CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES
|
|
- Claudia Ortíz Benítez
- hace 7 años
- Vistas:
Transcripción
1 Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques. Este tipo de digrms emple tres símolos: Bloque Sirve pr representr un sistem l que lleg informción (vrile de entrd) en el que se produce informción (vrile de slid). Se lo identific con un letr Múscul que d el vlor del loque. Señl Representtiv de vriles de entrd o slid. L dirección del flujo de informción viene ddo por el sentido de l flech. Se crcteriz con un letr minúscul. Sumdor Elemento que sirve pr cominr dos señles de entrd generndo un slid que es su sum (o rest) Operciones elementles Dos son ls operciones elementles definids pr los Digrms en loque. Un l que define l función del loque que se esquemtiz como sigue: L vrile de entrd es '', perfectmente individulizd por l dirección de l flech. L vrile de slid es '' l relción mtemátics entre ms es:
2 = Se quiere poner de mnifiesto un relción cus-efecto. L vrile de entrd '' influe (cus) en el sistem determindo por el loque que gener un vrile de slid (efecto). Est vrile de slid es l consecuenci de l entrd '' de l nturlez del sistem ''. Cd loque tiene un sol entrd un sol slid. L cominción de señles se hce trvés del sumdor l que ingresn dos señles de entrd de l que result un slid, l sum (o rest) de ls entrds: c c ( - ) c = + c = Cundo un de ls señles se rest, dee indicrse explícitmente en l proximidd del sumdor con el signo '(-)'. Tod l representción de un sistem físico en el que existen diversos susistems en que se relcionn diverss vriles se dee descriir con estos tres elementos. A modo de ejemplo consideremos un tnque gitdo continuo l que ingres un corriente F 1 sle un corriente F 2. Medinte un flujo de vpor W que condens en un serpentín se trnsfiere clor hciendo que l corriente que ingres l tempertur T 1 slg un mor T 2. F 1 T 1 F 2 T 2 W Tv VAPOR CONDENSADO H diverss vriles de entrd. Considérese T 1 W (se supone que solo ésts cmin). Deido l cmio de ests entrds, l tempertur T 2 cmirá. Se oserv l cción de dos cuss (vriles de entrd) el efecto sore un vrile de slid T 2 trvés de un sistem que en este cso es el tnque. Pr representr est relción entrd-slid (cus-efecto) se puede empler el siguiente Digrm en Bloques:
3 T 1 W T 2 que mtemáticmente se puede expresr como: Slid = ( Bloque 1) entrd 1 +( Bloque 2) entrd 2 T2 = 1T1 + 2W que puede interpretrse de l siguiente form T 2 cmi como resultdo de l influenci de cmios en T 1 (un de ls entrds) trvés del loque lo que se le dee sumr l influenci de l otr vrile de entrd W que produce cmios en l slid trvés del loque. Tnto como representn l influenci del sistem (en este cso el tnque con clefcción) sore l vrile de slid, pero cd un consider l influenci de un vrile de entrd L representción con Digrms en Bloques sirve exclusivmente pr sistems lineles, es decir pr quellos en los que l influenci de diverss vriles de entrd resultn igul l sum de ls influencis individules. No ostnte esto, se puede extender este nálisis sistems no lineles. Ls ventjs de est representción es que result fácil formr el digrm en loques glol de todo el sistem, colocndo simplemente los loques de sus componentes de cuerdo con el flujo de señles. De est form es posile evlur l contriución de cd componente l comportmiento generl de todo el sistem. El funcionmiento de un sistem se puede ver más fácilmente exminndo el digrm de loques, que nlizndo el sistem físico en sí. Un digrm de loques contiene informción respecto l comportmiento dinámico, pero no de l constitución físic del sistem. En consecuenci, muchos sistems distintos, sin relción lgun entre ellos, pueden estr representdos por el mismo digrm de loques. Álger elementl de loques Los digrms en loques representdos por muchos loques señles intermedis pueden simplificrse en un solo loque cuo vlor es un función de los loques individules pero no de ls señles intermedis. Pr simplificr digrms mu complejos se pueden empler ls tres regls elementles ( tod otr que se deduzc prtir de ells) que se presentn en l Tl siguiente.
4 Bloques en Serie c c = c= c= = 1 2 Bloques en Prlelo = 2 = 2 = =( 1 + 2) = 1 1 Relimentción x (±) F H x = + x= = x = H = = 1-H F = = 1+H F Emplendo ests regls se puede simplificr digrms integrdos por diversos elementos hst llegr un representción mínim. A modo de ejemplo, se puede considerr el digrm siguiente (mu difundido en Control de Procesos) que const de 4 loques 2 sumdores. Se pretende encontrr l relción entre "r" (entrd) e "" (slid) trvés de un un solo loque equivlente.
5 r (-) 3 H Considerndo los loques en serie, 3 qued: r (-) 3 H resolviendo l relimentción: r H o expresdo en términos de ecuciones: = H r Esto nos refiere l conocid "Regl de Mson" que dice que cundo existe un lzo de relimentción, l trnsferenci entre l entrd l slid es igul l producto de tods ls trnsferencis en el cmino directo entrd-slid dividido en 1 más el producto de tods ls trnsferencis incluids en el circuito de relimentción (o 1 menos si l relimentción es positiv). Ejemplo de plicción de reducción de un Digrm en Bloques Considere el ejemplo de l figur que corresponde un estrtegi de control utomático, Avncción (feedforwrd) pur.
6 Pr encontrr l relción entre entrds slids se dee ir reduciendo el digrm en form sucesiv hst llegr l expresión gráfic más simple plicndo ls regls nteriores. En primer término, se sepr los cminos en prlelo: Considerndo ls dos entrds pr l únic slid:
7 Reducción de un Digrm en Bloques complejo Un estrtegi de control mu difundid es el Control en Cscd. Un ejemplo se puede ver en l figur siguiente: Existen dos relimentciones nidds son tres ls entrds considerr: Tc, L 1 L 2, mientrs que l slid es T. Pso 1: Pso 2
8
9 Pso 3 Pso 4 Pso 5
10 Pso 6 Deido l lzo de relimentción negtiv, en el denomindor dee precer: Pso 7
11 De modo que los loques equivlentes resultn Representción de ecuciones diferenciles Un posiilidd interesnte es que ls ecuciones diferenciles ordinris lineles pueden ser propidmente representds con Digrms en Boques. Esto permite entender los mecnismos internos de sistems cuo comportmiento viene descripto por un o más ecuciones diferenciles. Como ejemplo se puede considerr l siguiente ecución: x Ax B d = dt Lo primero es dejr estlecido cuáles son vriles de entrd cuáles de slid. Colocr l izquierd tods ls entrds, dejndo l derech l(s) slid(s). En el ejemplo, entrds (x 1, x 2 ), slid. Asumiendo que A, B son constntes: x 1 A (-) 1 B z x 2 El signo signific que l vrile intermedi z l ser integrd en el tiempo result l slid. Efectivmente, si l ecución diferencil nterior l reescriimos, z serí: x1 + Ax2 d = z = zdt B dt = que es lo que se esquemtizó en el Digrm en Bloques.
Sumador Elemento que sirve para combinar dos señales de entrada generando una salida que es su suma (o resta)
Digms en Bloques Un sistem de ontol puede onst de iet ntidd de omponentes. P most ls funiones que eliz d omponente se ostum us epesentiones esquemátis denominds Digm en Bloques. Este tipo de digms emple
Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica
Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel
1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre
Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff.
Resolución de circuitos complejos de corriente continu: Leyes de Kirchhoff. Jun P. Cmpillo Nicolás 4 de diciemre de 2013 1. Leyes de Kirchhoff. Algunos circuitos de corriente continu están formdos por
Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).
64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls
8 - Ecuación de Dirichlet.
Ecuciones Diferenciles de Orden Superior Prte V III Integrl de Dirichle t Ing. Rmón scl Prof esor Titulr de nálisi s de Señles Sistems Teorí de los Circuit os I I en l UTN, Fcultd Regionl vellned uenos
Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3
Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd
CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE
CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS
Álgebra de Boole y circuitos con puertas lógicas
Tem 3 Álger de Boole y circuitos con puerts lógics Los circuitos que componen un computdor son muy diversos: los hy destindos portr l energí necesri pr ls distints prtes que componen l máquin y los hy
Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales
Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles
Sistemas. Señales que transportan. Transformación. Temas a tratar. Podemos ver el mundo como. Objetivos. Definición...
2 Tems trtr Sistems Definición de sistem. Propieddes y Clsificción de sistems. Sistems lineles e invrintes en el tiempo (LTI). Ecuciones en diferencis. Digrms de bloques. 3 Objetivos Podemos ver el mundo
PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO
PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este
MÉTODO DE KARNAUGH MÉTODO DE KARNAUGH... 1
MÉTODO DE KARNAUGH Jesús Pizrro Peláez MÉTODO DE KARNAUGH... 1 1. INTRODUCCIÓN... 1 2. MÉTODO DE KARNAUGH... 2 3. EJEMPLO DE APLICACIÓN (I)... 4 4. ESTADOS NO IMPORTA EN LAS FUNCIONES LÓGICAS... 6 5. EJEMPLO
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus
Inecuaciones con valor absoluto
Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor
3 HERRAMIENTAS DE MATEMÁTICAS
HERRAMIENAS DE MAEMÁICAS Entre ls operciones mtemátics más comunes se encuentrn: Sum, Rest, Multiplicción, División, Elevción Potencis Etrcción de Ríces, que se indicn con los signos siguientes: -El signo
GUIA DE MATEMATICA. Coeficiente numérico. Es toda combinación de números y letras ligados por los signos de las operaciones aritméticas.
www.colegiosntcruzrioueno.cl Deprtmento de Mtemátic GUIA DE MATEMATICA Unidd: Álger en R Contenidos: - Conceptos lgericos ásicos - Operciones con epresiones lgerics - Vlorción de epresiones lgerics - Notción
Integrales impropias
Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección
Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz
Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr
TEMA 5: ELECTRÓNICA DIGITAL
Deprtmento de Tecnologí. IE Ntr. r. de l Almuden. Mª Jesús iz TEMA 5: ELECTRÓNICA DIGITAL L electrónic se divide en dos grupos: electrónic nlógic y electrónic digitl. En l electrónic nlógic los vlores
Facultad de Informática Universidad Complutense de Madrid PROBLEMAS DE FUNDAMENTOS DE COMPUTADORES TEMA 5. Problemas básicos:
Fcultd de Informátic Universidd Complutense de Mdrid Prolems ásicos: PROBLEMAS DE FUNDAMENTOS DE COMPUTADORES TEMA 5 1. Especifique como máquin de Moore un sistem secuencil cuy slid z se comport, en función
AUTOMATAS FINITOS Traductores
Universidd de Morón Lengujes Formles y Autómts AUTOMATAS FINITOS Trductores AUTOMATAS FINITOS Un utómt finito es un modelo mtemático que posee entrds y slids. Un utomát finito recie los elementos tester
La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.
INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.
7. Integrales Impropias
Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Bsdo en el punte del curso Cálculo (2d semestre), de Roerto Cominetti, Mrtín Mtml y Jorge
2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR
1. INTRODUCCIÓN CÁLCULO VECTORIAL Mgnitud: Es todo quello que se puede medir eperimentlmente. Ls mgnitudes físics se clsificn en esclres ectoriles. Mgnitud esclr: Es quell que iene perfectmente definid
Relación entre el cálculo integral y el cálculo diferencial.
Relción entre el cálculo integrl y el cálculo diferencil. Por: Miguel Solís Esquinc Profesor de tiempo completo Universidd Autónom de Chips En est sección presentmos l relción que gurdn l función derivd
APUNTES DE MATEMÁTICAS
APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición
73 ESO. E = m c 2. «El que pregunta lo que no sabe es ignorante un. día. El que no lo pregunta será ignorante toda la vida»
73 ESO dí. «El que pregunt lo que no se es ignornte un El que no lo pregunt será ignornte tod l vid» E = m c ÍNDICE: MENSAJES OCULTOS 1. EXPRESIONES ALGEBRAICAS. VALOR NUMÉRICO DE UNA EXPRESIÓN ALGEBRAICA
SISTEMAS DE ECUACIONES LINEALES: Igualación y Sustitución
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0
Tema 5. Trigonometría y geometría del plano
1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene
TEMA 0: CONCEPTOS BÁSICOS.
TEMA : CONCEPTOS BÁSICOS.. Intervlos:. Intervlos. 2. Propieddes de ls potencis.. Propieddes de los rdicles. Operciones con rdicles. Rcionlizción. 4. Conceptos de un polinomio. Fctorizción de polinomios..
Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:
odelo. Proble B.- (Clificción ái puntos) Se consider el siste linel de ecuciones dependiente del práetro rel ) Discútse en función de los vlores del práetro R. b) Resuélvse pr.. l siste se clsific en función
EL EXPERIMENTO FACTORIAL
DISEÑO DE EXPERIMENTOS NOTAS DE CLASE: SEPTIEMBRE 2 DE 2008 EL EXPERIMENTO FACTORIAL Se utiliz cundo se quiere nlizr el efecto de dos o más fuentes de interés (fctores). Permite nlizr los efectos de ls
EJERCICIOS DE LA UNIDAD DIDÁCTICA 3
UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA Deprtmento de Ingenierí Eléctric, Electrónic de Control ASIGNATURA: TÉCNICAS AVANZADAS DE CONTROL E3. INTRODUCCIÓN EJERCICIOS DE LA UNIDAD DIDÁCTICA 3 Los
3.- Derivada e integral de funciones de variable compleja.
3.- Derivd e integrl de funciones de vrile complej. ) Derivds, funciones nlítics e interpretción geométric. ) Regls de diferencición. c) Ecuciones de uch-riemnn. d) Funciones rmónics. e) Integrción complej.
CUESTIONES RESUELTAS
CUETIONE EUELTA ) Cuál es l principl diferenci entre un circuito de control nlógico y otro digitl? ) Indicr y justificr l principl ventj de uno frente otro. (electividd ndluz). Un circuito nlógico funcion
La integral. En esta sección presentamos algunas propiedades básicas de la integral que facilitan su cálculo. c f.x/ dx C f.
CAPÍTULO L integrl.6 Propieddes fundmentles de l integrl En est sección presentmos lguns propieddes ásics de l integrl que fcilitn su cálculo. Aditividd respecto del intervlo. Si < < c, entonces: f./ d
Universidad de Antioquia
Fcultd de Ciencis Ects Nturles Instituto de Mtemátics Grupo de Semilleros de Mtemátics (Semátic) Funciones inverss gráfics Mtemátics Opertivs Tller 7 0 El concepto mtemático de función epres l ide intuitiv
Tema IV: Circuitos Combinacionales Básicos
Informátic Básic Tem IV: Circuitos Comincionles Básicos 1. INTRODUCCIÓN 2. CIRCUITO ARITMÉTICO 2.1 Elementos umdores 2.1.1 emisumdor 2.1.2 umdor Completo 2.2 Elementos Restdores 2.2.1 emirestdor 2.2.2
1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN
http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el
re p r e s e n tac i ó n Mat r i c i a l d e
Unidd 8 re p r e s e n tc i ó n Mt r i c i l d e Un trnsformción linel Ojetivos: Al inlizr l unidd, el lumno: Asocirá cd trnsformción linel un mtriz. Relcionrá los conceptos de núcleo, imgen, rngo nulidd
Aplicaciones de la integral definida
MB5_MAAL_Aplicciones Versión: Septiemre Aplicciones de l integrl definid Por: Sndr Elvi Pérez L integrl tiene vris plicciones en diferentes áres del conocimiento. En este curso se nlizrán sus funciones
MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES
Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión
Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso
Colegio Técnico Ncionl Arq. Rúl Mrí Benítez Perdomo Mtemátic Primer Curso Rdicción Se un número rel culquier, n un número nturl mor que 1, se llm ríz n esim de todo número rel, que stisfce l ecución n
TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES
TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se
Revista digital Matemática, Educación e Internet (www.cidse.itcr.ac.cr/revistamate/). Vol. 12, N o 1. Agosto Febrero 2012.
Artículo de sección Revist digitl Mtemátic, Educción e Internet www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel
Cuestionario Respuestas
Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de
Torres de Hanoi. Descripción del problema. Entrada. Salida
Torres de Hnoi Descripción del problem Se tienen tres torres y un conjunto de N discos de diferentes tmños. d uno tiene un perforción en el centro que les permite deslizrse por ls torres. Inicilmente,
2 Números racionales positivos
Progrm Inmersión, Verno 0 Nots escrits por Dr. M Nots del cursos. Bsds en los pronturios de MATE 00 y MATE 0 Clse #: miércoles, de junio de 0. Números rcionles positivos. Consceptos básicos del conjunto
BLOQUE II: ÁLGEBRA =... son números reales, el primer índice indica la fila y el segundo la columna en la que se encuentra el elemento.
BLOQUE II: ÁLGEBR Deprtmento de Mtemátics 2º Bchillerto - DEFINICIONES: Un mtriz viene dd por 2 = m 2 22 m2 3 23 m3 n 2n mn donde son números reles, el primer índice indic l fil y el segundo l column en
Resumen de Álgebra. Matemáticas II. ÁLGEBRA
Resumen de Álger. Mtemátics II. ÁLGEBRA.- RESOLUCIÓN DE SISTEMAS. MÉTODO DE GAUSS El método Guss consiste en convertir l mtriz socid un sistem de ecuciones en otr mtriz equivlente tringulr superior, hciendo
UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta
DEPARTAMENTO DE INGENIERÍA ELÉCTRICA ENERGÉTICA NÚMEROS COMPLEJOS Miguel Angel Rodríguez Pozuet Doctor Ingeniero Industril OBSERVACIONES SOBRE LA NOMENCLATURA En este teto, siguiendo l nomencltur hitul
Límite y Continuidad de Funciones
CAPÍTULO 6 Límite Continuidd de Funciones 6.1. Límite de un función L noción de ite es l bse del cálculo. Decir que f) = L signific que es posible hcer que los vlores de f) sen tn cercnos l número L como
EXPRESIONES ALGEBRAICAS. POLINOMIOS
EXPRESIONES ALGEBRAICAS. POLINOMIOS A. EXPRESIONES ALGEBRAICAS. Cundo se quiere indicr un número no conocido, un cntidd o un expresión generl de l medid de un mgnitud (distnci, superficie, volumen, etc
71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES
71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 5. APLICACIONES (EN UNA BASE ORTONORMAL) 6. EJERCICIOS Y PROBLEMAS Vectores
el blog de mate de aida: Matemáticas Aplicadas a las Ciencias Sociales I. Ecuaciones. pág. 1
el de mte de id: Mtemátics Aplicds ls Ciencis Sociles I. Ecuciones. pág. ECUACIONES Un ecución es un propuest de iguldd en l que interviene un letr llmd incógnit. L solución de l ecución es el vlor o vlores
7.1. Definición de integral impropia y primeras propiedades
Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,
MATEMÁTICAS APLICADAS A LAS CC. SS. II
INTEGRLES MTEMÁTIS PLIDS LS. SS. II lfonso González IES Fernndo de Men Dpto. de Mtemátics IES FERNNDO DE MEN. DPTO. DE MTEMÁTIS I) ONEPTO DE INTEGRL INDEFINID (pág. 0 del liro de texto) Dd f(x)=x nos preguntmos
1.1.-DEFINICIONES...3
CONTROL I UNIDAD I CONCEPTO BÁICO DE CONTROL...-DEFINICIONE.... Entrd, lid, Plnt, istem, Control, istem de Control, Linelizción, Lzo Aierto,Lzo Cerrdo,istem Linel, istem No Linel,Vrile Controld, Vrile
TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)
.0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems
Aplicaciones del cálculo integral
Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:
UNIVERSIDAD NACIONAL DE SAN LUIS FACULTAD DE INGENIERIA Y CIENCIAS AGROPECUARIAS
V=17V ri=0, UNIVERSIDD NCIONL DE SN LUIS FCULTD DE INGENIERI Y CIENCIS GROPECURIS FÍSIC II TRBJO PRÁCTICO Nº 7: CIRCUITOS DE CORRIENTE CONTINU Ing. Electromecánic-Industril-Quimic-limentos-Electrónic-Mectrónic
Facultad de Ciencias de la Electrónica
Conceptos básicos pr el nálisis en el espcio de estdo Un sistem complejo moderno puede tener vris entrds y slids relcionds entre sí, en un form muy complicd Pr nlizr un sistem con ests crcterístics, se
CURSO: ANÁLISIS DE CIRCUITOS ELÉCTRICOS I
CURSO: ANÁLISIS DE CIRCUITOS ELÉCTRICOS I UNIDAD 3: TÉCNICAS DE ANÁLISIS DE CIRCUITOS ELÉCTRICOS CONTENIDO 3. INTRODUCCIÓN 3. ANÁLISIS NODAL 3.. ENUMERACIÓN DE LOS NODOS Y ASIGNACIÓN DE LOS VOLTAJES COMO
Multiplicar y dividir radicales
Multiplicr y dividir rdicles 1 Repso Simplificr: 000 4 0 18 1000 4 4 4 10 4 0 0 ( ( ) 0 8) 0 0 0 8 Multiplicción de rdicles Si y son números reles, n n n n n Podemos decir que cundo multiplicmos rdicles
FUNCIONES ELEMENTALES
FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() m + n Sus gráfics son rects pr representrls bst con obtener dos puntos
PROBLEMAS CON FRACCIONES Son problemas en que se pide calcular la parte de un todo, es decir, una fracción de un a
Sint Gspr College MISIONEROS DE LA PRECIOSA SANGRE Formndo Persons Íntegrs Deprtmento de Mtemátic RESUMEN PSU MATEMATICA GUÍA NÚMERO 9 ECUACIONES: () Un ecución es un iguldd condiciond en l que plicndo
Unidad 2. Fracciones y decimales
Mtemátics Múltiplo.º ESO / Resumen Unidd Unidd. Frcciones y decimles FRACCIONES NÚMEROS DECIMALES EXPRESIÓN, 8, 9 SIGNIFICADO FRACCIONES EQUIVALENTES 0 30 0 0 Prte de un unidd Prte de un cntidd ORDENACIÓN
Límite - Continuidad
Nivelción de Mtemátic MTHA UNLP Límite Definición (informl) Límite - Continuidd L función f tiende hci el ite L cerc de, si se puede hcer que f() esté tn cerc como quermos de L hciendo que esté suficientemente
POLINOMIO GRADO TERM. INDEP. ORDENAR COMPLETAR 2x-x x 3 8-x 4 x+4x 4 2x-1+x 5
SECRETARIA DE EDUCACIÓN DE BOGOTÁ D.C. COLEGIO CARLOS ALBÁN HOLGUÍN I.E.D. Resolución de Aproción (SED N 8879 de Dic. 7 de 001 Resolución de Jornd Complet (SED N 08 de Nov. 17 de 01 En sus niveles Preescolr,
Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.
UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN
INTRODUCCIÓN AL ÁLGEBRA (TÉRMINOS, ADICIÓN Y SUSTRACCIÓN)
Lortorio Tercero Básico Centro Integrl Empresril por Mdurez CIEM INTRODUCCIÓN AL ÁLGEBRA (TÉRMINOS, ADICIÓN Y SUSTRACCIÓN). Identific los elementos que se piden: ) Los términos de 5r +s ) Los términos
Corriente Eléctrica. Área Física. Resultados de aprendizaje Aplicar las leyes de Kirchhoff y Ohm en diferentes circuitos de resistencias.
Corriente Eléctric Áre Físic esultdos de prendizje Aplicr ls leyes de Kirchhoff y Ohm en diferentes circuitos de resistencis. Contenidos 1. ntroducción teóric. 2. Ejercicios. Deo ser Ley de Ohm Est ley
TEMA 9: INTEGRALES. CÁLCULO DE ÁREAS
TEMA 9: INTEGRALES. CÁLCULO DE ÁREAS. ÁREA BAJO UNA CURVA. El prolem que pretendemos resolver es el cálculo del áre limitd por l gráfic de un función f() continu y positiv, el eje X y ls sciss = y =. Si
Teóricas de Análisis Matemático (28) - Práctica 10 - Área entre curvas. y = f (x) f (x)dx A =
Teórics de nálisis Mtemático 28) - Práctic 0 - Áre entre curvs Práctic 0 - Prte Áre entre curvs Un de ls plicciones del cálculo de integrles definids es el cálculo de áres de regiones cotds del plno delimitds
O(0, 0) verifican que. Por tanto,
Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O
INSTITUTO VALLADOLID PREPARATORIA página 147
INSTITUTO VALLADOLID PREPARATORIA págin 17 págin 18 EXPONENTES NEGATIVOS Y FRACCIONARIOS EXPONENTES L ide de los eponentes nce con l necesidd de revir cierts multiplicciones. Como es sido, cundo se multiplic
ACTIVIDADES DE APRENDIZAJE Nº 5... 112
FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio
open green road Guía Matemática ECUACIONES DE SEGUNDO GRADO profesor: Nicolás Melgarejo .cl
Guí Mtemátic ECUACIONES DE SEGUNDO GRADO profesor: Nicolás Melgrejo.cl 1. Ecución de segundo grdo Es un iguldd donde l vrible incógnit está l cudrdo, l cul puede tener soluciones diferentes, 1 solución
FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:
FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De
Clase Auxiliar 5. Aútomatas Finitos Determinísticos (Diagramas de Estado)
CC2A Computción II Auxilir 5 Iván Bustmnte Clse Auxilir 5 Aútomts Finitos Determinísticos (Digrms de Estdo) Un utómt finito determinístico es un modelo de un sistem que tiene un cntidd finit de estdos
TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO
TRBJO PRCTICO No 7 MEDICION de DISTORSION EN MPLIFICDORES DE UDIO INTRODUCCION TEORIC: L distorsión es un efecto por el cul un señl pur (de un únic frecuenci) se modific preciendo componentes de frecuencis
Unidad 1: Números reales.
Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y
Tema 3 La elasticidad y sus aplicaciones Relación elasticidad-precio y gasto en la curva de demanda lineal
Introducción l Teorí Económic Crmen olores Álvrez Alelo Miguel Becerr omínguez Ros Mrí Cáceres Alvrdo Mrí del ilr Osorno del Rosl Olg Mrí Rodríguez Rodríguez http://it.ly/8l8u Tem 3 L elsticidd y sus plicciones
Circuitos de Corriente Continua
Fundmentos Físicos y Tecnológicos de l nformátic Circuitos de Corriente Continu -Corriente eléctric, densidd e intensidd de corriente. - Conductnci y resistenci eléctric. - Ley de Ohm. Asocición de resistencis.
Circuitos de Corriente Continua
Fundmentos Físicos y Tecnológicos de l nformátic Circuitos de Corriente Continu -Corriente eléctric, densidd e intensidd de corriente. - Conductnci y resistenci eléctric. - Ley de Ohm. Asocición de resistencis.
I.3.1.3 Hidroformilación bifásica de 1-octeno con sistemas de Rh/fosfina perfluorada P(C 6 H 4 -p-och 2 C 7 F 15 ) 3
I.3 Discusión de resultdos I.3.1.3 Hidroformilción ifásic de 1-octeno con sistems de Rh/fosfin perfluord P(C 6 H 4 -p-och 2 C 7 F 15 ) 3 Como y se h comentdo en l introducción l ctálisis ifásic en sistems
MATE3012 Lección 2.2. Solución de Sistemas Lineales por Matrices. 18/02/2013 Prof. José G. Rodríguez Ahumada 1 de 26
MATE Lección. Solución de Sistems Lineles por Mtrices 8// Prof. José G. odrígue Ahumd de 6 Actividdes. Teto: Cpítulo 8 - Sección 8. Solución de Sistems Lineles por educción de englones. Ejercicios de Práctic:
1. Cuales son los números naturales?
Guí de mtemátics. Héctor. de bril de 015 1. Cules son los números nturles? Los números nturles son usdos pr contr (por ejemplo, hy cinco moneds en l mes ) o pr imponer un orden (por ejemplo,. Es t es l
DETERMINANTES. Los menores y los cofactores son de gran utilidad para encontrar determinantes de matrices de orden n>1.
DETERINNTES DETERINNTE DE UN TRIZ CUDRD socido cd mtri cudrd h un número llmdo determinnte de, denotdo como det. Los determinntes nos proporcionn un método pr el cálculo de l mtri invers (en cso de eistir)
17532 = Hemos usado el 10 como base, pero podíamos haber usado cualquiera. Por ejemplo el 9, entonces.
Tem 1.- V de números 1.1.- Números pr contr. Un de ls primers ctividdes intelectules que reliz el ser humno es l de contr: el número de flechs, el número de ovejs, el número de enemigos, etc. En Mtemátics
TEMA 17: CIRCUITOS DIGITALES COMBINACIONALES
Deprtmento de Tecnologí. IE Nuestr eñor de l Almuden Mª Jesús iz TEMA 17: CIRCUITO DIGITALE COMBINACIONALE Este tem es un primer proximción los circuitos electrónicos digitles. Y se llm circuito digitl
TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)
.. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de
Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales.
UNIVERSIDAD DE JAÉN ESCUEA POITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 009/10 PRÁCTICA Nº9 Espcios vectoriles y Aplicciones ineles I: Bses y coordends. Aplicciones lineles. Recordemos
IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE:
IES Fernndo de Herrer de octure de 0 Primer trimestre - Primer exmen 4º ESO NOMBRE: ) Nomrr los principles conjuntos numéricos, explicitndo cuáles son sus elementos y ls relciones de inclusión entre ellos
PRÁCTICA 9. Circuitos de dos puertos o bipuertos
PÁCTCA 9 Circuitos de dos puertos o ipuertos Ojetivo: Fmilirizr l lumno con lguns de ls forms que crcterizn un ipuerto. Determinr l relción que existe entre un form de representción otr. erificr l vlidez
Guía para maestro. Igualdades y desigualdades. Guía para el maestro. Compartir Saberes
Guí pr mestro Guí relizd por Bell Perlt C. Mgister en Educción Mtemátic bellperltmth@gmil.com bperlt@colegioscomprtir.org Comprender el significdo del signo igul, myor, menor, myor o igul que, o menor
PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS
POBLEMAS DE ODADUA EJEMPLOS SELECCONADOS UNDAMENTOS ÍSCOS DE LA NGENEÍA Antonio J. Brbero / Alfonso Cler Belmonte / Mrino Hernández Puche Dpt. ísic Aplicd. ETS ng. Agrónomos (Albcete) EJEMPLO Considere