A. PRUEBAS DE BONDAD DE AJUSTE: B.TABLAS DE CONTINGENCIA. Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords

Tamaño: px
Comenzar la demostración a partir de la página:

Download "A. PRUEBAS DE BONDAD DE AJUSTE: B.TABLAS DE CONTINGENCIA. Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords"

Transcripción

1 A. PRUEBAS DE BONDAD DE AJUSTE: Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords B.TABLAS DE CONTINGENCIA Marta Alperin Prosora Adjunta de Estadística

2 A. PRUEBAS DE BONDAD DE AJUSTE: 1. Chi cuadrado Objetivo Inrir si la población muestreada, cuyos datos se clasifican en una escala nominal o son agrupados en intervalos, sigue una cierta distribución teórica. Hipótesis Hipótesis nula: frecuencias observadas son iguales a las frecuencias esperadas. Hipótesis alternativa: frecuencias observadas son direntes a las frecuencias esperadas. H0: fo= H1: fo Prueba de hipótesis Estadístico de prueba La hipótesis nula se acepta c (, ) n parámetros estimados ( fo ) c i1 Tabla Chi cuadrado 1 fo: frecuencia observada : frecuencia esperada : número de categorías Decisión estadística Cuando se acepta la hipótesis nula, se puede afirmar que la muestra es extraída de una población cuya distribución es la del modelo contrastado con una confianza α.

3

4 Número de parámetros estimados Modelo Binomial, se estima p Modelo Poisson, se estima λ Modelo Normal, se estima μ y σ Modelo Uniforme no se estima ningún parámetro Para evitar errores calcular las frecuencias esperadas con 4 decimales y con 3 decimales. Restricciones: Los datos deben ser frecuencias Las categorías deben ser mutuamente excluyentes El test da resultados falsos si se aplica a datos que son porcentajes o proporciones de ocurrencias de estas categorías mutuamente excluyentes. Las categorías no deben ser muchas. La frecuencia esperada en cada categoría debe ser al menos de 5 (cinco). Si esto no ocurre se deben combinar las frecuencias de dos o mas categorías hasta que la frecuencia esperada se >5.

5 Ejemplo DISTRIBUCIÓN UNIFORME: Un geólogo está estudiando los sedimentos del perfil de playa de un lago que está compuesto por gravas de composición pómez, granitos y rocas esquistosas. Aunque los tres componentes están presentes en cantidades similares, el investigador sospecha que la roca madre no contribuye en la misma proporción en la composición de la grava. Realiza un muestreo de 600 individuos y encuentra 180 pómez, 186 graníticos y 34 esquistosos. Son estos resultados compatibles con su hipótesis? H 0 : fo= H 1 : fo α: 0,05 = 3-1= (;0,05) =5,99 Pumicesos Graníticos Esquistosos fo (fo-) /,0 0,98 5,78 c ( fo ) c i1,0 0,98 5,78 8,76 8,76 >5,99 El valor de c supera el crítico de tabla para alfa de 0,5. Se puede afirmar, con un nivel de significación del 5%, que la muestra ha sido tomada de una población dónde la proporción de componentes pómez, graníticos y esquistosos no es la misma.

6 Ejemplo DISTRIBUCIÓN POISSON DISTRIBUCIÓN AL AZAR DISTRIBUCIÓN REGULAR DISTRIBUCIÓN CONTAGIOSA s X 1 s X 1 s X 1

7 Ejemplo: Desde el verano de 1976 se realizaron trabajos de investigacion tendientes a estudiar los meteoritos en la Antártida. Se analizaron los meteoritos caídos en un área de 00 m. El área fue subdividida con una cuadricula de 1 m y se contó el número de meteoritos presentes en cada cuadricula. N meteoritos por cuadricula observada p (Poisson) esperada (pxn) Chi cuadrado ,06 4, , ,9 0, ,1611 3, 16, ,044 40,9 7, , ,9 17, ,1479 9,6 66, , ,8 10, , , 10, ,0406 8,1 8,1000 x e P( x) x! m X n m=n meteoritos=761 n=n cuadriculas=00 X 3,805 s =,17 ((10+14)-(4,4+16,9)) /(4,4+16,9)=0,115 Los meteoritos se distribuyen al azar? H 0 : fo= H 1 : fo =0,05 =8-1-1=6 χ (6; 0,05)=1,59 ( fo ) c 137, 0 c i1 137,0>1,59; se rechaza H 0 Los meteoritos no se distribuyen al azar Los meteoritos están agrupados o se distribuyen unifomemente? s s H =0,05; /=0,05 0 : 1; H a : 1 s,17 X X 0,57 =n-1=00-1=199 X 3,805 s 1 t (199; 0,05) =-1,960 X t n S est 1 S est n 1,17 1 3,805 t 4,97 S est 0, , ,960>-4,97; se rechaza H 0 La distribución de los meteoritos no es al azar. El signo de t, y el valor de la relación varianza-media permite afirmar que la distribucion es relativamente uniforme.

8 Ejemplo PRUEBA DE NORMALIDAD Para comercializar la merluza se necesita investigar si el largo del cuerpo se ajusta a un modelo normal. Se realiza un lanzamiento de red en la plataforma a la latitud de Mar del Plata y se recuperan 300 peces. Intervalo Marca de clase (x) Observada Intervalo Z sup Area normal p esperada P x n 35,5-40, Menos de 40,5-1,8 0, ,77 40,5-45, ,5-45,5-0,8 0,1760 5,8 45,5-50, ,5-50,5 0, 0, , 50,5-55, ,5-55,5 1, 0, ,68 55,5-60, ,5-60,5, 0,101 30,36 60,5-65, Más de 60,5 infinito 0,0139 4,17 X 49,5 S=5 N=300 Recordemos El área del intervalo (40,5-45,5) viene dada por: p((z Zsup.) - p((z Zinf.) Se desconocen y Se estiman con X y S siendo (Zsup.) = (45,5 49,5) / 5 = -0,8 (Zinf.) = (40,5 49,5) / 5 = -1,8 p(z -0,8) p(z -1,8) = 0,4641 0,881 = 0,1760 Z x i S X El Zsup. de un intervalo será el Zinf. del siguiente intervalo. El primer intervalo tiene siempre como Zinf. menos infinito (- ) El último como Zsup. más infinito (+ ). Para obtener las frecuencias esperadas, las áreas debajo de la curva normal se multiplican por el número total de observaciones (N).

9 H 0 : fo= H 1 : fo =0,05 Intervalo Marca de clase (x) Observada Intervalo Z sup Area normal p esperada P x n 35,5-40, Menos de 40,5-1,8 0, ,77 40,5-45, ,5-45,5-0,8 0,1760 5,8 45,5-50, ,5-50,5 0, 0, , 50,5-55, ,5-55,5 1, 0, ,68 55,5-60, ,5-60,5, 0,101 30,36 60,5-65, Más de 60,5 infinito 0,0139 4,17 Si las son menores que 5 ; se deben sumar las de intervalos contiguos hasta que todos los intervalos tengan 5. ( fo ) c i1 c i1 fo N c ,7 5,8 n parámetros = = ,53 estimados 1,8645,86 < 5,99 Como el valor de c no supera el crítico de tabla al 5%, no se encuentran evidencias suficientes para rechazar la H 0 (;0,05) =5,99 Se puede afirmar, con un nivel de significación del 5%, que el largo de la merluza sigue una distribución normal.

10 A. PRUEBAS DE BONDAD DE AJUSTE:. Método G de Fisher G i1 fo ln fo El estadístico G sigue la misma distribución que c No es tan sensible como la prueba de Chi las frecuencias esperadas bajas Ejemplo del largo de la merluza G (7ln 54ln... 4ln 10,77 5,8 4,17 Grados de libertad 6-3 =3 (3; 0,05) = 7,81 3,06 3,06<7,81 Como el valor de G no supera el crítico de tabla al 5%, no se encuentran evidencias suficientes para rechazar la H 0 Se puede afirmar, con un nivel de significación del 5%, que el largo de la merluza sigue una distribución normal.

11 A. PRUEBAS DE BONDAD DE AJUSTE: 3. Método de Kolmogorov - Smirnov Intervalo d max O max E N Se necesita conocer la media y el desvío estándar poblacional. El valor critico se busca en la Tabla Kolmogorv-Smirnov. 4. Método de Lilliefords (1967) No es necesario conocer la media y el desvío estándar poblacional. Las estandarizaciones se calculan con los estimadores muestrales. El valor crítico se busca en la Tabla Lilliefords Ejemplo del largo de la merluza Observada ,79 d 300 acumulada observada 7, ,04 esperada Direncia máxima max O: frecuencia acumulada observada max E: frecuencia acumulada esperada N: numero total de datos acumulada esperada 35,5-40, ,77 10,77 3,77 40,5-45, ,8 63,57,57 45,5-50, , 173,79 7,1 50,5-55, ,68 65,47 0,47 55,5-60, ,36 89,83 6,17 60,5-65, ,17 300,00 0 Valor crítico al 5% d de Lillifords d 0,04<0,051 Como el valor de d no supera el d crítico de tabla al 5%, no se encuentran evidencias suficientes para rechazar la H 0. Se puede afirmar, con un nivel de significación del 5%, que el largo de la merluza sigue una distribución normal. 0,890 0,

12 B.TABLAS DE CONTINGENCIA Objetivo Inrir si en la población de la que es extraída la muestra, existe alguna relación entre las frecuencias de ocurrencia simultanea entre dos variables aleatorias. Las variables son atributos categóricos, codificados o en escalas nominales. Cada individuo se clasifica teniendo en cuenta simultáneamente las dos variables. Se registra la frecuencia de ocurrencia en cada individuo que forma parte de la muestra Hipótesis Hipótesis nula: las variables son independientes Hipótesis alternativa: las variables no son independientes. H0: fo= H1: fo V V n 1 x... m Tabla de contingencia Estadístico de prueba TF TC TT Prueba de hipótesis La hipótesis nula se acepta c (, ) ( numero de filas 1)( numero de columnas 1) ( fo ) c i1 fo: frecuencia observada en 1 celda : frecuencia esperada en 1 celda : número de celdas de la tabla Decisión estadística Cuando se acepta la hipótesis nula, se puede afirmar que la muestra es extraída de una población en donde las variables son independientes, con una confianza α.

13 Ejemplo El objetivo del trabajo es investigar si en los humanos el color del pelo es independiente del sexo. Sexo Color del pelo Negro Castaño Rubio Pelirrojo Total Fila Hombres , ,0000 6,6667 8, Mujeres ,0000 7, , , Total columna Sexo Color del pelo Chi cuadrado Negro Castaño Rubio Pelirrojo Total Fila Hombres 0,3103 1,3611 4,667 0,0533 Mujeres 0,155 0,6806,1444 0,067 Total columna 8,987 TF TC TT MR) 300 ( H 0 : fo= H 1 : fo = 0,05 53, ( fo ) c 8,987 0,05;(4 1) (1) 7, 81 i1 8,987 > 7,81 El valor de c es menor al crítico de tabla. No se encuentran evidencias suficientes para aceptar la H 0 de independencia entre el color del pelo y el sexo trabajando con un nivel de significación de 5%.

14 CORRECCIÓN POR CONTINUIDAD Cuando los grados de libertad utilizados para hacer el contraste de la prueba de hipótesis es uno (1) se debe realizar la corrección por continuidad de Yates. ( fo 0,5) c i1

15 GRACIAS

A. PRUEBAS DE BONDAD DE AJUSTE: B.TABLAS DE CONTINGENCIA

A. PRUEBAS DE BONDAD DE AJUSTE: B.TABLAS DE CONTINGENCIA A. PRUEBAS DE BONDAD DE AJUSTE: Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov para una muestra Lilliefords Kolmogorov-Smirnov para dos muestras B.TABLAS DE CONTINGENCIA Marta Alperin Prosora Adjunta

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón Metodología de Investigación Tesifón Parrón Contraste de hipótesis Inferencia Estadística Medidas de asociación Error de Tipo I y Error de Tipo II α β CONTRASTE DE HIPÓTESIS Tipos de Test Chi Cuadrado

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

Contrastes de Hipótesis paramétricos y no-paramétricos.

Contrastes de Hipótesis paramétricos y no-paramétricos. Capítulo 1 Contrastes de Hiptesis paramétricos y no-paramétricos. Estadística Inductiva o Inferencia Estadística: Conjunto de métodos que se fundamentan en la Teoría de la Probabilidad y que tienen por

Más detalles

PATRONES DE DISTRIBUCIÓN ESPACIAL

PATRONES DE DISTRIBUCIÓN ESPACIAL PATRONES DE DISTRIBUCIÓN ESPACIAL Tipos de arreglos espaciales Al azar Regular o Uniforme Agrupada Hipótesis Ecológicas Disposición al Azar Todos los puntos en el espacio tienen la misma posibilidad de

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

PRUEBAS DE BONDAD DE AJUSTE y DE INDEPENDENCIA

PRUEBAS DE BONDAD DE AJUSTE y DE INDEPENDENCIA PRUEBAS DE BONDAD DE AJUSTE y DE INDEPENDENCIA Quien hace puede equivocarse, quien no hace ya está equivocado. DANIEL KON Ji CUADRADA Material preparado por: Profesor León Darío Bello Parias Ji CUADRADA-

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

Contraste de hipótesis paramétricas

Contraste de hipótesis paramétricas Contraste de hipótesis paramétricas Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Proceso de la investigación estadística Etapas PROBLEMA HIPÓTESIS DISEÑO RECOLECCIÓN

Más detalles

Conceptos del contraste de hipótesis

Conceptos del contraste de hipótesis Análisis de datos y gestión veterinaria Contraste de hipótesis Departamento de Producción Animal Facultad de Veterinaria Universidad de Córdoba Córdoba, 14 de Diciembre de 211 Conceptos del contraste de

Más detalles

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 )

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 ) Test de Hipótesis II Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ conocida: Suponga que X, X,, X n, es una m.a.(n) desde N( µ, σ ) Estadística de Prueba X - μ Z 0 = σ / n ~ N(0,)

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste 1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y

Más detalles

Determinación del tamaño de muestra (para una sola muestra)

Determinación del tamaño de muestra (para una sola muestra) STATGRAPHICS Rev. 4/5/007 Determinación del tamaño de muestra (para una sola muestra) Este procedimiento determina un tamaño de muestra adecuado para la estimación o la prueba de hipótesis con respecto

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis Facultad de Ciencias Sociales, UdelaR Índice 1. Introducción: hipótesis estadística, tipos de hipótesis, prueba de hipótesis 2.

Más detalles

DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES La estadística unidimensional estudia los elementos de un conjunto de datos considerando sólo una variable o característica. Si ahora incorporamos, otra variable, y se observa simultáneamente el comportamiento

Más detalles

Contrastes de hipótesis paramétricos

Contrastes de hipótesis paramétricos Estadística II Universidad de Salamanca Curso 2011/2012 Outline Introducción 1 Introducción 2 Contraste de Neyman-Pearson Sea X f X (x, θ). Desonocemos θ y queremos saber que valor toma este parámetro,

Más detalles

Tema 8: Contraste de hipótesis

Tema 8: Contraste de hipótesis Tema 8: Contraste de hipótesis 1 En este tema: Conceptos fundamentales: hipótesis nula y alternativa, nivel de significación, error de tipo I y tipo II, p-valor. Contraste de hipótesis e IC. Contraste

Más detalles

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme

Más detalles

Indicaciones para el lector... xv Prólogo... xvii

Indicaciones para el lector... xv Prólogo... xvii ÍNDICE Indicaciones para el lector... xv Prólogo... xvii 1. INTRODUCCIÓN Qué es la estadística?... 3 Por qué estudiar estadística?... 5 Empleo de modelos en estadística... 6 Perspectiva hacia el futuro...

Más detalles

Discretas. Continuas

Discretas. Continuas UNIDAD 0. DISTRIBUCIÓN TEÓRICA DE PROBABILIDAD Discretas Binomial Distribución Teórica de Probabilidad Poisson Normal Continuas Normal Estándar 0.1. Una distribución de probabilidad es un despliegue de

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Distribución Chi (o Ji) cuadrada (χ( 2 )

Distribución Chi (o Ji) cuadrada (χ( 2 ) Distribución Chi (o Ji) cuadrada (χ( 2 ) PEARSON, KARL. On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it Can Reasonably

Más detalles

Tema 5. Contraste de hipótesis (I)

Tema 5. Contraste de hipótesis (I) Tema 5. Contraste de hipótesis (I) CA UNED de Huelva, "Profesor Dr. José Carlos Vílchez Martín" Introducción Bienvenida Objetivos pedagógicos: Conocer el concepto de hipótesis estadística Conocer y estimar

Más detalles

Unidad IV: Distribuciones muestrales

Unidad IV: Distribuciones muestrales Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros:

Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros: STATGRAPHICS Re. 4/d/yyyy Pruebas de Hipótesis (Una Muestra) Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros: 1. la media μ de una distribución normal.. la desiación

Más detalles

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia

Más detalles

Podemos definir un contraste de hipótesis como un procedimiento que se basa en lo observado en las muestras y en la teoría de la probabilidad para

Podemos definir un contraste de hipótesis como un procedimiento que se basa en lo observado en las muestras y en la teoría de la probabilidad para VII. Pruebas de Hipótesis VII. Concepto de contraste de hipótesis Podemos definir un contraste de hipótesis como un procedimiento que se basa en lo observado en las muestras y en la teoría de la probabilidad

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 00-.003 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo

Más detalles

PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07

PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07 PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07 TEMAS A ESTUDIAR En esta guía nos dedicaremos a estudiar el tema de Estimación por intervalo y comenzaremos a estudiar las pruebas de hipótesis paramétricas.

Más detalles

Técnicas de validación estadística Bondad de ajuste

Técnicas de validación estadística Bondad de ajuste Técnicas de validación estadística Bondad de ajuste Georgina Flesia FaMAF 31 de mayo, 2011 Pruebas de bondad de ajuste Dado un conjunto de observaciones, de qué distribución provienen o cuál es la distribución

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

Programa. Asignatura: Estadística Aplicada. año de la Carrera de Contador Público

Programa. Asignatura: Estadística Aplicada. año de la Carrera de Contador Público Sede y localidad Carrera Sede Atlántica, Viedma Contador Publico Programa Asignatura: Estadística Aplicada Año calendario: 2012 Carga horaria semanal: 6 (seis) hs. Cuatrimestre: Primer Cuatrimestre. Segundo

Más detalles

Proyecto Tema 8: Tests de hipótesis. Resumen teórico

Proyecto  Tema 8: Tests de hipótesis. Resumen teórico Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 8: Tests de hipótesis Resumen teórico Tests de hipótesis Concepto de test de hipótesis Un test de hipótesis (o

Más detalles

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS 1 POR QUÉ SE LLAMAN CONTRASTES NO PARAMÉTRICOS? A diferencia de lo que ocurría en la inferencia paramétrica, ahora, el desconocimiento de la población que vamos

Más detalles

Nivel socioeconómico medio. Nivel socioeconómico alto SI 8 15 28 51 NO 13 16 14 43 TOTAL 21 31 42 94

Nivel socioeconómico medio. Nivel socioeconómico alto SI 8 15 28 51 NO 13 16 14 43 TOTAL 21 31 42 94 6. La prueba de ji-cuadrado Del mismo modo que los estadísticos z, con su distribución normal y t, con su distribución t de Student, nos han servido para someter a prueba hipótesis que involucran a promedios

Más detalles

FINAL DE PROBABILIDAD Y ESTADÍSTICA 27 de MAY Nombre y apellido: Nota

FINAL DE PROBABILIDAD Y ESTADÍSTICA 27 de MAY Nombre y apellido: Nota FINAL DE PROBABILIDAD Y ESTADÍSTICA 27 de MAY0 2015 Nombre y apellido: Legajo: 1 2 3 4 5 Nota / / / / / 1.- El gobierno de la ciudad ha construido senderos especiales para bicicletas en un barrio de la

Más detalles

Curso de Probabilidad y Estadística

Curso de Probabilidad y Estadística Curso de Probabilidad y Estadística Distribuciones de Probabilidad Dr. José Antonio Camarena Ibarrola camarena@umich.mx Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

Contrastes de hipótesis. 1: Ideas generales

Contrastes de hipótesis. 1: Ideas generales Contrastes de hipótesis 1: Ideas generales 1 Inferencia Estadística paramétrica población Muestra de individuos Técnicas de muestreo X 1 X 2 X 3.. X n Inferencia Estadística: métodos y procedimientos que

Más detalles

Estadística Aplicada

Estadística Aplicada Estadística Aplicada Distribuciones de Probabilidad Variables aleatorias Toman un valor numérico para cada resultado de un espacio muestral Discretas. Sus valores posibles constituyen un conjunto discreto.

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Técnicas de validación estadística Bondad de ajuste

Técnicas de validación estadística Bondad de ajuste Técnicas de validación estadística Bondad de ajuste Georgina Flesia FaMAF 28 de mayo, 2013 Pruebas de bondad de ajuste Dado un conjunto de observaciones, de qué distribución provienen o cuál es la distribución

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Variable Aleatoria Continua. Principales Distribuciones

Variable Aleatoria Continua. Principales Distribuciones Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables

Más detalles

Prof. Eliana Guzmán U. Semestre A-2015

Prof. Eliana Guzmán U. Semestre A-2015 Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos

Más detalles

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] =

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] = El peso en kg de los estudiantes universitarios de una gran ciudad se supone aproximado por una distribución normal con media 60kg y desviación típica 8kg. Se toman 100 muestras aleatorias simples de 64

Más detalles

Práctica 5 ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS

Práctica 5 ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS Práctica. Intervalos de confianza 1 Práctica ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS Objetivos: Ilustrar el grado de fiabilidad de un intervalo de confianza cuando se utiliza

Más detalles

Análisis de la varianza ANOVA

Análisis de la varianza ANOVA Estadística Básica. Mayo 2004 1 Análisis de la varianza ANOVA Francisco Montes Departament d Estadística i I. O. Universitat de València http://www.uv.es/~montes Estadística Básica. Mayo 2004 2 Comparación

Más detalles

Problemas resueltos. Tema 12. 2º La hipótesis alternativa será que la distribución no es uniforme.

Problemas resueltos. Tema 12. 2º La hipótesis alternativa será que la distribución no es uniforme. Tema 12. Contrastes No Paramétricos. 1 Problemas resueltos. Tema 12 1.- En una partida de Rol se lanza 200 veces un dado de cuatro caras obteniéndose 60 veces el número 1, 45 veces el número 2, 38 veces

Más detalles

Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis

Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis Diseño Estadístico y Herramientas para la Calidad Pruebas de Hipótesis Expositor: Dr. Juan José Flores Romero juanf@umich.mx http://lsc.fie.umich.mx/~juan M. en Calidad Total y Competitividad Pruebas de

Más detalles

Sesión 13. Introducción a la Prueba de Hipótesis. Estadística II Equipo Docente: Iris Gallardo - Andrés Antivilo Francisco Marro

Sesión 13. Introducción a la Prueba de Hipótesis. Estadística II Equipo Docente: Iris Gallardo - Andrés Antivilo Francisco Marro Sesión 13 Introducción a la Prueba de Hipótesis Introducción ( Porqué debemos realizar pruebas de hipótesis?) El objetivo último del análisis de datos es el de extraer conclusiones de tipo general a partir

Más detalles

Proyecto PropULSA: Estadística y Probabilidad Breviario Académico

Proyecto PropULSA:  Estadística y Probabilidad Breviario Académico Estadística y Probabilidad Breviario Académico Estadística: Es la ciencia que tiene por objetivo recolectar, escribir e interpretar datos, con la finalidad de efectuar una adecuada toma de decisiones en

Más detalles

Tema 9: Contraste de hipótesis.

Tema 9: Contraste de hipótesis. Estadística 84 Tema 9: Contraste de hipótesis. 9.1 Introducción. El objetivo de este tema es proporcionar métodos que permiten decidir si una hipótesis estadística debe o no ser rechazada, en base a los

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 2. Modelos de probabilidad

Estadística y sus aplicaciones en Ciencias Sociales 2. Modelos de probabilidad Estadística y sus aplicaciones en Ciencias Sociales 2. Modelos de probabilidad Facultad de Ciencias Sociales Universidad de la República Curso 2016 Índice 2.1. Variables aleatorias: funciones de distribución,

Más detalles

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo...

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo... CONTENIDO Prólogo a la 3. a edición en español ampliada.................................. Prólogo.................................................................. vii xvii 1. Métodos descriptivos................................................

Más detalles

UNIVERSIDAD NACIONAL SAN LUIS GONZAGA DE ICA

UNIVERSIDAD NACIONAL SAN LUIS GONZAGA DE ICA UNIVERSIDAD NACIONAL SAN LUIS GONZAGA DE ICA Facultad de Ingeniería Mecánica y Eléctrica Escuela Académico Profesional de Ingeniería Mecánica y Eléctrica Departamento de Ciencias de Investigación de la

Más detalles

Unidad Temática 3: Probabilidad y Variables Aleatorias

Unidad Temática 3: Probabilidad y Variables Aleatorias Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento

Más detalles

ESTADÍSTICA INFERENCIAL

ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 4 Nombre: Distribuciones de probabilidad para variables Contextualización En la sesión anterior se definió el concepto de variable aleatoria

Más detalles

Técnicas de Inferencia Estadística II. Tema 3. Contrastes de bondad de ajuste

Técnicas de Inferencia Estadística II. Tema 3. Contrastes de bondad de ajuste Técnicas de Inferencia Estadística II Tema 3. Contrastes de bondad de ajuste M. Concepción Ausín Universidad Carlos III de Madrid Grado en Estadística y Empresa Curso 2014/15 Contenidos 1. Introducción

Más detalles

CAPITULO ANÁLISIS ESTADÍSTICO MULTIVARIADO /1/ /2/ En el presente capítulo se realiza el análisis estadístico multivariado de los

CAPITULO ANÁLISIS ESTADÍSTICO MULTIVARIADO /1/ /2/ En el presente capítulo se realiza el análisis estadístico multivariado de los 112 CAPITULO 5 5.- ANÁLISIS ESTADÍSTICO MULTIVARIADO /1/ /2/ 5.1. Introducción En el presente capítulo se realiza el análisis estadístico multivariado de los datos obtenidos en censo correspondientes a

Más detalles

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo Estructura de este tema Tema 3 Contrastes de hipótesis José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Qué es un contraste de hipótesis? Elementos de un contraste: hipótesis,

Más detalles

MANEJO DE VARIABLES EN INVESTIGACIÓN CLÍNICA Y EXPERIMENTAL

MANEJO DE VARIABLES EN INVESTIGACIÓN CLÍNICA Y EXPERIMENTAL MANEJO DE VARIABLES EN INVESTIGACIÓN CLÍNICA Y EXPERIMENTAL Israel J. Thuissard David Sanz-Rosa IV JORNADAS INVESTIGACIÓN COEM UNIVERSIDADES 4 de marzo de 2016 Escuela de Doctorado e Investigación. Vicerrectorado

Más detalles

ÍNDICE INTRODUCCIÓN... 21

ÍNDICE INTRODUCCIÓN... 21 INTRODUCCIÓN... 21 CAPÍTULO 1. ORGANIZACIÓN DE LOS DATOS Y REPRESENTACIONES GRÁFICAS... 23 1. ORGANIZACIÓN DE LOS DATOS... 23 1.1. La distribución de frecuencias... 24 1.2. Agrupación en intervalos...

Más detalles

Asociación de variables cualitativas: El test exacto de Fisher y el test de McNemar

Asociación de variables cualitativas: El test exacto de Fisher y el test de McNemar Investigación Asociación de variables cualitativas: El test exacto de Fisher y el test de McNemar CAD. ATEN. PRIMARIA 2004; 11: 304-308 Pértega Díaz, S. 1 ; Pita Fernández, S. 2 1. Unidad de Epidemiología

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

Es una proposición o supuesto sobre los parámetros de una o más poblaciones

Es una proposición o supuesto sobre los parámetros de una o más poblaciones HIPOTESIS ESTADISTICA Es una proposición o supuesto sobre los parámetros de una o más poblaciones http://www.itch.edu.mx/academic/industrial/estadistica1/cap02.html POR LUIS M. BAQUERO ROSAS, MBA JUNIO

Más detalles

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL ESTADISTICA. CARÁCTER: Obligatoria DENSIDAD HORARIA HT HP HS UCS THS/SEM

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL ESTADISTICA. CARÁCTER: Obligatoria DENSIDAD HORARIA HT HP HS UCS THS/SEM UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL ESTADISTICA CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ciencias Básicas CODIGO SEMESTRE DENSIDAD HORARIA HT

Más detalles

POBLACIÓN Y MUESTRAS EN LA INVESTIGACIÓN

POBLACIÓN Y MUESTRAS EN LA INVESTIGACIÓN POBLACIÓN Y MUESTRAS EN LA INVESTIGACIÓN Adela del Carpio Rivera Doctor en Medicina UNIVERSO Conjunto de individuos u objetos de los que se desea conocer algo en una investigación Población o universo

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Pruebas para evaluar diferencias

Pruebas para evaluar diferencias Pruebas para evaluar diferencias Métodos paramétricos vs no paramétricos Mayoría se basaban en el conocimiento de las distribuciones muestrales (t- student, Normal, F): EsFman los parámetros de las poblaciones

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS VERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS Grupo

Más detalles

INDICE Capítulo I: Conceptos Básicos Capitulo II: Estadística Descriptiva del Proceso

INDICE Capítulo I: Conceptos Básicos Capitulo II: Estadística Descriptiva del Proceso INDICE Capítulo I: Conceptos Básicos 1.- Introducción 3 2.- Definición de calidad 7 3.- Política de calidad 10 4.- Gestión de la calidad 12 5.- Sistema de calidad 12 6.- Calidad total 13 7.- Aseguramiento

Más detalles

Análisis de datos cualitativos

Análisis de datos cualitativos Capítulo Análisis de datos cualitativos DEFINICIÓN DE VARIABLES CUALITATIVAS Son aquellas variables cuyos valores son un conjunto de cualidades no numéricas a las que se llama categorías o modalidades.

Más detalles

en Enfermería del Trabajo

en Enfermería del Trabajo revista noviembre:maquetación 1 16/11/2011 6:27 Página 30. 203 Metodología de la investigación Metodología de Investigación en Enfermería del Trabajo Autor Romero Saldaña M Enfermero Especialista en Enfermería

Más detalles

PROGRAMA ACADEMICO Ingeniería Industrial

PROGRAMA ACADEMICO Ingeniería Industrial 1. IDENTIFICACIÓN DIVISION ACADEMICA Ingenierías DEPARTAMENTO Ingeniería Industrial PROGRAMA ACADEMICO Ingeniería Industrial NOMBRE DEL CURSO Análisis de datos en Ingeniería COMPONENTE CURRICULAR Profesional

Más detalles

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación

Más detalles

Pruebas de Bondad de Ajuste

Pruebas de Bondad de Ajuste 1 Facultad de Ingeniería IMERL PROBABILIDAD Y ESTADÍSTICA Curso 2008 Pruebas de Bondad de Ajuste En esta sección estudiaremos el problema de ajuste a una distribución. Dada una muestra X 1, X 2,, X n de

Más detalles

Tema: Medidas de Asociación con SPSS

Tema: Medidas de Asociación con SPSS Tema: Medidas de Asociación con SPSS 1.- Introducción Una de las tareas habituales en el análisis de encuestas es la generación y análisis de tablas de contingencia, para las variables y categorías objetivo

Más detalles

EXPERIMENTO ALEATORIO

EXPERIMENTO ALEATORIO EXPERIMENTO ALEATORIO En concepto de la probabilidad, un experimento aleatorio es aquel que bajo el mismo conjunto aparente de condiciones iniciales, puede presentar resultados diferentes, en otras palabras,

Más detalles

EJERCICIOS DE SELECTIVIDAD

EJERCICIOS DE SELECTIVIDAD EJERCICIOS DE SELECTIVIDAD INFERENCIA 1998 JUNIO OPCIÓN A Un fabricante de electrodomésticos sabe que la vida media de éstos sigue una distribución normal con media μ = 100 meses y desviación típica σ

Más detalles

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016 Pruebas de Hipótesis-ANOVA Curso de Seminario de Tesis Profesor Q Jose Avila Parco Año 2016 Análisis de la Varianza de un factor (ANOVA) El análisis de la varianza (ANOVA) es una técnica estadística paramétrica

Más detalles

para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua

para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua Pruebas de hipótesis para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua En muchas situaciones cuando queremos sacar conclusiones sobre una muestra,

Más detalles

Estadísticos Aplicados en el SPSS 2008

Estadísticos Aplicados en el SPSS 2008 PRUEBAS ESTADISTICAS QUE SE APLICAN (SPSS 10.0) PARAMÉTRICAS:... 2 Prueba t de Student para una muestra... 2 Prueba t par muestras independientes... 2 ANOVA de una vía (multigrupo)... 2 ANOVA de dos vías

Más detalles

Fundamentos de Estadística

Fundamentos de Estadística Fundamentos de Estadística Introducción a la Estadística Prof. Dr. Eduardo Valenzuela Domínguez eduardo.valenzuela@usm.cl Universidad Técnica Federico Santa María Dr. Eduardo Valenzuela D.; MEE 2005 p.

Más detalles

EJERCICIOS DE PRUEBA DE HIPOTESIS

EJERCICIOS DE PRUEBA DE HIPOTESIS EJERCICIOS DE PRUEBA DE HIPOTESIS Protocolo 1. Identifique la aseveración original que se probará y exprésela en forma simbólica 1. 2. Dar la forma simbólica que debe ser verdad si la aseveración original

Más detalles

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. 1. DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Probabilidad y Estadística Ingeniería Electromecánica EMM - 0528 3 2 8 2.- HISTORIA

Más detalles

a. N(19 5, 1 2) P(19 X 21) = P( Z ) = = P = P P = = P P = P = = = El 55 72% no son adecuados.

a. N(19 5, 1 2) P(19 X 21) = P( Z ) = = P = P P = = P P = P = = = El 55 72% no son adecuados. El diámetro de los tubos de cartón para un envase ha de estar entre 19 y 21mm. La maquina prepara tubos cuyos diámetros están distribuidos como una manual de media 19 5mm y desviación típica 1 2mm. Qué

Más detalles

JUNIO Bloque A

JUNIO Bloque A Selectividad Junio 009 JUNIO 009 Bloque A 1.- Estudia el siguiente sistema en función del parámetro a. Resuélvelo siempre que sea posible, dejando las soluciones en función de parámetros si fuera necesario.

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES

TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES ASIGNATURA DE PROBABILIDAD Y ESTADÍSTICA 1. Competencias Plantear y solucionar

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Industrial (EST-121) NUMERO DE CREDITOS

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado.

PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado. 1 PROBABILIDAD EXPERIMENTOS Al fijar las condiciones iniciales para un experimento se da lugar a dos tipos de situaciones: a) Experimentos determinísticos: se conoce el resultado. Por ejemplo: si suelto

Más detalles

a. Poisson: los totales marginales y el total muestral varían libremente.

a. Poisson: los totales marginales y el total muestral varían libremente. TEMA 2º: TABLAS DE CONTINGENCIA BIDIMENSIONALES 1º Distribución de frecuencias observadas El único aspecto cuantificable en el análisis cualitativo es el número de individuos que presenta una combinación

Más detalles

T1. Distribuciones de probabilidad discretas

T1. Distribuciones de probabilidad discretas Estadística T1. Distribuciones de probabilidad discretas Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir de

Más detalles