Qué tipo de triángulo es? Prof. Enrique Díaz González

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Qué tipo de triángulo es? Prof. Enrique Díaz González"

Transcripción

1 Universidd Intererin de Puerto Rio Reinto de Pone 1 Revist 360 / N o. 6/ 011 Qué tipo de triángulo es? Prof. Enrique Díz González En lguns situiones de tipo prátio, se neesit onoer si un deterindo triángulo on ldos de longitudes,, es utángulo, retángulo u otusángulo. Pr deidir est ondiión, se puede epler el teore del oseno, onjuntente on otrs propieddes de los triángulos. Reordeos, en prier lugr, el teore del oseno. Teore del oseno. En todo triángulo on ldos de longitudes,, y ángulos opuestos, y, respetivente, se tiene: os os os Deostrión. Proreos solente l prier firión y que ls restntes se pruen en for nálog. Hy vris fors de pror este teore. Un de ells es l siguiente. Figur 1 En l figur se tiene: n h, h, por el teore de Pitágors. os os n os os os os os Esto terin l deostrión.

2 Universidd Intererin de Puerto Rio Reinto de Pone Se neesit tién el siguiente teore er de los ldos de un triángulo. Teore. En todo triángulo, yor ldo se opone yor ángulo y, reíproente, yor ángulo se opone yor ldo. Antes de her l deostrión se prorá el siguiente le. Le. En todo triángulo, l edid de un ángulo exterior es yor que l edid de ulquier ángulo interior no dyente. (Figur ) Figur Deostrión. Considereos un triángulo ABC oo el de l figur. Se E el punto edio de BC y prolongueos AE de odo que AE ED. Result que ACE DBE por teore LAL de ongrueni. Luego ACE DBE en el interior del. Coo D está CBF result que DBE CBF. Luego ACE CBF. Pr pror que CAB CBF, se proede en for nálog onsiderndo el otro ángulo exterior ABG y usndo el heho que los ángulos exteriores ABG y CBF son ongruentes, por ser opuestos por el vértie. Revist 360 / N o. 6/ 011

3 Universidd Intererin de Puerto Rio Reinto de Pone 3 Deostrión del teore. Supongos que en el triángulo siguiente se teng (Figur 3). Figur 3 Quereos pror que. Se trz l isetriz del ángulo ACB que interset el ldo AB en un punto D. Sore el ldo CB se opi CE = CA. Los triángulos CDA y CDE son ongruentes por el so LAL de ongrueni. Por lo tnto CAD CED. Coo CED es exterior del triángulo DBE se tiene, de uerdo l le nterior, que CED DBE, es deir, y oo, result que es lo que se querí pror. Pr pror el reíproo, es deir, si entones BC AC, se rzon en for indiret. Si BC AC entones, lo ul ontrdie l hipótesis. Si BC AC entones, lo ul tién ontrdie l hipótesis.l úni posiilidd es que BC AC. Ahor estos en ondiiones de responder l pregunt: Qué tipo de triángulo es? Considereos los siguientes sos. 1) Supongos que en un triángulo ABC se tiene,, i) ordenr, y en orden dereiente y supongos que. Podeos. Por lo tnto, el ángulo es el ángulo yor en el triángulo ABC. Se presentn ls siguientes posiiliddes:. Por el teore del oseno os de donde result os 0 os 0 está en el segundo Revist 360 / N o. 6/ 011

4 Universidd Intererin de Puerto Rio Reinto de Pone 4 udrnte es otuso el ABC es otusángulo. Por ejeplo, un triángulo de ldos 3, 5 y 7 es otusángulo pues ii) os 0. En este so os 0 está en el prier udrnte es gudo y son tién gudos porque es el ángulo yor el triángulo es utángulo. Por ejeplo, un triángulo de ldos 10, 8 y 7 es utángulo pues iii) os 0. En este so, os 90 y el triángulo es retángulo. ) Supongos hor un triángulo ABC on ldos, y de odo que, por ejeplo,. Entones se presentn ls siguientes posiiliddes. i) Supongos que. Entones os os os 0 es gudo ABC es utángulo. Por ejeplo, un triángulo de ldos 8, 8 y 5 es utángulo. ii) Supongos que. En este so os os, y que (1 os ) 1 os os 1 os. Se presentn ls siguientes posiiliddes. ) Si 0, entones y oo se tiene. En este so es gudo y el triángulo es utángulo. Por ejeplo, un triángulo de ldos 8, 8 y 10 es utángulo y que Pero un triángulo de ldos 8, 8 y 1 no es utángulo y que 1 8. Revist 360 / N o. 6/ 011

5 Universidd Intererin de Puerto Rio Reinto de Pone 5 ) Si 0 entones, el ángulo es otuso y el triángulo es otusángulo. Por ejeplo, un triángulo de ldos 8, 8 y 1 es otusángulo y que 8 1. ) Si 0 entones, os 0 y el triángulo es retángulo. Por ejeplo, un triángulo de ldos 8, 8 y 8 es retángulo y que ( 8) 8 8 3) Finlente si un triángulo tiene sus tres ldos igules, entones el triángulo es equilátero y por lo tnto es utángulo. Biliogrfí. 1) Moise, Edwin Eleentry Geoetry fro n Advned Stndpoint Addison Wesley, 199 ) Poenish, Rirdo Curso de Mteátis eleentles. Geoetrí Sntigo de Chile, 1971 Enrique Díz González, Ctedrátio Auxilir de Mteátis de l Universidd Intererin de Puerto Rio Reinto de Pone. M.S. University of Illinois. Revist 360 / N o. 6/ 011

SenB. SenC. c SenC = 3.-

SenB. SenC. c SenC = 3.- TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,

Más detalles

Los triángulos se clasifican según la magnitud de sus lados y de sus ángulos internos. SEGÚN SUS LADOS EQUILÁTERO ISÓSCELES ESCALENO

Los triángulos se clasifican según la magnitud de sus lados y de sus ángulos internos. SEGÚN SUS LADOS EQUILÁTERO ISÓSCELES ESCALENO Unidd uno Geometrí y Trigonometrí 4. TRIÁNGULOS 4.1 Definiión y notión de triángulos El triángulo es un polígono de tres ldos. Los puntos donde se ortn se llmn vérties. Los elementos de un triángulo son:

Más detalles

RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS Geometrí y Trigonometrí Resoluión de triángulos oliuángulos 9. RESOLUIÓN DE TRIÁNGULOS OLIUÁNGULOS Un triángulo es oliuángulo undo no present un ángulo reto, se denomin de dos forms: triángulo utángulo

Más detalles

Triángulos y generalidades

Triángulos y generalidades Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/1 pítulo 5. Ejeriios Resueltos (pp. 62 63) (1) Los ldos de un triángulo miden 6 m, 7 m y 9 m. onstruir el triángulo y lulr su perímetro

Más detalles

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51 Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y

Más detalles

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto

Más detalles

Resumen creado por Hernán Verdugo Fabiani, profesor de Matemática y Física, abril 2011.

Resumen creado por Hernán Verdugo Fabiani, profesor de Matemática y Física, abril 2011. Reliones métris en un triángulo Resumen redo or Hernán Verdugo Fini, rofesor de Mtemáti y Físi, ril 011. El estudio de un triángulo siemre revestido interés y or ello es ue existen un serie de desriiones,

Más detalles

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 03 - Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio

Más detalles

UNIDAD 7 Trigonometría

UNIDAD 7 Trigonometría UNIDAD 7 Trigonometrí 5. Ampliión teóri: resoluión de triángulos ulesquier: teorems de los senos y del oseno Pág. 1 de 6 Hemos visto que, medinte l estrtegi de l ltur, podemos resolver triángulos ulesquier

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis

Más detalles

UNIDAD 7 Trigonometría

UNIDAD 7 Trigonometría UNIDAD 7 Trigonometrí 5. Ampliión teóri: resoluión de triángulos ulesquier: teorems de los senos y del oseno Pág. 1 de 6 Hemos visto que, medinte l estrtegi de l ltur, podemos resolver triángulos ulesquier

Más detalles

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.

Más detalles

UNIDAD I. El Punto y la Recta

UNIDAD I. El Punto y la Recta SSTEMS E REPRESENTÓN 10 UN SESÓN 3 L Ret: efiniión, trzs y posiiones notles ORE L. LERÓN S. SSTEMS E REPRESENTÓN 10 1.5 L RET Es el eleento geoétrio unidiensionl y puede deterinrse trés de un segento de

Más detalles

Triángulos congruentes

Triángulos congruentes Leión#4 Triángulos ongruentes y triángulos similres Ojetivos Aplir ls propieddes de triángulos ongruentes Aplir ls propieddes de ongrueni Aplir ls propieddes de triángulos similres Aplir el teorem de Pitágors

Más detalles

Matemática Diseño Industrial Trigonometría Ing. Avila Ing. Moll

Matemática Diseño Industrial Trigonometría Ing. Avila Ing. Moll Mtemáti Diseño Industril Trigonometrí Ing. vil Ing. Moll TRIGONOMETRÍ Es l rm de l mtemáti que tiene por ojeto el estudio de ls reliones numéris que existen entre los elementos retilíneos y ngulres de

Más detalles

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS L trigonometrí es l prte de ls mtemátis que estudi ls reliones métris entre los elementos de un tringulo. A) RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

Más detalles

Haga clic para cambiar el estilo de título

Haga clic para cambiar el estilo de título Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles

Más detalles

Propuesta sobre la enseñanza de los números racionales Geovany Sanabria Brenes

Propuesta sobre la enseñanza de los números racionales Geovany Sanabria Brenes Geovny Snri B. Propuest sore l enseñnz de los números rionles Geovny Snri Brenes Un mner de ordr los números rionles es trvés del onoimiento previo de rzones. En l tulidd, ls friones en primri no son vists

Más detalles

TRIGONOMETRÍA (4º OP. A)

TRIGONOMETRÍA (4º OP. A) SEMEJANZA DE TRIÁNGULOS TRIGONOMETRÍA (4º OP. A) Dos figurs son semejntes undo tienen l mism form: Dos triángulos son semejntes si tienen: Sus ldos proporionles: r rzón de semejnz ' ' ' Sus ángulos, respetivmente

Más detalles

MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA

MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA CURSO 4 TRIGONOMETRIA Y TRANSFORMACIONES GEOMETRICAS EN EL PLANO CARTA DIDÁCTICA Desripión: Con este

Más detalles

R 1 R 2. Ángulos diedros: Axioma de división del espacio: Todo plano del espacio determina en éste dos regiones tales que:

R 1 R 2. Ángulos diedros: Axioma de división del espacio: Todo plano del espacio determina en éste dos regiones tales que: Axiom de división del espcio: Todo plno del espcio determin en éste dos regiones tles que: - Cd punto del espcio pertenece un de ls dos regiones o l plno - Dos puntos de un mism región determinn un segmento

Más detalles

PSU Matemática NM-4 Guía 22: Congruencia de Triángulos

PSU Matemática NM-4 Guía 22: Congruencia de Triángulos Centro Educcionl Sn Crlos de Argón. Dpto. Mtemátic. Nivel: NM 4 Prof. Ximen Gllegos H. PSU Mtemátic NM-4 Guí : Congruenci de Triángulos Nombre: Curso: Fech: - Contenido: Congruenci. Aprendizje Esperdo:

Más detalles

Resolución de triángulos de cualquier tipo

Resolución de triángulos de cualquier tipo Resoluión de triángulos de ulquier tipo Ejeriio nº 1.- Hll los ldos y los ángulos de este triángulo: Ejeriio nº.- Clul los ldos y los ángulos del siguiente triángulo: Ejeriio nº 3.- Hll los ldos y los

Más detalles

GEOMETRÍA TRIÁNGULOS. 1. DEFINICIÓN: Si A, B y C son tres puntos no colineales entonces la unión de los segmentos

GEOMETRÍA TRIÁNGULOS. 1. DEFINICIÓN: Si A, B y C son tres puntos no colineales entonces la unión de los segmentos MISIÓN 2011-2 ONGRUENI E TRIÁNGULOS GEOMETRÍ TRIÁNGULOS 1. EFINIIÓN: Si, y son tres puntos no oinees entones unión de os segmentos, y se denomin triánguo y se denot omo. = /, y son puntos no oinees 1.1.

Más detalles

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 007 - Noiones de Trigonometrí: L trigonometrí se dedi l estudio de ls reliones que existen entre ls medids de los ángulos y ldos de un triángulo.

Más detalles

Determinantes: un apunte teórico-práctico

Determinantes: un apunte teórico-práctico Deterinntes: un punte teório-prátio Definiión d triz udrd se le soi un núero denoindo deterinnte de. El deterinnte de se denot por o por det(). Cálulo de deterinntes Pr un triz de x el deterinnte es sipleente

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas Deprtmento e Mtemátis PROBLEMAS DE TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS. 1º Un señl e rreter ini que l peniente e ese trmo es el 1%, lo que quiere eir que por metros que reorre en horizontl siene 1

Más detalles

11La demostración La demostración en matemáticas (geometría)

11La demostración La demostración en matemáticas (geometría) L demostrión en mtemátis (geometrí) ág. 1 Tl vez los lumnos y lumns hyn demostrdo, en lgun osión, lgun fórmul o lgun propiedd mtemáti, o hyn ontempldo su demostrión. omo semos, pr ellos, el proeso no es

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMS DE MTEMÁTICS (Oposiiones de Seundri) TEM 37 L SEMEJNZ EN EL PLNO. CONSECUENCIS. TEOREM DE THLES. RZONES TRIGONOMÉTRICS. 1. Introduión.. Homoteis: Definiión y propieddes. 3. L semejnz en el plno. 3.1.

Más detalles

CAPÍTULO 4: RELACIÓN ENTRE ÁNGULOS Y ARCOS DE CIRCUNFERENCIA (III)

CAPÍTULO 4: RELACIÓN ENTRE ÁNGULOS Y ARCOS DE CIRCUNFERENCIA (III) PÍTULO 4: RELIÓN ENTRE ÁNGULOS Y ROS DE IRUNFERENI (III) Dnte Guerrero-hnduví Piur, 2015 FULTD DE INGENIERÍ Áre Deprtmentl de Ingenierí Industril y de Sistems PÍTULO 4: RELIÓN ENTRE ÁNGULOS Y ROS DE IRUNFERENI

Más detalles

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen

Más detalles

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE ESPECIALISTA EN LA ENSEÑANZA DE LAS MATEMÁTICAS U de A INTRODUCCIÓN En el desrrollo de l geometrí

Más detalles

Criterios de igualdad entre triángulos.

Criterios de igualdad entre triángulos. TRIÁNGULO Triángulo. Superfiie pln liitd por tres línes (ldos). Polígono ás pequeño. lsifiión de los triángulos. Ldos Ángulos UTÁNGULO Tiene los tres ángulos gudos. RTÁNGULO Tiene un ángulo reto y dos

Más detalles

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ...

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ... Mtrices M - - Mtrices Se K un cuerpo MATRICES Definición- Un tl de n eleentos de K dispuestos en fils n coluns de l for recie el nore de tri de diensión n n n n En un tri el eleento ij ocup el lugr deterindo

Más detalles

Problema 1. En cuál de los dos diseños el ángulo de inclinación de la rampa con el suelo es mayor?

Problema 1. En cuál de los dos diseños el ángulo de inclinación de la rampa con el suelo es mayor? ONTENIDOS Ls reliones trigonométris en un triángulo retángulo Seno y oseno de un ángulo Tngente de un ángulo Relión entre l tngente y l pendiente de un ret Teorems del seno y del oseno Existen vris situiones

Más detalles

SEGÚN LA LONGITUD RELATIVA DE SUS LADOS

SEGÚN LA LONGITUD RELATIVA DE SUS LADOS TRIÁNGULOS DEFINIIÓN Un triángulo es un polígono errdo y onvexo, ompuesto por tres ldos. 1 ELEMENTOS ÁSIOS Los triángulos tienen muhs propieddes importntes pr el diujo y l geometrí, pero los más elementles

Más detalles

RELACIONES MÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RELACIONES MÉTRICAS EN EL TRIÁNGULO RECTÁNGULO TUTORIAL DE PREPARAIÓN MATEMATIA 009 RELAIONES MÉTRIAS EN EL TRIÁNGULO RETÁNGULO I.- MARO TEORIO DEPTO. DE MATEMATIA Ls relciones métrics en un triángulo rectángulo son 5 relciones plicles sólo este tipo

Más detalles

a Los ángulos a y b suman:

a Los ángulos a y b suman: Guí 1: MEDICION DE ÁNGULOS El siste sexgesil es un siste de edición que divide l ciurcunferenci en 360 prtes igules. Cd prte corresponde un grdo sexgesil (1 ). 1. Escrie l edid de los siguientes ángulos:

Más detalles

UNIDAD Nº 1: LAS RELACIONES TRIGONOMETRICAS Y SUS APLICACIONES, GUIA 2 DOCENTE: LIC ROSMIRO FUENTES ROCHA

UNIDAD Nº 1: LAS RELACIONES TRIGONOMETRICAS Y SUS APLICACIONES, GUIA 2 DOCENTE: LIC ROSMIRO FUENTES ROCHA REPUBLICA DE COLOMBIA SECRETARIA DE EDUCACION DISTRITAL DE SANTA MARTA INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Resoluión Nº 88 de noviemre.8/ Emnd de l Seretri De Eduión Distritl DANE Nº7-99

Más detalles

El tremendo error que se ha cometido no está en lo mal que se hayan hecho las operaciones, sino en

El tremendo error que se ha cometido no está en lo mal que se hayan hecho las operaciones, sino en SIMPLIFICAR EXPRESIONES (OPERAR) Y DESPEJAR O RESOLVER ECUACIONES. Por qué el título enion tres oss que se estudin por seprdo o que ni siquier se estudin?. Pues no lo sé, pero tnto pr operr oo pr despejr

Más detalles

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c)

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c) Pág. 1 Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m 25 m 11,6 cm 8 m 32 m 60 m 2 Midiendo los ldos, hll ls rzones trigonométrics

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA:

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: LULR OJETIVO 1 L RZÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

ECUACIONES DE LA RECTA EN EL PLANO CARTESIANO

ECUACIONES DE LA RECTA EN EL PLANO CARTESIANO Jie Brvo Feres ECUACIONES DE LA RECTA EN EL PLANO CARTESIANO Teore: A tod ret L del plno rtesino está soid l enos un euión de l for: x + + 0, en donde, son núeros reles; 0 ó 0, (x, ) represent un punto

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio Colegio Sn Ptriio A-09 - Inorpordo l Enseñnz Ofiil Fundión Edutiv Sn Ptriio MATEMÁTICA º AÑO Trjo prátio Nº 8 Sistems de dos euiones lineles on dos inógnits Un sistem de euiones es un onjunto de dos o

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGIN 13 EJERCICIOS Operciones con ángulos y tiempos 1 Efectú ls siguientes operciones: ) 7 31' 15" 43 4' 57" b) 163 15' 43" 96 37' 51" c) (37 4' 19") 4 d) (143 11' 56") : 11 ) 7 31' 15" 43 4' 57"

Más detalles

Taller 3: material previo

Taller 3: material previo Tller 3: mteril previo El tller 3 está dedido los diferentes modelos de empquetmiento ompto de esfers y prender ontr átomos dentro de l eld unidd. Por ello, ntes de l orrespondiente sesión (dís 20, 21

Más detalles

UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA

UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA Objetivos Geoetría analítica Introducción U 3.1. Definición de recta 91 Dos puntos sólo pueden ser unidos por una sola recta la relación ateática que satisface

Más detalles

60 α α. 3 lados 2 lados 3 lados. α 1. (0 < α n. Rectángulo:

60 α α. 3 lados 2 lados 3 lados.  α 1. (0 < α n. Rectángulo: Personl Trinig for PSU nro.1. Prof. hef. Triángulos I: Propieddes ásics efinición dos los puntos,, ; se define triángulo como l reunión. P = punto interior Q = punto eterior ê 2 Q c P ê 1 φ b ê 3 Notción

Más detalles

Geometría: Ejercicios de Semejanza de Triángulos

Geometría: Ejercicios de Semejanza de Triángulos www.matebrunca.com Prof. Waldo Márquez González Semejanza de Triángulos 1 Geometría: Ejercicios de Semejanza de Triángulos 1. Escribir F si es falso, o V si es verdadero, según corresponda a cada proposición.

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 70 EJERCICIOS Áres y perímetros de figurs sencills Hll el áre y el perímetro de ls figurs coloreds de los siguientes ejercicios: 1 ) b) 3 m 3 m 1,8 m 4 m 6 m ) S3 m3 m9 m b) S 6m 1,8 m 5,4

Más detalles

Clasifica los siguientes polígonos. a) b) c) d)

Clasifica los siguientes polígonos. a) b) c) d) 1 FIGURS PLNS EJERIIS PR ENTRENRSE Polígonos 1.44 lsific los siguientes polígonos. ) b) c) d) ) Pentágono irregulr cóncvo. b) Heptágono regulr convexo. c) ctógono irregulr cóncvo. d) Hexágono irregulr

Más detalles

Razones trigonométricas

Razones trigonométricas LECCIÓ CODESADA 12.1 Rzones trigonométrics En est lección Conocerás ls rzones trigonométrics seno, coseno y tngente Usrás ls rzones trigonométrics pr encontrr ls longitudes lterles desconocids en triángulos

Más detalles

RESUMEN TEÓRICO. 8 Colaterales externos: 2 y 7, 1 y 8. Son suplementarios

RESUMEN TEÓRICO. 8 Colaterales externos: 2 y 7, 1 y 8. Son suplementarios RSUMN TÓRI Águlos * Águlos opleetrios so dos águlos uy su vle u águlo reto. * Águlos supleetrios so dos águlos uy su vle u águlo llo. * Águlos dyetes (1ª figur) so dos águlos oseutivos uyos ldos o oues

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #2

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #2 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #2 CONGRUENCIA DE TRIÁNGULOS Dos triángulos son congruentes si los tres lados de uno son respectivamente congruentes con los tres

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

Resolución de triángulos

Resolución de triángulos 8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del

Más detalles

Llamamos ángulo plano convexo abc y se simboliza

Llamamos ángulo plano convexo abc y se simboliza 1. SISTEMA DE MEDICIÓN DE ÁNGULOS 1.1.Ángulo plno onvexo Segurmente reordrás que en ursos nteriores hrás prendido un definiión de ángulo plno onvexo. En est oportunidd te rindremos un nuev definiión que

Más detalles

LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS

LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS Prlels y Perpendiulres Lámin nº 1 Prlels y Perpendiulres Lámin nº 1 Trzr un perpendiulr en el extremo de un segmento de 60 mm. de longitud. Trzr un perpendiulr

Más detalles

NÚMEROS NATURALES. DIVISIBILIDAD

NÚMEROS NATURALES. DIVISIBILIDAD NÚMEROS NATURALES. DIVISIBILIDAD NÚMEROS NATURALES Los úeros turles so los que sirve pr otr: 1,,, So ifiitos y for u ojuto que se deoi N. Está ordedos, lo que os perite represetrlos sore u ret uyo orige

Más detalles

SISTEMA SEXAGESIMAL. Unidad: El grado sexagesimal (º). 1 º = ángulo completo 360. ángulo completo = º = 400 g = 2π rad

SISTEMA SEXAGESIMAL. Unidad: El grado sexagesimal (º). 1 º = ángulo completo 360. ángulo completo = º = 400 g = 2π rad TRIGNMETRÍ. ÁNGULS igen: Positivos: tido ntihoio. Negtivos: tido hoio. + MEDID DE ÁNGULS Sistem segesiml Sistem entesiml Rdines SISTEM SEXGESIML. Unidd: El gdo segesiml (º. ángulo ompleto 60º º ángulo

Más detalles

Se desea calcular la longitud de un lado de una pista de baile de forma cuadrada, cuya área es 16 u 2. Sustituyendo el valor del área

Se desea calcular la longitud de un lado de una pista de baile de forma cuadrada, cuya área es 16 u 2. Sustituyendo el valor del área Núeros irrcionles Algun vez hs utilizdo núeros irrcionles? Se dese clculr l longitud de un ldo de un pist de bile de for cudrd, cuy áre es 6 u A = 6 u x x Definios los eleentos: x = ldo del cudrdo A =

Más detalles

PROPORCIONES Y SEMEJANZA. LA RAZON entre dos cantidades es el cociente indicado entre ellas, la razón de a y b se escribe b. a b.

PROPORCIONES Y SEMEJANZA. LA RAZON entre dos cantidades es el cociente indicado entre ellas, la razón de a y b se escribe b. a b. Proporiones y Semejanza 1 PROPORCIONES Y SEMEJANZA LA RAZON entre dos antidades es el oiente indiado entre ellas, la razón de a y b se esribe b a y se lee: a es a b. PROPORCION: Es la igualdad de dos razones.

Más detalles

RESOLUCIÓN DE TRIÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RESOLUIÓN DE TRIÁNGULOS Págin 0 PR EMPEZR, REFLEXION Y RESUELVE Prolem Pr lulr l ltur de un árol, podemos seguir el proedimiento que utilizó Tles de Mileto pr llr l ltur de un pirámide de Egipto: omprr

Más detalles

51 EJERCICIOS DE VECTORES

51 EJERCICIOS DE VECTORES 51 EJERCICIOS DE VECTORES 1. ) Representr en el mismo plno los vectores: = (3,1) b = ( 1,5) c = (, 4) = ( 3, 1) i = (1,0) j = (0,1) e = (3,0) f = (0, 5) b) Escribir ls coorens e los vectores fijos e l

Más detalles

Resumen de los errores más frecuentes en Matemáticas de 1º ESO.

Resumen de los errores más frecuentes en Matemáticas de 1º ESO. Resuen de los errores ás frecuentes en Mteátics de 1º ESO. 1º. Propiedd distributiv. L propiedd distributiv respecto l producto-división y l su-diferenci nos dice: A) b c b c B) b c b c Observ: b c b c

Más detalles

1.6 Perímetros y áreas

1.6 Perímetros y áreas 3 1.6 Perímetros y áres Perímetro: es l medid del contorno de un figur. Superficie (pln): es el conjunto de puntos del plno encerrdos por un figur geométric pln. Áre: es l medid de un superficie. Represente

Más detalles

Modelo 6 Opción A. Como me dicen que es y = 1 me están dando las condiciones

Modelo 6 Opción A. Como me dicen que es y = 1 me están dando las condiciones Modelo 6 Opción A Ejercicio º [ puntos] Deterin l función f : R R sbiendo que f ( que l rect tngente l gráfic de f en el punto de bscis es l rect. L rect tngente de f( en es " f( f (( " Coo e dicen que

Más detalles

LEY DE SENOS Y COSENOS

LEY DE SENOS Y COSENOS FULTD DE IENIS EXTS Y NTURLES SEMILLERO DE MTEMÁTIS GRDO: 10 TLLER Nº: 1 SEMESTRE 1 LEY DE SENOS Y OSENOS RESEÑ HISTÓRI Menelo de lejndrí L trigonometrí fue desrrolld por strónomos griegos que onsidern

Más detalles

Tema IV Elección Social. El Análisis Positivo, Votación, Teorema de May, Teorema de Imposibilidad de Arrow

Tema IV Elección Social. El Análisis Positivo, Votación, Teorema de May, Teorema de Imposibilidad de Arrow Tem IV Eleión Soil El Análisis Positivo, Votión, Teorem de My, Teorem de Imposiilidd de Arrow 1 Qué hiimos en el tem nterior? Repso Estudimos ul deerí ser l ominión de reursos (en un eonomí de intermio)

Más detalles

PROBLEMAS DE OLIMPIADAS MATEMÁTICAS SOBRE GEOMETRÍA El triángulo

PROBLEMAS DE OLIMPIADAS MATEMÁTICAS SOBRE GEOMETRÍA El triángulo . PROLEMS DE OLIMPIDS MTEMÁTIS SORE GEOMETRÍ El triángulo ELISETH GONZÁLEZ FUENTES Máster de Mtemátis Universidd de Grnd. 014 Prolems sore triángulos Trjo Fin de Máster presentdo en el Máster Interuniversitrio

Más detalles

X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse.

X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse. X. LA ELIPSE 10.1. DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO Definiión Se llm elipse l lugr geométrio de un punto P que se mueve en el plno, de tl modo que l sum de ls distnis del punto P dos puntos fijos

Más detalles

Se traza la paralela al lado a y distancia la altura h a.

Se traza la paralela al lado a y distancia la altura h a. Hojs de Problems Geometrí IV 56. Construir un triángulo conocido el ldo, l medin reltiv l ldo b y l ltur reltiv l ldo. Tomndo como ldos de un rectángulo los ldos, b del triángulo nterior clculr los ldos

Más detalles

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus

Más detalles

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS u r s o : Mtemátic Mteril N 13 GUÍ TÓRIO PRÁTI Nº 11 UNI: GOMTRÍ POLÍGONOS URILÁTROS POLÍGONOS FINIIÓN: Un polígono es un figur pln, cerrd, limitd por trzos llmdos ldos y que se intersectn sólo en sus

Más detalles

Q + simboliza el conjunto de los números fraccionarios y está formado por

Q + simboliza el conjunto de los números fraccionarios y está formado por CONJUNTOS NUMÉRICOS N simboliza el conjunto de los números naturales: N = {0; ; ; 3; 4; } Q + simboliza el conjunto de los números fraccionarios y está formado por a todas las fracciones de la forma ;

Más detalles

Soluciones. Guía 1 (Ángulos y Congruencia de Triángulos) 2. Hallar la medida de un ángulo, sabiendo que su complemento y suplemento suman 208.

Soluciones. Guía 1 (Ángulos y Congruencia de Triángulos) 2. Hallar la medida de un ángulo, sabiendo que su complemento y suplemento suman 208. Problemas Resueltos Soluciones Guía 1 (Ángulos y Congruencia de Triángulos) 1. Se tienen los ángulos consecutivos AOB, BOC y COD, siendo: AOC = 47, BOD = 51, y AOD = 80. Hallar la medida del BOC. Solución:

Más detalles

4 Trigonometría UNIDAD

4 Trigonometría UNIDAD UNIDAD 4 Trigonometrí ÍNDICE DE CONTENIDOS 1. Ángulos............................................ 77 1.1. Sistem sexgesiml................................. 77 1.2. Rdines........................................

Más detalles

9 Proporcionalidad geométrica

9 Proporcionalidad geométrica 82485 _ 030-0368.qxd 12//07 15:37 Págin 343 Proporionlidd geométri INTRODUIÓN El estudio de l proporionlidd geométri y l semejnz de figurs es lgo omplejo pr los lumnos de este nivel edutivo. omenzmos l

Más detalles

SEMEJANZA DE TRIÁNGULOS

SEMEJANZA DE TRIÁNGULOS MISIÓN 010-I GEOMETRÍ SEMEJNZ E TRIÁNGULOS 1. EFINIIÓN os triángulos se llmn semejntes uno tienen sus ángulos respetivmente ongruentes y los los homólogos proporionles. Los los homólogos son los opuestos

Más detalles

Liceo Marta Donoso Espejo Raíces para Terceros

Liceo Marta Donoso Espejo Raíces para Terceros . Ríces cudrds y cúics Liceo Mrt Dooso Espejo Ríces pr Terceros Coeceos el estudio de ls ríces hciédoos l siguiete pregut: Si el áre de u cudrdo es 64 c 2, cuál es l edid de su ldo? Pr respoder esto deeos

Más detalles

A B Trazo AB se denomina AB

A B Trazo AB se denomina AB PITULO I.- GEOMETRI SI.- EL punto es un ente matemático creado por el hombre para poder representar las figuras geométricas. El punto no tiene peso, ni forma ni olor ni sabor; sólo tiene posición. Se representa

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?

Más detalles

Razones trigonométricas de un ángulo agudo. Denominación Definición Propiedad básica. cos α = c a. tg α = tan α = b c. Propiedad fundamental

Razones trigonométricas de un ángulo agudo. Denominación Definición Propiedad básica. cos α = c a. tg α = tan α = b c. Propiedad fundamental Trigonometrí 1 Trigonometrí Rzones trigonométris de un ángulo gudo Denominión Definiión Propiedd ási Seno sen = 0 sen 1 Coseno Tngente os = tg = tn = Propiedd fundmentl sen + os = 1 Rzones trigonométris

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 161

7Soluciones a los ejercicios y problemas PÁGINA 161 7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60

Más detalles

SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT22-A16V1

SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT22-A16V1 SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT-A16V1 1 TABLA DE CORRECCIÓN Ítem Alternativa 1 B E Comprensión 3 B 4 B 5 D 6 C 7 E 8 A 9 A 10 B 11 C 1 C 13 B 14 E 15 A 16 D 17 B 18 D Comprensión

Más detalles

POTENCIA DE UN NÚMERO.

POTENCIA DE UN NÚMERO. INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Resoluió Nº de oviere./0 Seretri De Eduió Distritl REGISTRO DANE Nº00-00099 Teléfoo Brrio Bstids St Mrt DEPARTAMENTO DE MATEMATICAS DOCENTE: LIC-ING.

Más detalles

( )( ) 0 1,1 1, 5 2 2, 3. 1 Resuelve las siguientes inecuaciones: a) 2x + 4 > x +6 b) - x + 1 < 2x + 4 c) x + 51 > 15x + 9

( )( ) 0 1,1 1, 5 2 2, 3. 1 Resuelve las siguientes inecuaciones: a) 2x + 4 > x +6 b) - x + 1 < 2x + 4 c) x + 51 > 15x + 9 1 Resuelve ls siguientes inecuciones: x + 4 > x +6 - x + 1 < x + 4 c) x + 51 > 15x + 9 x < x > -1 c) x < 4 Resuelve ls siguientes inecuciones: x + 4 > x +6 - x + 1 > x + 4 c) 5x + 10 < 1x - 4 x > x < -

Más detalles

Un paralelogramo es un cuadrilátero con sus lados opuestos paralelos. Los paralelogramos gozan de las siguientes propiedades PROPIEDAD 1

Un paralelogramo es un cuadrilátero con sus lados opuestos paralelos. Los paralelogramos gozan de las siguientes propiedades PROPIEDAD 1 1.1. PARALELOGRAMO Definiión Un paralelogramo es un uadrilátero on sus lados opuestos paralelos o Los paralelogramos gozan de las siguientes propiedades PROPIEDAD 1 En todo paralelogramo, los lados opuestos

Más detalles

8. La elipse. 9/ Las cónicas.

8. La elipse. 9/ Las cónicas. 9/ Ls ónis. 8. L elipse. Definiión: Ddos dos puntos un distni 2 mor que l distni, se llm elipse de foos prámetro 2, l lugr geométrio de los puntos del plno u sum de distnis es 2. Dee umplirse pues que,

Más detalles

Ley del Coseno 1. Ley del Coseno. Dado un triángulo ABC, con lados a, b y c, se cumple la relación:

Ley del Coseno 1. Ley del Coseno. Dado un triángulo ABC, con lados a, b y c, se cumple la relación: Ley del Coseno 1 Ley del Coseno Dado un triángulo ABC, on lados a, b y, se umple la relaión: = a + b abosc (Observe que la relaión es simétria para los otros lados del triángulo.) Para demostrar este teorema,

Más detalles

Problemas de Aplicación

Problemas de Aplicación www.matebrunca.com Prof. Waldo Márquez González Ejercicios: Teorema de Pitágoras 1 Problemas de Aplicación 1. En los ejercicios siguientes, establézcase si la ecuación dada es correcta o no. Supóngase

Más detalles

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 5. APLICACIONES (EN UNA BASE ORTONORMAL) 6. EJERCICIOS Y PROBLEMAS Vectores

Más detalles

IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS. Nombre: Grado: Costrucciones

IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS. Nombre: Grado: Costrucciones IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS Nombre: Grado: 9 5 1. Costrucciones 2. las rectas y puntos notables de un triángulo Sabemos que los polígonos son figuras cerradas planas, de lados rectos,

Más detalles

11. Triángulos SOLUCIONARIO 1. CONSTRUCCIÓN DE TRIÁNGULOS 2. MEDIANAS Y ALTURAS DE UN TRIÁNGULO

11. Triángulos SOLUCIONARIO 1. CONSTRUCCIÓN DE TRIÁNGULOS 2. MEDIANAS Y ALTURAS DE UN TRIÁNGULO SLUINRI 95 11. Triángulos 1. NSTRUIÓN DE TRIÁNULS PIENS Y LUL Justific si se pueden dibujr los siguientes triángulos conociendo los dtos: ) Tres ldos cuys longitudes son 1 cm, 2 cm y 3 cm b) Un ldo de

Más detalles

Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta.

Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta. Propieddes de l Potenci Distributiv con respecto l producto ( = b Distributiv con respecto l división b b Producto de potencis de igul bse n = n + División de potencis de igul bse n n Potenci de potenci

Más detalles