CALCULO DE CENTROS DE MASA: PLACAS
|
|
- Celia Tebar García
- hace 5 años
- Vistas:
Transcripción
1 CALCULO DE CENTROS DE MASA: PLACAS Clulr l posiión el entro e mss e l siguiente pl suponieno que su ms está uniformemente istribui por to ell: b b( 1 k 3 ) Soluión: I.T.I. 1,, I.T.T. 1, En primer lugr, ntes e iniir los álulos el C.M., vmos eterminr el vlor e l onstnte k pr l urv. Pr se nul el vlor e, on lo que euimos que k 3. L urv viene por lo tnto por l euión: b Pr lulr l ooren el C.M. será onveniente iviir l pl en ifereniles e áre uos puntos posen un ooren l mism pr toos ellos. Vmos por lo tnto iviir l pl en bns vertiles e espesor. El áre e bn será: A b El áre e to l pl será por lo tnto: A A b b 3 L ooren el C.M. será: 3 b A b b C.M. A A b Pr lulr l ooren el C.M. serí onveniente iviir l pl en ifereniles e áre uos puntos poseern un ooren l mism pr toos ellos, es eir en bns horizontles e espesor, sin embrgo poemos
2 provehr los mismos ifereniles e áre el álulo nterior. Si similmos bn vertil un segmento vertil homogéneo e longitu, sbieno que l posiión que represent en iert form iho segmento es l posiión e su entro e mss que se enuentr mit e ltur, poemos tomr ih posiión omo l posiión representtiv e l bn: 1 bn A A b b C.M. A bn A 3 7 b 9 8 b 5º r R os( θ) Clulr l posiión el entro e mss e l siguiente pl suponieno que su ms está uniformemente istribui por to ell: r θ 5º Soluión: I.T.I. 1, I.T.T. 1, Visto que nos n l epresión e l urv que efine l pl en oorens polres, trbjremos en iho tipo e oorens. Poemos iviir l pl en setores ngulres e bertur θ. C setor ngulr poemos soirlo un triángulo (isóseles en nuestro so), omo sbemos l posiión el C.M. e un triángulo (situo un terio e l ltur sobre l bse) tomremos ih posiión omo l representtiv e setor ngulr. r 3 r θ r θ El áre e to l pl será por lo tnto: A A r( rθ) R os ( θ)θ 1 θ R + 1 sen ( θ ) 8 8 R
3 L ooren el C.M. será: setor A rosθ A 3 3 R3 os 3 ( θ)osθ θ R3 8 sen( θ) + 1 sen 3θ 8 ( ) + 1 sen 5θ ( ) C.M. A setor A R.59R sen ( 7θ ) R3 El álulo e l ooren el C.M. no es neesrio herlo que el eje X es un eje e simetrí e l pl por lo tnto el C.M. se enontrrá en él, on lo que: C.M. Clulr l posiión el entro e mss e l siguiente pl suponieno que su ms está uniformemente istribui por to ell: m k b Soluión: I.T.I. 1,, I.T.T. 1, En primer lugr, ntes e iniir los álulos el C.M., vmos eterminr el vlor e ls onstntes m k pr ls os urvs. Pr tenemos que b, on lo que euimos que m b k b. Ls os urvs vienen s por lo tnto por ls euiones: 1 b b. Pr lulr l ooren el C.M. será onveniente iviir l pl en ifereniles e áre uos puntos posen un ooren l mism pr toos ellos. Vmos por lo tnto iviir l pl en bns vertiles e espesor. El áre e bn será:
4 ( ) b A 1 El áre e to l pl será por lo tnto: A A b b b L ooren el C.M. será: A b b 3 3 C.M. A A b Pr lulr l ooren el C.M. serí onveniente iviir l pl en ifereniles e áre uos puntos poseern un ooren l mism pr toos ellos, es eir en bns horizontles e espesor, sin embrgo poemos provehr los mismos ifereniles e áre el álulo nterior. Si similmos bn vertil un segmento vertil homogéneo e longitu 1, sbieno que l posiión que represent en iert form iho segmento es l posiión e su entro e mss que se enuentr mit e ltur, poemos tomr ih posiión omo l posiión representtiv e l bn: bn A 1 + A b + b b 1 b C.M. bn A A 6 15 b 1 15 b
5 Determinr el entro e grve e l pl e l figur. Soluión: I.T.I., I.T.T. 99, 3 mm 3 mm 18 mm Desomponemos nuestr piez en tres piezs más senills, un e ls ules ontribue negtivmente: h 1 + h θ R 1 ( R senθ )h 1, r 1, h h 1 A 1 ( R senθ )h, r, 3 h A 3 θ R R senθ,, 3θ r C.M. A 1r 1 + A r A 3 + A A 3 (, 35) mm z mm Determinr el entro e mss e un ppeler e bse semiirulr onstrui on un pl homogéne. Soluión: I.T.I., I.T.T. 99, 375 mm Desomponemos nuestr ppeler en tres piezs más senills: un superfiie lterl pln, un superfiie lterl ilínri un fono semiirulr.
6 RH, A RH, A 3 1 R, r,, H 1 r R,, H R 3,, r C.M. A 1r 1 + A r + A ( 79,161) mm Determinr el entro e mss e l pl homogéne represent en l figur. r r 1 l 1 l Soluión: I.T.I. 3, I.T.T. 3 Consiermos l pl omo l ontribuión e utro piezs senills: un semiiso, un retángulo, un triángulo un gujero irulr. C piez venrá represent por l posiión e su entro e mss el problem es equivlente l álulo el.m. e un sistem e utro prtíuls (un e ells, el gujero irulr, ontribueno negtivmente): R.565 m, A R l 1.96 m, A 3 R l.36 m, A R 1.53 m, r 1 R 3, R r l 1, R l 1 + l 3, 3 R r C.M. A 1r 1 + A r A r + A A ( 5.5, 6) m (, 6) m ( 1, ) m r (, R ) (, 6) m ( 3., 5.8) m
7 Clulr l posiión el entro e mss e l siguiente pl suponieno que su ms está uniformemente istribui por to ell: Soluión: I.T.I. 3, I.T.T. 3 Pr lulr l ooren el C.M. será onveniente iviir l pl en ifereniles e áre uos puntos posen un ooren l mism pr toos ellos. Vmos por lo tnto iviir l pl en bns vertiles e espesor. El áre e bn será: A El áre e to l pl será por lo tnto: A A ln L ooren el C.M. será: ( ) ln A ( ) C.M. A A ln( / ) Pr lulr l ooren el C.M. serí onveniente iviir l pl en ifereniles e áre uos puntos poseern un ooren l mism pr toos ellos, es eir en bns horizontles e espesor, sin embrgo poemos provehr los mismos ifereniles e áre el álulo nterior. Si similmos bn vertil un segmento vertil homogéneo e longitu, sbieno que l posiión que represent en iert form iho segmento es l posiión e su entro e mss que se enuentr mit e ltur, poemos tomr ih posiión omo l posiión representtiv e l bn: 1 bn A A 1 C.M. A bn A ln( / )
UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE
UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.
SenB. SenC. c SenC = 3.-
TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,
TEMA 9. DETERMINANTES.
Uni.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl e eterminntes. Determinnte e mtries e oren y oren... Determinnte mtries urs e oren.. Determinnte mtries urs e oren.
INTEGRAL INDEFINIDA. Derivación. Integración
Integrión. Cálulo de áres. INTEGRAL INDEFINIDA FUNCIÓN PRIMITIVA F() es un primitiv de f() si F ()= f(). Esto se epres sí: f() = F'() = F() L integrión es l operión invers l derivión, de modo que: FUNCIONES
Matrices y determinantes
Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)
TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras.
Alonso Fernánez Glián TEMA FRACCIONES Ls friones permiten trjr e mner simóli on nties no enters.. CONCEPTO DE FRACCIÓN Un frión es un expresión e l form numeror enominor ( 0) Represent el resulto e iviir
1. INTEGRALES DEFINIDAS E IMPROPIAS
. INTEGRALES DEFINIDAS E IMPROPIAS.. INTEGRAL DEFINIDA Se y = f(x) definid pr todo x [, b]. Consideremos un prtiión P del intervlo [, b] P {x 0 = < x < x 2 < < x n = b} Sen P = máx{x i x i }, s n = n m
Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz
Mtemáti Diseño Industril Cónis Ing. Avil Ing. Moll CÓNICAS Diretriz Genertriz Un superfiie óni está generd por un ret (genertriz) que se mueve poyándose en un urv fij (diretriz) y que ps por un punto fijo
ECUACIONES DE PRIMER Y SEGUNDO GRADO
UNIDAD ECUACIONES DE PRIMER Y SEGUNDO GRADO EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd resolverás ejeriios y prolems que involuren l soluión de euiones de primer grdo y de segundo grdo Ojetivo.
SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA
SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 007 - Noiones de Trigonometrí: L trigonometrí se dedi l estudio de ls reliones que existen entre ls medids de los ángulos y ldos de un triángulo.
PROBLEMAS DE ÁLGEBRA DE MATRICES
Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese
Integrales dobles y triples
Integrles dobles y triples 1 Integrles dobles Integrles triples 3 Cmbios de vrible R: retángulo R = [, b [, d f : R R: mpo eslr e dos vribles. Si f es ontinu en R f x : [, d R y f y : [, b R son funiones
SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA
Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 03 - Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio
MATEMÁTICAS II Cónicas en coordenadas polares Curso 06-07
MATEMÁTICAS II Cónis en oorens olres Curso 06-07 ) El omet Hlley esribe un orbit elíti e exentrii e 07 l longitu el eje myor e l órbit es, roximmente, 68 unies stronómis (un u, istni mei entre l Tierr
RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO
Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto
Departamento de Matemáticas
Deprtmento e Mtemátis PROBLEMAS DE TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS. 1º Un señl e rreter ini que l peniente e ese trmo es el 1%, lo que quiere eir que por metros que reorre en horizontl siene 1
En donde x representa la incógnita, y a, b y c son constantes.
FUNCIÓN CUADRÁTICA. Cundo los elementos de un onjunto los elementos de un onjunto se soin medinte un regl de orrespondeni definid por un euión de segundo grdo en, l llmmos funión de segundo grdo o udráti.
1.6. BREVE REPASO DE LOGARITMOS.
.. BREVE REPASO DE LOGARITMOS. Sistems de ritmos. Si ulquier número positivo puede tomrse omo Bse, eiste infinito número de sistems de logritmos, pero trdiionlmente, solo se utilizn dos sistems: o ritmos
ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2?
ejeriiosemenes.om. Si A B son mtries udrds de orden n, se umple l relión (AB) A ABB?. Siendo que d e f. Hllr el vlor de: g h i ( e) i h g d g i d f ) (d e) f i e h ) h e ) h/ / e/ e i h i f i f. Enuni
X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse.
X. LA ELIPSE 10.1. DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO Definiión Se llm elipse l lugr geométrio de un punto P que se mueve en el plno, de tl modo que l sum de ls distnis del punto P dos puntos fijos
MATRICES. MATRIZ INVERSA. DETERMINANTES.
DP. - S - 59 7 Mtemátis ISSN: 988-79X 6 MTRICES. MTRIZ INVERS. DETERMINNTES. plino ls propiees e los eterminntes y sin utilizr l regl e Srrus, lulr rzonmente ls ríes e l euión polinómi. Enunir ls propiees
PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano)
ES CSTELR DJOZ Menguino PRUE DE CCESO (LOGSE) UNVERSDD DE ZRGOZ SEPTEMRE (RESUELTOS por ntonio Menguino) MTEMÁTCS Tiempo máimo: hors Se vlorrá el uso del voulrio l notión ientíi Los errores ortográios,
Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones.
Rzón y proporión. Rzón. Rzón entre os números y es el oiente. Sus términos son nteeente y onseuente. Proporión. Un proporión es un igul entre os rzones. Se lee es omo es.,, y son los términos e l proporión.
m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular
Funión Cudráti Unidd Conepto Un negoio de deorión, Alfomri Confort, onfeion tpies udrdos que miden entre metros de ldo, on diseños elusivos pedido. Queremos ver que superfiie tiene los tpies. Teniendo
B 1. d 1 d 2 B 2 XI.2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN
Págin del Colegio de Mtemátis de l ENP-UNAM Hipérol Autor: Dr. José Mnuel Beerr Espinos HIPÉRBOLA UNIDAD XI XI.1 DEFINICIÓN DE HIPÉRBOLA Un hipérol es el lugr geométrio de todos los puntos P del plno,
LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así
LOS NÚMEROS REALES Los número,, se enominn números nturles. El onjunto e los números nturles se representn on l letr N, sí N {,,K } Si se sumn os números nturles el resulto es otro nturl, pero si se rest
que verifican A 2 = A.
. Hll ls mtries A que verifin A A.. Do el sistem: m ( m ) m ) Disútelo en funión el vlor e m. ) Resuélvelo en el so m represent gráfimente l situión. 3. Consieremos ls mtries B C Hll un mtri A tl que A
1. AA AB = (-1,1) 2. AA AB = (5,9) 3. AA AB = (-5,-9) 4. AA AB = (1,-1) 3. AA A(1,-4) B(3,-5) < AB = (5,-5) D d A(-1,-2) B(3,2)
Mr l opión que ontiene el vetor fijo definido por los puntos A(3,4) y B(-2,-5). AA AB = (-1,1) AA AB = (5,9) AB = (-5,-9) AB = (1,-1) Mr tods ls opiones que definen el vetor fijo AB = (-2,1). AA A(-5,-3)
TEMA 2 INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS
Frnisnos T.O.R. Cód. 867 TEMA INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS. INTEGRAL DEFINIDA El álulo de l integrl definid, que se denot por: f ( d, onsiste en lulr l integrl de l funión f( en el intervlo [, ].
Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51
Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y
Solución: Coloreando el tablero con casillas de dos colores al estilo del tablero de coronas (damas) como se muestra en la figura 2.
Algunos prolems. L olorión en ls mtemátis L olorión en ls mtemátis no es más que provehr lguns iferenis que estleemos entre los entes empleos en un prolem prtiulr, similr l utili e ls nemotenis en l progrmión,
MATRICES: un apunte teórico-práctico
MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e
Fracciones equivalentes
6 Aritméti Friones equivlentes Reflexiones diionles Frión unitri. Es quell frión uyo numerdor es igul. Friones equivlentes. Son ls que representn l mism ntidd, un undo el numerdor y el denomindor sen distintos,
SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I
Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.
Senx a) 0 b) 1 c) 2 d) 2
EJERIIOS. lculr en : Sen( - 0º) = os( + 0º) ) b) c) 4 d) 6 e). Si : Tg (8 º) Tg ( + º) = Hllr: K = Sen tg 6 7 7 ) b) c) - d) - e) ) 0, b) c), d) e) 8. Si : Tg =, Sen lculr : K Tg ) c) e) ( ) b) d) ( ).
EJERCICIOS DE POTENCIAS Y LOGARITMOS. 1.- Calcula, mediante la aplicación de la definición, el valor de los siguientes logaritmos: log
EJERCICIOS DE POTECIAS Y LOGARITMOS - Clul, medinte l pliión de l definiión, el vlor de los siguientes ritmos: ) ) 79 ) 09 e) f) g) h) - Clul, medinte l pliión de l definiión, el vlor de los siguientes
Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio
Colegio Sn Ptriio A-09 - Inorpordo l Enseñnz Ofiil Fundión Edutiv Sn Ptriio MATEMÁTICA º AÑO Trjo prátio Nº 8 Sistems de dos euiones lineles on dos inógnits Un sistem de euiones es un onjunto de dos o
2. Integrales iteradas dobles.
2 Integrles prmétris e integrles dobles y triples. Eleonor Ctsigers. 9 Julio 26. 2. Integrles iterds dobles. 2.. Integrles iterds en dominios simples respeto de x. Se omo en l subseión.2, el retángulo
LEY DE SENOS Y COSENOS
FULTD DE IENIS EXTS Y NTURLES SEMILLERO DE MTEMÁTIS GRDO: 10 TLLER Nº: 1 SEMESTRE 1 LEY DE SENOS Y OSENOS RESEÑ HISTÓRI Menelo de lejndrí L trigonometrí fue desrrolld por strónomos griegos que onsidern
MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA
MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA CURSO 4 TRIGONOMETRIA Y TRANSFORMACIONES GEOMETRICAS EN EL PLANO CARTA DIDÁCTICA Desripión: Con este
PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS
POBLEMAS DE ODADUA EJEMPLOS SELECCONADOS UNDAMENTOS ÍSCOS DE LA NGENEÍA Antonio J. Brbero / Alfonso Cler Belmonte / Mrino Hernández Puche Dpt. ísic Aplicd. ETS ng. Agrónomos (Albcete) EJEMPLO Considere
3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola
Moisés Villen Muñoz Cónis. Cirunfereni. Prábol. Elipse. Hiperbol Objetivos. Se persigue que el estudinte: Identifique, grfique determine los elementos de un óni onoiendo su euión generl. Ddo elementos
Triángulos y generalidades
Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/1 pítulo 5. Ejeriios Resueltos (pp. 62 63) (1) Los ldos de un triángulo miden 6 m, 7 m y 9 m. onstruir el triángulo y lulr su perímetro
LÍMITES DE FUNCIONES
LÍMITES DE FUNCIONES Se dice que un función y f() tiene límite "L" cundo l tiende "" y lo representmos por: f() L cundo pr tod sucesión de números reles que se proime "" tnto como quermos, los vlores correspondientes
OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k:
UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO ESUDIOS UNIVERSIRIOS (LOE) EMEN MODELOCURSO - MEMÁICS PLICDS LS CIENCIS SOCILES II INSRUCCIONES: El lumno deerá elegir un de ls dos opiones o
INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA
INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA I. LA RECTA. Ejercicios pr resolver. 1. Demuestr que los puntos A(-,8); B(-6,1) C(0,4) son los vértices de un tringulo
( ) ( ) El principio de inducción
El priipio e iuió U ejemplo seillo pr empezr Si hemos oío hlr e progresioes ritmétis (series e úmeros e form que l iferei etre os oseutivos es siempre l mism, omo,,, 0,) prolemete o será fáil lulr l sum
Integrales impropias
Integrles impropis Ejeriios resueltos CRESLINE, S.L. Integrles impropis Ejeriio : Estudir l onvergeni de l impropi os x y en so de onvergeni, lulr su vlor. Soluión: Pr b>, se tiene b os x= [sin x]b = sin
Cuestionario Respuestas
Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de
Resumen creado por Hernán Verdugo Fabiani, profesor de Matemática y Física, abril 2011.
Reliones métris en un triángulo Resumen redo or Hernán Verdugo Fini, rofesor de Mtemáti y Físi, ril 011. El estudio de un triángulo siemre revestido interés y or ello es ue existen un serie de desriiones,
PROBLEMAS DE OPTIMIZACIÓN
PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito
SOLUCIONARIO Poliedros
SOLUCIONARIO Poliedros SGUICES06MT-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Poliedros Ítem Alterntiv 1 D A Comprensión E B 5 D 6 C 7 D 8 B 9 D 10 C 11 E 1 D 1 A 1 C 15 E Comprensión 16 B Comprensión 17
MATEMÁTICAS BÁSICAS ELIPSE. B 2B 1 del eje mayor es el eje menor. Cada extremo del eje mayor V 1 y V 2 se llama vértice. El punto DEFINICIÓN DE ELIPSE
Fultd de ontdurí dministrión. UN lipse utor: r. José nuel Beerr spinos TÁTIS BÁSIS LIPS FINIIÓN LIPS Un elipse es el lugr geométrio de todos los puntos P del plno, tles que l sum de sus distnis dos puntos
MATEMÁTICAS 2º DE ESO LOE
MATEMÁTICAS º DE ESO LOE TEMA II: FRACCIONES Los sigifios e u frió. Frioes propis e impropis. Equivlei e frioes. Amplifiió y simplifiió. Frió irreuile. Reuió e frioes omú eomior. Comprió e frioes. Operioes
APUNTES DE MATEMÁTICAS
APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición
MATEMATICA Parte III para 1 Año
Crpet e Trjos Prátios e MATEMATICA Prte III pr 1 Año APELLIDO Y NOMBRE DEL ALUMNO:... PROFESOR:... DIVISIÓN:... Crpet e Trjos Prátios e Mtemáti Prte III 1º ño Págin 1 POLÍGONOS TRIÁNGULOS 3) En el triángulo
UNIDAD Nº 1: LAS RELACIONES TRIGONOMETRICAS Y SUS APLICACIONES, GUIA 2 DOCENTE: LIC ROSMIRO FUENTES ROCHA
REPUBLICA DE COLOMBIA SECRETARIA DE EDUCACION DISTRITAL DE SANTA MARTA INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Resoluión Nº 88 de noviemre.8/ Emnd de l Seretri De Eduión Distritl DANE Nº7-99
Triángulos congruentes
Leión#4 Triángulos ongruentes y triángulos similres Ojetivos Aplir ls propieddes de triángulos ongruentes Aplir ls propieddes de ongrueni Aplir ls propieddes de triángulos similres Aplir el teorem de Pitágors
Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES
8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =
4. Trigonometría II. c) c 2 b 2 a 2 2ba cos C c 11,17 cm a A 61,84. B 38,11 se n B sen C d) A B C 180 A 70 a b 5,32. l 40 sen.
9 ) os 11,17 m se n 61,84 38,11 se n d) 180 70 se n 5,3 se n 10,48 lul un ulquier de ls lturs de los triángulos resueltos en el ejeriio nterior y utilízl después pr lulr su áre. Pr resolver este ejeriio
Los triángulos se clasifican según la magnitud de sus lados y de sus ángulos internos. SEGÚN SUS LADOS EQUILÁTERO ISÓSCELES ESCALENO
Unidd uno Geometrí y Trigonometrí 4. TRIÁNGULOS 4.1 Definiión y notión de triángulos El triángulo es un polígono de tres ldos. Los puntos donde se ortn se llmn vérties. Los elementos de un triángulo son:
BLOQUE III Geometría
LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40
UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS
u r s o : Mtemátic Mteril N 13 GUÍ TÓRIO PRÁTI Nº 11 UNI: GOMTRÍ POLÍGONOS URILÁTROS POLÍGONOS FINIIÓN: Un polígono es un figur pln, cerrd, limitd por trzos llmdos ldos y que se intersectn sólo en sus
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 PÁGIN 13 EJERCICIOS Operciones con ángulos y tiempos 1 Efectú ls siguientes operciones: ) 7 31' 15" 43 4' 57" b) 163 15' 43" 96 37' 51" c) (37 4' 19") 4 d) (143 11' 56") : 11 ) 7 31' 15" 43 4' 57"
MATRICES Y DETERMINANTES
MATRICES Y DETERMINANTES EJERCICIOS RESUELTOS D l triz A, qué relión een gurr ls onstntes pr que se verifique l igul A A. Cluleos A : A. Coo se h e uplir que A A, teneos que:, por tnto se otiene el siguiente
Coche de carreras con motor de muelle
109.830 Cohe de rrers on motor de muelle Herrmients neesris: Lápiz, regl Sierr de mrqueterí o elétri Hoj de sierr pr metles Ppel de lij, Bloque de lij Lim de tller Tornillo de no Bro ø 3 mm Col de mder
INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 -
INFORME DE LA PRÁCTICA nº : LA RUEDA DE MAXWELL Fernndo Hueso González. Crlos Huerts Brr. (1º Fís.), L1, 1-XI-7 - - RESUMEN L práctic de l rued de Mxwell consiste en medir el tiempo que trd en descender
RESOLUCIÓN DE TRIÁNGULOS
RESOLUIÓN DE TRIÁNGULOS Págin 0 PR EMPEZR, REFLEXION Y RESUELVE Prolem Pr lulr l ltur de un árol, podemos seguir el proedimiento que utilizó Tles de Mileto pr llr l ltur de un pirámide de Egipto: omprr
Problema 1 Calcular el equivalente Norton del circuito de la figura. E 1 = 1V; E 2 = 2V; I g = 1A; R 1 = 1 ; R 2 = 2 ; R 3 = 3 ; R 4 = 4 R 1 R 2 R 2
Exmen Finl Junio - Eletroteni Generl 1 er Cutrimestre/Teorí de Ciruitos 4º Curso de Ingenierí Industril Espeilidd Orgnizión Indsutril 11-VI-2001 Prolem 1 Clulr el equivlente Norton del iruito de l figur.
se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución.
Euiones e ineuiones de Primer Grdo on un inógnit Se P () un euión polinómi, on P() un polinomio, resolver l mism es enontrr los eros o ríes de P(), es deir, los vlores de que nuln diho polinomio. X se
Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b.
TRASLACIÓN HORIZONTAL (DESPLAZAMIENTO HORIZONTAL) Pr estudir l trslción horizontl, se debe fijr primero el vlor del prámetro y después vrir el vlor del prámetro b. Veremos que l función b es el resultdo
Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida
Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de
RELOJ SOLAR ANALEMÁTICO Esteban Esteban Atrévete con el Universo
RELOJ SOLAR ANALEMÁTICO Estebn Estebn Atrévete on el Universo Un reloj solr pr el ptio del instituto Puede ser muy motivdor pr el lumndo olborr en l elborión de un reloj solr permnente situdo en el exterior
TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)
.0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems
pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.
LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 + + + + 4 4 n n + es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de
Pertinencia Social y Participación Popular
MOULO I-INTROUTORIO 10 HORS I FH HOR TIVI LUGR GRUPO VIOONFRNI/ 8:00-11:30 a.m. ONVRSTORIO/TRNSFORMIÓN TOOS UNIVRSITRI SL POSTGRO 2:00-3:30 p.m. INÁMI SOILIZ SL RUNIONS ONLUSIONS INIVIULS Y 4:00-5:20 p.m.
Definiciones de seno, coseno OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Definiciones de seno, coseno y tangente.
89566 _ 009-06.qxd /6/08 :55 Págin Trigonometrí INTRODUCCIÓN En est unidd se pretende que los lumnos dquiern los onoimientos ásios en trigonometrí, que serán neesrios en ursos posteriores, sore todo pr
De igual modo, a como hemos procedido en otros temas, recordemos cómo definimos en
TEMA VI: INTEGALE MÚLTIPLE VI. INTEGALE DOBLE. De igul modo, omo hemos proedido en otros tems, reordemos ómo deinimos en álulo de un vrile l integrl deinid ( )d ; se deine omo el límite de sums de iemnn,
Ejercicios TIPO de estequiometría Factores Conversión 4º ESO diciembre
Ejeriios TIPO e estequiometrí Ftores Conversión 4º ESO iiemre 011 1 1. Cálulos ms ms. Cálulos ms volumen. Cálulos volumen volumen 4. Cálulos on retivos impuros 5. Cálulos on renimiento istinto el 100 %
SEMEJANZA DE TRIÁNGULOS
MISIÓN 010-I GEOMETRÍ SEMEJNZ E TRIÁNGULOS 1. EFINIIÓN os triángulos se llmn semejntes uno tienen sus ángulos respetivmente ongruentes y los los homólogos proporionles. Los los homólogos son los opuestos
Sinopsis. Caracterización de ángulos en su entorno. Se recomienda recurso interactivo. Adobe Edge Animator. Para dibujos: Adobe Illustrator Corel Draw
AN_M_G08_U04_L02_03_04 Se reomiend reurso intertivo Sinopsis Un vtr similr Ninj expli el tem ángulos lternos internos y externos, olterles, orrespondientes y opuestos l vértie. Adoe Edge Animtor Pr diujos:
Figura 1. Teoría y prática de vectores
UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio UDB Físi Cátedr FÍSICA I VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo
pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.
LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 4 n 4 n es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de un sucesión
LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS
L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic
Clasifica los siguientes polígonos. a) b) c) d)
1 FIGURS PLNS EJERIIS PR ENTRENRSE Polígonos 1.44 lsific los siguientes polígonos. ) b) c) d) ) Pentágono irregulr cóncvo. b) Heptágono regulr convexo. c) ctógono irregulr cóncvo. d) Hexágono irregulr
Haga clic para cambiar el estilo de título
Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles
perspectiva cónica & proyección de sombras
expresión grái rojs mioletti primer ño este ossier es sólo un poyo el ontenio pso en lses, pensno en reorzr oneptos que pueen ser un tnto omplejos e explir... y más, e entener. l prouni on l que se ps
-5x 2 4ay 4-1 4b 2 z 2 3a 2 x 4 4a 2 b
MsMtes.om Coleiones de tividdes Expresiones lgebris Complet l siguiente tbl, referid los monomios que se indin. -5y x 6 x y x x 5 Coefiiente Grdo. Coefiiente Grdo Prte literl Prte literl bx x x b -x x
MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II
MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II CURSO 0/06 PRIMERA SEMANA Dí 24/0/06 ls 9 hors MATERIAL AUXILIAR: Cluldor finnier DURACIÓN: 2 hors 1. Préstmos ) Teorí. Estudir rzondmente los préstmos que
Resolución de triángulos rectángulos
Resoluión de triángulos retángulos Ejeriio nº 1.- Uno de los tetos de un triángulo retángulo mide 4,8 m y el ángulo opuesto este teto mide 4. Hll l medid del resto de los ldos y de los ángulos del triángulo.
1. Conceptos previos. Traslación gráficas en los ejes de coordenadas
Tem 8. Cónis. Coneptos previos. Trslión gráfis en los ejes de oordends.... L irunfereni... 3.. Definiión euión de l irunfereni... 3.. Euión de l rets tngentes normles l irunfereni.... 6.3 Posiiones reltivs
FUNCIONES ELEMENTALES
FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() = m + n Sus gráfics son rects pr representrls bst con obtener dos puntos
LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco
LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco
Tema 5. Trigonometría y geometría del plano
1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene
CURSO DE MATEMÁTICA 1. Facultad de Ciencias
CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl
MATEMÁTICAS II SISTEMAS DE ECUACIONES
Mite Gonále Jurrero Proles PU. Sistes de euiones. SISTEMS DE ECUCIONES. Considérese el siguiente siste de euiones lineles (en él,, son dtos; ls inógnits son,, Si, son no nulos, el siste tiene soluión úni.
VECTORES: DERIVADAS E INTEGRALES
VECTOES: DEIVADAS E INTEGALES ( ), calcular: Siendo el vector de componentes 1, sen( t), cos t Solución: I.T.I. 93, I.T.T. 05 Derivando componente a componente: ( 0, cos( t), sen t (1) ) Derivando de nuevo:
TRIGONOMETRÍA (4º OP. A)
SEMEJANZA DE TRIÁNGULOS TRIGONOMETRÍA (4º OP. A) Dos figurs son semejntes undo tienen l mism form: Dos triángulos son semejntes si tienen: Sus ldos proporionles: r rzón de semejnz ' ' ' Sus ángulos, respetivmente
VECTORES Magnitudes escalares y vectoriales Vectores Figura 1.1 Figura 1-1 vector. Año: 2010
UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio --- UDB Físi Cátedr VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo de su
7.1 Ecuación en forma común o canónica de la hipérbola. En la gráfica dada a continuación (Fig. 1) es posible encontrar los elementos siguientes:
UNIDAD VII. LA HIPÉRBOLA. DEFINICIÓN: L Hipérol es el onjunto de puntos en el plno u difereni de sus distnis dos puntos fijos en el mismo plno, llmdos foos, es onstnte e igul. 7.1 Euión en form omún o