: ) El triple de sumr siete un número, n. El número siguiente l número nturl. c) El
3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m
LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener
IES Fernando de Herrera Curso 2012 / 13 Primer trimestre 4º ESO 16 de octubre de 2012 Números reales. Potencias y radicales NOMBRE:
IES Fernndo de Herrer Curso 01 / 1 Primer trimestre º ESO 16 de octubre de 01 Números reles. Potencis rdicles NOMBRE: 1) ) Representr en un mism rect rel: 1 9 1/ 0 1 Decir qué números representn b: 0 1
TEMA 3: Expresiones algebraicas. Polinomios. Tema 3: Expresiones algebraicas. Polinomios 1
TEMA Epresiones lgerics. Polinomios Tem Epresiones lgerics. Polinomios ESQUEMA DE LA UNIDAD.- Operciones con polinomios...- Sum rest de polinomios...- Producto de polinomios...- Potenci de polinomios..-
a) Decimales finitos: Corresponden a los cuocientes exactos entre el numerador y el denominador. Ejemplo: : 8 = (b)
Clse-06 Números rcionles expresdos en form deciml: Todo número rcionl con b 0 se puede trnsformr form deciml l dividir b el numerdor por su denomindor. En form deciml los siguientes rcionles quedn escritos
NÚMEROS RACIONALES. Los números racionales son todos aquellos números de la forma b
NÚMEROS RACIONALES Los números rcionles son todos quellos números de l form b con y b números enteros y b distinto de cero. El conjunto de los números rcionles se represent por l letr Q. IGUALDAD ENTRE
1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN
http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el
IES Fernando de Herrera Curso 2012/13 Global 1ª evaluación 4º ESO 28 de noviembre de 2012 NOMBRE
IES Fernndo de Herrer Curso 01/1 Globl 1ª evlución º ESO 8 de noviembre de 01 NOMBRE 1) Simplificr ls siguientes expresiones, rcionlindo el denomindor, en su cso: ( 1) ( ) ) ( puntos) 19 0 ( ) b) 8 c)
EJERCICIOS DE VERANO DE MATEMÁTICAS
EJERCICIOS DE VERANO DE MATEMÁTICAS º E.S.O. ES OBLIGATORIA LA RESOLUCIÓN COMPLETA DE CADA EJERCICIO PLANTEAMIENTO, DESARROLLO Y SOLUCIÓN DE FORMA CLARA Y CONCISA NÚMEROS. Reliz ls siguientes operciones
IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE:
IES Fernndo de Herrer de octure de 0 Primer trimestre - Primer exmen 4º ESO NOMBRE: ) Nomrr los principles conjuntos numéricos, explicitndo cuáles son sus elementos y ls relciones de inclusión entre ellos
Ejercicios. Números enteros, fraccionarios e irracionales.
CEPA Enrique Tierno Glván. Ámbito Científico-Tecnológico. Nivel Ejercicios. Números enteros frccionrios e irrcionles. Números enteros. Represent en l rect rel los siguientes números enteros - 0 - -. Qué
DIVERSIFICACIÓN CURRICULAR
ECUACIÓN DE PRIMER GRADO Se llmn ecuciones igulddes en ls que precen número y letrs (incógnits) relciondos medinte operciones mtemátics. Por ejemplo: - y = + Son ecuciones con un incógnit cundo prece un
En general, si. son números racionales, la suma es un número racional.
... SUMA DE FRACCIONES. Al relizr sums con números rcionles encontrmos csos muy específicos, como son los siguientes: Sum de números rcionles con el mismo denomindor. Pr resolver este tipo de ejercicios
Tema 1: Números reales.
Tem : Números reles. Ejercicio. Representr los siguientes conjuntos numéricos: ) Números myores que. b) x / x c) x / x x d) Números menores que excluyendo el 0. e) / x x / x x / x ) (, ) b) [,) 0 c) [,]
IES Capellanía 4º ESOB Departamento de Matemáticas. Alumno: Ejercicios Temas 1 y 2: Números Reales. Potencias y Radicales
IES Cpellní º ESOB Deprtmento de Mtemátics Alumno: Efectú el cociente Ejercicios Tems y : Números Reles Potencis y Rdicles,,0, 0, psndo frcciones genertrices Represent en l rect rel, utilizndo el teorem
UNIDAD I FUNDAMENTOS BÁSICOS
Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Septiembre de 2015 Conjuntos Numéricos ) Los Números
REPASO DE ECUACIONES (4º ESO)
TIPOS DE ECUACIONES.- REPASO DE ECUACIONES ( ESO) Eisten diversos tipos de ecuciones, entre ells estudiremos: Polinómics: En ells, l incógnit prece solmente en epresiones polinómics. El grdo de un ecución
Ejercicios de Fracciones
Ejercicios de Frcciones Reduce común denomindor orden de menor mor ls frcciones siguientes Efectú simplific ls siguientes epresiones 0 c d e f 0 En el instituto / de los lumnos eligen Tller de Mtemátics
Inecuaciones con valor absoluto
Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor
Ecuaciones de 1 er y 2º grado
Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones
OPERACIONES CON FRACIONES
LEY DE SIGNOS OPERACIONES CON FRACIONES SUMA Y RESTA: Si se sumn dos números con el mismo signo, se sumn los vlores solutos y se coloc el signo común (+) + (+) = + 8 (-) + (-) = - 8 Si se sumn dos números
Operaciones. a a a a Ejercicios y Problemas de Matemáticas de 1º a 3º de ESO. 3.
74 Ejercicios y Problems de Mtemátics de 1º 3º de ESO 3. Tercero de ESO 3.1. Números, medids y operciones 3.1.1. Operciones 1. Reduce ls expresiones siguientes un sol potenci: ) 3 6 - -1 5-3 -3 3-3 3 3
MATEMÁTICAS ORIENTADAS A LAS ENSEÑANZAS ACADÉMICAS 4º E.S.O.
4º E.S.O. UNIDAD 1: LOS NÚMEROS REALES Ejercicio nº 1.- ) Escribe en form de intervlo, di su nombre y represent en cd cso:.1) { R / x 4}.) { R / < x } x (0.5 puntos) x (0.5 puntos) b) Escribe en form de
TEMA 1. LOS NÚMEROS REALES.
TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones
4 FRACCIONES INTRODUCCIÓN A LAS FRACCIOES. FRACCIONES EQUIVALENTES COMPARACIÓN DE FRACCIONES. REDUCCIÓN A COMÚN DENOMINADOR
FRACCIONES..- INTRODUCCIÓN A LAS FRACCIOES. FRACCIONES EQUIVALENTES...- COMPARACIÓN DE FRACCIONES. REDUCCIÓN A COMÚN DENOMINADOR..- OPERACIONES CON FRACCIONES (I)..- OPERACIONES CON FRACCIONES (II)..-
2 cuando a y b toman los valores 2 y -1,
COLEGIO PEDAGÓGICO DE LOS ANDES TALLER DE NIVELACIÓN DE MATEMÁTICAS SEGUNDO PERIODO GRADO OCTAVO ALGEBRA...- - LLeenngguuj jjee l llggee ri r iiccoo El lenguje numérico sirve pr epresr operciones en ls
1. Definición. Formas de definir una sucesión.
. Definición. Forms de definir un sucesión. Un sucesión es un plicción que nos relcion los números nturles con un conjunto, de form que orden los elementos de tl conjunto. Ejemplos:. : selección espñol
( 3) 5.3.(3 1 ) 3 (18) ACTIVIDADES 3º ESO MATEMÁTICAS APLICADAS SEPTIEMBRE 2018 CEO PANCHO GUERRA CURSO NOMBRE Y APELLIDOS:
ACTIVIDADES º ESO MATEMÁTICAS APLICADAS SEPTIEMBRE 8 CEO PANCHO GUERRA CURSO 8 NOMBRE Y APELLIDOS: INSTRUCCIONES: Relizr ls ctividdes en el orden indicdo Entregrls en hojs numerds en fund de plástico Cd
Unidad 2. Fracciones y decimales
Mtemátics Múltiplo.º ESO / Resumen Unidd Unidd. Frcciones y decimles FRACCIONES NÚMEROS DECIMALES EXPRESIÓN, 8, 9 SIGNIFICADO FRACCIONES EQUIVALENTES 0 30 0 0 Prte de un unidd Prte de un cntidd ORDENACIÓN
PROGRESIONES ARITMETICAS
PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00
IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE:
IES Fernndo de Herrer de octure de 0 Primer trimestre - Primer emen 4º ESO NOMBRE: ) Nomrr los principles conjuntos numéricos, eplicitndo cuáles son sus elementos y ls relciones de inclusión entre ellos
Desarrollos para planteamientos de ecuaciones de primer grado
1) Hllr un número tl que su triple menos 5 se igul su doble más 2. 5= 2 + 2 2= 2+ 5 = 7 2) El triple de un número es igul l quíntuplo del mismo menos 20. Cuál es este número? = 5 20 20 = 5 20 = 2 = 10
Ejercicios. 1.- Simplificar: a) Calcular: x x. x x. x x. 2 e) 2 f)
80 Ejercicios.- Siplificr: ) f).- Clculr: ) 0 .7 Práctico: Epresiones Algebrics Ejercicio : Epresr con un onoio el áre de l prte sobred. Ejercicio : ) Verificr que el áre del trpecio de l figur es A =.
Tema: Polinomios y fracciones algebraicas
Polinomios frcciones lgerics Ejercicios resueltos en los videos: www.josejime.com/videosdemtemtics Ejercicios pr cs resueltos en http://cursosieslsuncion.edu.gv.es/moodle Tem: Polinomios frcciones lgerics.
Matemáticas 3º ESO Fernando Barroso Lorenzo POLINOMIOS Y FACTORIZACIÓN POLINÓMICA
Mtemátics º ESO Fernndo Brroso Lorenzo POLINOMIOS Y FACTORIZACIÓN POLINÓMICA. En cd cso escribe un polinomio que cumpl ls condiciones que se indicn. Con grdo coeficientes enteros. Trinomio de grdo sin
DESIGUALDADES < d < En el campo de los números reales tenemos una. Un momento de reflexión muestra que una
DESIGUALDADES 7 60 < d < 7 70 En el cmpo de los números reles tenemos un propiedd de orden que se costumbr designr con el símbolo (
Tema9. Sucesiones. Tema 9. Sucesiones.
Tem 9. Sucesiones.. Definición. Forms de definir un sucesión.. Progresión ritmétic... Definición.. Sum progresión ritmétic. Progresión geométric... Definición.. Sum finit de progresión geométric... Sum
Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( )
Concepto clve L derivd de un función se define principlmente de dos mners: 1. Como el límite del cociente de Fermt f ( ) lím x f ( x) f ( ) x. Como el límite del cociente de incrementos f ( x) lím x 0
RESUMEN 01 NÚMEROS. Nombre : Curso. Profesor :
RESUMEN 01 NÚMEROS Nomre : Curso : Profesor : PÁGINA 1 Números Los elementos del conjunto N = {1, 2, 3, 4, 5, } se denominn Números Nturles. Los Números Crdinles corresponden l unión del conjunto de los
TEMA 1. LOS NÚMEROS REALES
TEMA. LOS NÚMEROS REALES. Operciones con números nturles. Los números nturles son los que se utilizn pr contr 0,,,,,, Con los números nturles podemos relizr diferentes operciones, como - Sum + = 8 - Rest
Problemas Tema 2 Solución a problemas de Complejos - Hoja 2- Todos resueltos
Problems Tem 3: Solución problems de Complejos - Hoj - Todos resueltos págin 1/9 Problems Tem Solución problems de Complejos - Hoj - Todos resueltos Hoj. Problem 1 Resuelto por Cristin Pérez (diciembre
DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO SEPTIEMBRE. A los padres del alumno/a de 4º de la ESO
DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO SEPTIEMBRE A los pdres del lumno/ de º de l ESO Puesto que su hijo no h superdo los objetivos de º de l ESO en el áre de Mtemátics A, es necesrio que repse los
pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.
LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 + + + + 4 4 n n + es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de
1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de
Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo
La raíz cuadrada de un número es otro nº que al elevarlo al cuadrado nos da el radicando La raíz cuadrado de 9 es 3. Pues 3 2 es
Curso 1/1 Mtemátics L ríz es l oerción contrri l otenci. c c L ríz cudrd de un número es otro nº que l elevrlo l cudrdo nos d el rdicndo. 9 L ríz cudrdo de 9 es. Pues es 9 9 L ríz cudrd de culquier nº
0, , , , ,9 9
UNIDAD 1: Los números reles EJERCICIOS Y ACTIVIDADES-PÁG. 1 1. Expres como deciml ls siguientes frcciones y clsific los números decimles obtenidos: 5 0, 71485 es un periódico puro. 7 5 1, 6 es un deciml
Ecuaciones de Segundo Grado II
Alumno: Fech:. ECUACIONES DE SEGUNDO GRADO II Ecuciones de Segundo Grdo II Nturlez de Ríces depende = b - 4c Discriminnte si Propieddes de ls Ríces sum b x x producto c x. x Formción de l Ecución se debe
Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3
Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd
Polinomios. 68 Ejercicios para practicar con soluciones. 1 Efectúa las siguientes divisiones usando la Regla de Ruffini. Cuál es exacta?
Polinomios Ejercicios pr prcticr con soluciones Efectú ls siguientes divisiones usndo l Regl de Ruffini Cuál es ect? ( ) : ( ) ( ) : ( ) ( ) : ( ) c() = c() = c() = r() = r() = r() = 0 ect Efectú ls siguientes
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. ACTIVIDADES PARA EL VERANO.
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I ACTIVIDADES PARA EL VERANO MATEMÁTICAS º BHCS IES EL BOHÍO EJERCICIOS Y PROBLEMAS DE APOYO ª EVALUACIÓN - Eectúe Sol -9/ - Eectúe 9 7 8 6 Sol - Eectúe 8
TEMA 1 EL NÚMERO REAL
Tem El número rel Ejercicios resueltos Mtemátics B º ESO TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN DE NÚMEROS REALES EJERCICIO : Clsific los siguientes números como 0 ; ;,...; 7; ; ; ; 7, = 0,8
Números Naturales. Los números enteros
Números Nturles Con los números nturles contmos los elementos de un conjunto (número crdinl). O bien expresmos l posición u orden que ocup un elemento en un conjunto (ordinl). El conjunto de los números
pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.
LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 4 n 4 n es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de un sucesión
DISTINGUIR E IDENTIFICAR ECUACIONES E IDENTIDADES
REPASO Y APOYO OBJETIVO DISTINGUIR E IDENTIFICAR ECUACIONES E IDENTIDADES IDENTIDADES Y ECUACIONES Un iguldd lgebric está formd por dos expresiones lgebrics seprds por el signo igul (=). Un identidd es
2 Números reales: la recta real
Unidd. Números reles ls Enseñnzs Aplicds Números reles: l rect rel Págin. ) Justific que el punto representdo es. 0 Represent 7 (7 ) y 0 (0 + ). ) Aplicndo Pitágors: x x + x + x x 0 7 7 0 0 7 0 0 7. Qué
Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio
NUMEROS IRRACIONALES Conocemos hst hor distintos conjuntos numéricos: - Los n nturles: (, 8,.978), representdos por l letr N - Los n enteros: ( -, -, 8, 68), representdos por l letr Z - Los n rcionles
SELECTIVIDAD DETERMINANTES
SELECTIVIDAD DETERMINANTES Junio 8: Dds ls mtrices A = 5, B = y M = b, clcúlese y b pr que se verifiquen MA =, M + B =, donde se está usndo l notción hbitul (con brrs verticles) pr denotr l determinnte
Números racionales son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresar en forma de fracción.
MATEMÁTICAS ºACT TEMA. EL NÚMERO REAL. NÚMEROS RACIONALES. Números rcionles son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresr en form de frcción. Los números
COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti
COLEGIO SAN FRANCISCO DE SALES - 0 - Prof. Cecili Glimerti MATEMÁTICA AÑO B GUÍA N - NÚMEROS IRRACIONALES NUMEROS IRRACIONALES Conocemos hst hor distintos Conjuntos Numéricos: - Los n nturles: (, 8,.8),
UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta
DEPARTAMENTO DE INGENIERÍA ELÉCTRICA ENERGÉTICA NÚMEROS COMPLEJOS Miguel Angel Rodríguez Pozuet Doctor Ingeniero Industril OBSERVACIONES SOBRE LA NOMENCLATURA En este teto, siguiendo l nomencltur hitul
Tema 4: Polinomios. c) x 4 5x 3 + 5x 2 + 5x 6 = 0. d) 3x 3 10x 2 + 9x 2 = 0. e) x 5 16x = 0. f) x 3 3x 2 + 2x = 0. g) x 3 x 2 + 4x 4 = 0
Tem 4 Polinomios. Ejercicio Demuestr que el resto l dividir P entre es precismente P Pist l demostrción es muy precid l de lgún teorem visto en clse. Ejercicio Si P = 5 y Q = + clcul P+Q,PQ y P Q Ejercicio