FUNDICIONES BLANCAS AL NIQUEL CROMO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FUNDICIONES BLANCAS AL NIQUEL CROMO"

Transcripción

1 FUNDICIONES BLANCAS DE ALTA ALEACIÓN La especificación ASTM A 532 cubre los requisitos de composición y dureza de las fundiciones blancas utilizadas para el servicio de resistencia a la abrasión. A las fundiciones blancas de alta aleación se las puede clasificar en tres grandes grupos: A) Fundiciones Blancas al niquel - cromo: Estas fundiciones son de bajo contenido de cromo 1 4 % y 3 5 % Ni, existiendo una aleación con contenidos de cromo del 7 al 11%. Ver tabla 1 Tabla 1 B) Fundiciones Blancas al cromo molibdeno con contenidos de Cr del 11 al 23% y contenido de Molibdeno de hasta el 3%, con pequeñas adiciones de Ni o Cu C) Fundiciones Blancas con contenidos de Cr entre 25 al 28 % y con contenidos de aleantes como Ni o Mo de hasta 1,5 %. Estas aleaciones son identificadas como Ni Hard tipo I IV. Las fundiciones blancas con contenidos de cromo de hasta el 4 %, desarrollan una dureza entre 350 a 550 HB, teniendo los carburos del tipo M 3 C.( baja aleación) Las fundiciones blancas de alta aleación desarrollan una dureza de 450 a 800 HB, siendo los carburos del tipo M 7 C 3, los cuales son más duros que los M3C. FUNDICIONES BLANCAS AL NIQUEL CROMO Este grupo de aleación es el de más antiguo desarrollo o uso, siendo utilizados por más de 50 años. Tienen una buena relación costo/servicio, y son utilizados en minería. En las fundiciones blancas de matriz martensítica el niquel (elemento principal de esta aleación) con contenidos de 3 al 5 % es el encargado de suprimir la transformación de la matriz austenítica a perlítica, asegurando una estructura dura (martensítica, usualmente con cantidades significativas de austerita retenida). La inclusión del cromo con contenidos que varían del 1,4 al 4 % es para asegurar que el hierro solidifique en forma de carburo, es decir para contrarrestar el efecto grafitizante del niquel. Ver metalografía de la fig 1 1

2 Fig 1 La composición óptima de la fundición blanca al niquel cromo requiere de varios factores como ser dimensiones, peso de la pieza y el más importante requerimiento en servicio. La resistencia a la abrasión es función de la dureza y del volumen de carburos en la micro estructura. Si la resistencia al desgaste es el primer requisito y la resistencia al impacto el secundario entonces se utiliza una aleación con alto contenido de carbón como la ASTM A 532 clase I tipo A ( Ni Hard I) Si la condición de impacto es necesaria, entonces se utiliza aleaciones con bajo contenido de carbono ASTM Clase I Tipo B ( Ni Hard 2), debido a que tiene menos carburos y por lo tanto más resistencia ( tenacidad). La clase I tipo C es un grado especial que fue desarrollado para producción de bolas de molienda ( Ni Hard Tipo 3). El Ni hard Tipo 4 o ASTM A 532 tipo I clase D es una aleación de Niquel Cromo modificada con tenores de cromo del 7 al 11 % y con incrementos de niveles de niquel del 5 al 7%. En las aleaciones de baja aleación, la fase eutéctica del hierro carburo es del tipo M3C, el cual se forma como una red continua en el hierro, en las de alto cromo, tipo D, se promueve los carburos de cromo del tipo M 7 C 3, el cual presenta un eutéctico de distribución discontinua, con lo cual le provee una mayor resistencia a la fractura por impacto, a su vez el alto contenido de cromo provee una resistencia a la corrosión la cual es útil cuando se debe manejar barros corrosivos. CONTROL DE COMPOSICIÓN El contenido de carbón es variable, dependiendo de la condición de servicio requerido: Resistencia a la abrasión: 3,2 a 3,6% C Resistencia al impacto : 2,7 a 3,2% C Niquel: El contenido de este aleante se incrementa con el aumento de la sección ó el tiempo de enfriamiento de la pieza fundida, para inhibir la transformación perlítica. Para piezas de 38 a 50 mm de espesor, el contenido de niquel de 3,4 a 4,2 % es suficiente para suprimir la transformación perlítica hasta que el molde se enfríe. Secciones mayores pueden requerir hasta 5,5 % de Ni para inhibir la transformación perlítica. 2

3 Es importante limitar el contenido de niquel necesario al control de la perlita, exceso de Niquel aumenta la cantidad de austerita retenida y disminuye la dureza. Silicio: El silicio es necesario por dos razones a) una mínima cantidad de silicio es necesario para proveer fluidez al metal y producir una escoria fluida. b) De igual importancia es el efecto de dureza as cast, incrementando el silicio a rangos de 1 a 1,5 %, se incrementa la dureza por un incremento en la martensita. Altos contenidos de silicio pueden ( y de hecho lo hacen) promover la perlita y con ello se puede aumentar el niquel requerido. Cromo: Se adiciona para contrarrestar el efecto grafitizante del niquel y del silicio en las fundiciones blancas tipo A, B y C con rangos de 1,4 a 3%, debiéndose subir dicho contenido con el aumento de la sección. En las aleaciones Tipo D, con un rango de cromo entre 7 al 11%, usualmente 9 %, se adiciona para promover los carburos tipos M 7 C 3 el cual es duro. Manganeso: Un valor típico es de 0,8 % pero la especificación ASTM A 532 lo pone como máximo en 1,3%. El manganeso más potente estabilizador de la austenita que el niquel, promoviendo un aumento de la austerita retenida y como consecuencia baja dureza as cast. Por dicha razón se lo debe acotar a valores bajos. Cobre: Incrementa ambos: el endurecimiento y la cantidad de austenita retenida, por lo tanto debe ser controlado por la misma razón que se debe limitar el Manganeso. El cobre es un sustituto del Niquel. Molibdeno: Es un potente agente endurecedor, siendo usado en piezas de secciones groseras para evitar la perlita y por lo tanto aumentar la dureza. PRACTICA DE COLADA Las altas temperaturas de colado agravan la contracción de solidificación y los puntos calientes generados pueden producir micro rechupes y estructura dendrítica grosera, arrastre de arena, sinterización de la arena. Por lo tanto es importante controlar la temperatura de colado en piezas con secciones gruesas. La practica de temperatura de colado baja no solo es necesario para evitar los defectos de solidificación. Sino para evitar loe defectos de penetración del metal en el molde, a su vez la baja temperatura de colada es también efectiva para el control del tamaño de las dendritas y el tamaño del los carburos eutécticos. La temperatura eutéctica para las aleaciones de Cr Ni es de aproximadamente de 1200ºC, comenzando la solidificación ( fuera de equilibrio) entre 1280 a 1200ºC ( estos valores dependen de la composición9. La temperatura de colada es de 100ºC por sobre la línea de líquidus, debiendo ser mayores si se cuelan piezas finas. Estas aleaciones pueden ser coladas en arena, moldes permanentes, obteniendo la mayor dureza, resistencia y tenacidad al impacto cuando se cuelan en coquilla, con respecto a las piezas coladas en arena debido a que los carburos son más finos, recomendándose que se acoquille la parte de la pieza que va a trabajar para aumenta la resistencia a la abrasión. 3

4 El moldeo en arena puede ser hecho en cualquier proceso de moldeo a saber: tierras sintéticas, arenas con resinas de fraguado en frío, siendo la única condición que el molde sea lo suficientemente rígido para minimizar los defectos de contracción. Las fundiciones blancas son proclives a fisurarse en caliente, ocasionalmente las piezas se pueden fisurar al extraerlas del molde, o debido a la falta de colapsabilidad del molde o noyos. Estas aleaciones poseen una alta contracción líquido sólido de alrededor de 5 %, por lo tanto requiere un sistema de alimentación más grande que en las fundiciones de hierro gris. Se debe tener cuidado en el posicionamiento del sistema de alimentación para que sea fácilmente removible, los montantes no deben cortarse con soplete, debido a la fragilidad del metal y la mala conducción del calor haría que se fisure o rompa la pieza. Para evitar esto se debe cortar con discos abrasivos., siendo más fácil el corte cuando la pieza alcanza la temperatura ambiente y toda su estructura es martensítica ( la transformación martensítica comienza a los 230ºC). Limpieza: Este es un paso crítico en la producción de las aleaciones de Ni Cr, debido a que se los desmolda a alta temperatura, podemos tener grandes tensiones residuales y como resultado se fisuración. El enfriamiento se sugiere que se haga en el molde debido a que en la última etapa de enfriamiento ocurre la transformación martensítica. Esta precaución es mandatorio en piezas de espesor grosero. Tratamiento térmico: Generalmente se les hace un tratamiento de alivio de tensiones ( recocido subcrítico) en un rango de temperatura de ºC por al menos 4 Horas, debido a que la matriz, en su condición as cast, con dicho tratamiento incrementa la resistencia y la tenacidad en un 50 a 80 %, dicho tratamiento de alivio de tensiones no reduce la dureza o la resistencia a la abrasión. En el Ni Hard 4 ( clase 1 tipo D), cuando la dureza era insuficiente se le practicaba un Tratamiento térmico a la temperatura superior a la crítica ( de 750 a 790ºC) con un tiempo de mantenimiento de 8 hs, con un posterior enfriamiento al aire o en horno a una velocidad no mayor de 30ºC/h, siguiendo un alivio de tensiones o temper. Tratamiento a bajas temperaturas. Es una practica común realizar un tratamiento sub cero cuando se obtiene baja dureza. Para alcanzar una dureza de 550HB, es necesario que la estructura as cast ( austenítica martensítica) tenga al menos un 60 % de martensita. Con un % de martensita se obtiene una dureza de 650 HB. Para reducir la cantidad de austenita retenida y por lo tanto aumentar el contenido de la martensita se realiza el tratamiento entre 70ºC a 185ºc, variando el tiempo entre ½ hora a 1 hora, luego del tratamiento se obtiene 100HB más. Una estructura típica de una aleación Clase 1 tipo D se observa en la figura 3. 4

5 Figura 3 Aplicaciones: Debido a su bajo costo, las fundiciones blancas martensíticas al Ni-Cr se las utiliza masivamente en minería. Clase 1 Tipo A: Se las usa cuando se requiere máxima resistencia a la abrasión Clase 1 Tipo B: Para requerimientos de mayor tenacidad con moderado impacto. Clase 1 Tipo C ( Ni Hard 3): Es utilizado para la producción de bolas de molienda, requiriendo un tratamiento térmico de alivio de tensiones a 260ºC 315ºC por 8 hs, para que alcance una adecuada resistencia al impacto. Clase 1 tipo D: Tiene los mayores valores de resistencia y tenacidad usándose para las aplicaciones más severas que justifique un mayor costo, es común mente utilizado para la fabricación de bombas de voluta que transportan líquidos con sustancias abrasivas. FUNDICIONES BLANCAS DE ALTO CROMO En las aleaciones de alto cromo, utilizadas para la resistencia a la abrasión existe un balance entre la resistencia al desgaste y la tenacidad. Variando la composición química y el tratamiento térmico, se puede ajustar las propiedades a la mayoría de las aplicaciones abrasivas. Esta clase de fundiciones de alto cromo, presenta en la estructura un eutéctico de carburo duro M 7 C 3, discontinuo, que es opuesto al carburo M 3 C, que es continuo y mucho más blando, siendo este tipo de estructura la encontrada en las aleaciones con menos contenido de cromo. Clasificación de las fundiciones de alto cromo: La norma ASTM A 532 cubre la composición y la dureza de 2 grupos de fundiciones blancas. ASTM A 532, Clase II ( Fundiciones al Cromo Molibdeno) con contenido de cromo entre 11 al 22% y con un contenido de molibdeno de hasta 3,5 %Mo, pudiendo ser elaborada con una matriz austenítica o austenítica- martensítica, y por medio de tratamiento térmico se obtiene una matriz martensítica para obtener una 5

6 máxima resistencia a la abrasión, siendo considerada la más dura de todas las fundiciones blancas. Comparadas con las fundiciones blancas al niquel cromo de menor aleación, el eutéctico de carburo son más duros pudiéndose tratar con TT para alcanzar una alta dureza en la pieza. La adición de Molibdeno, cobre y niquel es para evitar la estructura perlítica y de ese modo asegurar la máxima dureza. ASTM A 532 Clase III: Las fundiciones de alto cromo representan a las primeras fundiciones blancas, datando la primer patente de 1917 con contenidos de cromo de 23 o 28% con contenido de molibdeno de hasta 1,5%, adicionándose para prevenir la perlita. El contenido de Ni y de Cu es del 1%. MICROESTRUCTURA: Carburos: Los carburos en los hierros de alto cromo son muy duros y resistente al desgaste pero son frágiles. En regla general la resistencia al desgaste se incrementa por un incremento de la cantidad de carburos ( incrementando el contenido de carbono), mientras que la tenacidad se alcanza por un incremento de la proporción de la matriz metálica ( reduciendo el contenido de carbono). En la figura 4 se observa la influencia del contenido de carbono en la forma y distribución de la fase carburo. Figura 4 En la figura 4 C se observan carburos largos exagonales, los cuales ocurren en las aleaciones hiper eutécticas ( cuando el contenido de carbón excede el contenido eutéctico). 6

7 Estos carburos primario precipitan en el metal líquido antes de la solidificación, deben ser evitados en piezas con requerimiento de impacto. El contenido de carbono en el eutéctico cambia con el contenido de cromo, como se observa en la figura 5. Figura 5 AS CAST AUSTENÍTICA La solidificación en las aleaciones hipo eutécticas ocurre por la formación de dendritas de austenita seguidas por la formación de un eutéctico de austenita y carburos de cromo M 7 C 3. Bajo condiciones de equilibrio precipitan carburos de cromo desde la matriz austenítica por encima de la temperatura de enfriamiento del eutéctico a la temperatura crítica, alrededor de 760ºC, ocurriendo la transformación de ferrita y carburo en el subsiguiente enfriamiento. Sin embargo cuando se enfría en condiciones de no equilibrio ( caso que ocurre en las mayorías de las piezas convencionales) la austenita está sobre saturada de carbono y de cromo. Debido a estos altos contenidos de carbón y cromo se desarrolla una fundición de hierro con una austenita meta estable dando perlita, Figura 6, inhibiendo la transformación bainítica. Con suficientes elementos de aleación como molibdeno, manganeso, níquel y cobre, la transformación perlática puede ser evitada en cualquier sección fundida. Figura 6 7

8 AS CAST MARTENSÍTICA: La estructura martensítica puede obtenerse en forma as cast en secciones groseras que se enfrían lentamente en el molde, con velocidades de enfriamiento lentas, la estabilización de la austenita está completa y ocurre una transformación martensítica parcial, obteniendo una matriz con gran cantidad de austenita retenida, ver Figura 7, y por lo tanto con valores de dureza menores a los obtenidos a una pieza con matriz martensítica obtenida por TT. Fig 7 Estas piezas deben contener la suficiente cantidad de elementos de aleación para suprimir la perlita en el enfriamiento. Algunas composiciones ( como las de alta en silicio) han sido desarrollada para ayudar a la formación martensítica en los tratamientos de enfriamiento. El tratamiento térmico subcrítico ha sido usado para reducir el contenido de austenita y al mismo tiempo aumentar la dureza y resistencia. TRATAMIENTO TÉRMICO MARTENSÍTICO Para obtener un máximo de dureza y resistencia a la abrasión, se debe obtener una matriz totalmente martensítica mediante un tratamiento térmico. La colada debe tener los suficientes elementos de aleación para evitar la formación de perlita en el enfriamiento. SELECCIÓN DE LA COMPOSICIÓNQUÍMICA PARA OBTENER LA ESTRUCTURA DESEADA Muchas piezas de secciones complejas se utilizan en la condición as cast con matriz austenítica / martensítica, si se desea evitar la perlita se debe adicionar los elementos de aleación requeridos. A medida que se incrementa el contenido de carbono, se forman carburos adicionales y debe adicionarse más cromo. En la tabla 2 se observa una guía de la relación C/Cr necesaria para prevenir la formación de perlita en distintas clases de fundiciones as cast. La óptima performance se alcanza con un TT para obtener la estructura martensítica. 8

9 Tabla 2 Cuando se realiza el Tratamiento térmico, se debe enfriar desde la temperatura de austenización en aire. No es aconsejable usar velocidades de enfriamiento más rápida ya que se corre el riesgo de fisuración debido a las tensiones térmicas por lo tanto el material debe tener los suficientes elementos de aleación para que tome temple al aire. Se debe tener cuidado con excesos de Mn, Ni y Cu ya que promueven la austenita retenida. Es recomendable obtener la dureza deseada con molibdeno. En la tabla 3 se observa para distintos espesores una guía con los elementos de aleación necesarios para poder templar al aire. Tabla 3 PRACTICA DE FUSIÓN Se debe mantener el contenido de silicio bajo 0,6%, si se obtiene con valores menores de 0,4% se va a tener problemas de fluidez de la escoria y altos contenidos de silicio pueden promover la formación de perlita.( ojo con el fecr ya que puede tener altos contenidos de silicio) El Mn se adiciona en un rango de 0,5 a 1,5% según ASTM A 532. Si se funde en un horno con revestimiento ácido se debe limitar al 1% y adicionar el resto en cuchara. En la fusión no es necesario una alta temperatura debido a la agitación del baño, usualmente se utiliza 1480ºC como temperatura estimativa para trasvasar a las cucharas. En el caso del horno de arco se utiliza una temperatura final de 1560º C para asegurarse la homogeneidad del líquido, no existiendo problemas particulares asociados a una temperatura alta de sobrecalentamiento, salvo las consabidas pérdidas por evaporación del cromo, manganeso, silicio. Si se requiere limitar el tamaño de las dendritas se debe adicionar Titanio. La adición del aluminio puede provocar problemas de sanidad ( rechupes) y problemas en las propiedades mecánicas. PRACTICA DE COLADA Las altas temperaturas de colada agravan los problemas de contracción, micro rechupes y estructura dendrítica grosera. Es importante el control de la temperatura de colada si 9

10 las secciones de las piezas son groseras., debiéndose colar a bajas temperaturas para evitar los problemas de la contracción líquida ( rechupes), penetración del metal en el molde y sinterización de la arena. Las bajas temperaturas de colada son efectivas para el control del tamaño de las dendritas, evitando que el eutéctico de carburo tenga una estructura grosera. El eutéctico de varias fundiciones de alto cromo varían entre 1230 a 1270 º C, comenzando la solidificación a 1350º C ( dependiendo de la composición) Las piezas con un espesor de 4 son llenadas a 1345º C- 1400º C, siendo utilizadas mayores temperaturas cuando las piezas son más finas, teniendo que tener siempre presente la configuración de las piezas cuando se selecciona la temperatura de colada. LIMPIEZA La limpieza es un paso crítico para producir con éxito una pieza con alto cromo, siendo una causa frecuente de fisuración el desmolde de la pieza a muy alta temperatura. El enfriamiento hasta temperatura ambiente es más adecuado hacerlo en el molde para evitar que se fisure la pieza, especialmente si se forma martensita en la última fase de enfriamiento. Esta condición es mandatoria en piezas de secciones groseras, usadas en la condición as cast, donde se desea que posea una estructura bruta de colada Austenítico Martensítico. En las fundiciones que son tratadas térmicamente la estructura que se busca en la condición as cast es la perlítica. Esta estructura es más blanda, facilita la remoción del sistema de alimentación, minimiza las tensiones térmicas que causan la fisuración. TRATAMIENTO TÉRMICO La micro estructura martensítica, obtenida por medio de un tratamiento térmico, da más resistencia al desgaste. En la figura 8 se observa el proceso del tratamiento térmico observándose la importancia de un lento calentamiento ( hasta 650 ºC) para evitar fisuras. Figura 8 Para formas complejas, una velocidad máxima de 30º C/h es la recomendada. Para formas más simples y con estructuras totalmente perlíticas se puede calentar a velocidades mayores. AUSTENIZACIÓN: En la figura 9 se observa la relación entre la temperatura de austenización y la dureza, la cual varía para cada composición. La temperatura de austenización determina la cantidad de carbono que permanece en solución en la matriz austenítica. A altas temperatura se incrementa la estabilidad de la austenita y la alta cantidad de austenita retenida reduce la dureza. Bajas temperaturas resultan en austenita de bajo contenido de carbono, reduciendo la dureza y la resistencia a la abrasión. 10

11 Figura 9 Figura 10 El tratamiento térmico produce una desestabilización de la austenita, precipitando finos carburos secundarios M 7 C 3 en una matriz austenítica. Ver figura 10. Las fundiciones de clase 2 con contenidos de Cromo del %Cr son austemperizadas en el rango de temperatura de 955º C a 1010º C. Las de clase 3, con contenidos de cromo del 23 al 28% son austemperizadas en el rango de temperatura de 1010 a 1095ºC. Las piezas deben ser mantenidas a temperatura por un tiempo lo suficientemente largo para que puedan salir del equilibrio los carburos de cromo y así obtener la dureza requerida. Se necesita un mínimo de 4 horas a temperatura. Para secciones gruesas se utiliza por regla 1 hora por cada pulgada de espesor. TEMPLADO ( QUENCHING) Se debe templar al aire, con ventilación para producir un flujo vigoroso de aire desde la temperatura de austenización hasta por debajo del rango de temperatura de perlitización, esto es entre 550 a 600ºC. La velocidad de enfriamiento subsiguiente debe ser reducida para minimizar las tensiones y se debe enfriar en aire calmo o en horno de enfriamiento, hasta la temperatura ambiente. Las piezas de formas complejas y secciones gruesas son usualmente puestas en hornos entre 550º C 600º C, para permitir la uniformidad de la temperatura, una vez uniformada la pieza se puede enfriar en aire calmo o dentro del horno de enfriamiento hasta la temperatura ambiente. TEMPERING ( REVENIDO) Las piezas se pueden poner en servicio en la condición como endurecida sin ningún revenido o recocido subcrítico, sin embargo se recomienda un revenido entre 205 a 230 ºC de 2 a 4 horas para restaurar algo de la tenacidad de la matriz y hacer un alivio de tensiones residuales. La micro estructura, luego del tratamiento de endurecimiento, siempre contiene austenita retenida en un rango de 10 al 30 %, algo de austenita retenida se transformará luego del tempering a baja temperatura. TRATAMIENTO TÉRMICO SUB CRÍTICO Se utiliza a veces luego del TT martensítico para reducir el contenido de austenita retenida y aumentar la resistencia al exfoliado ( desconche). Los parámetros necesarios para eliminar la austenita retenida son sensibles al tiempo, temperatura y composición de la pieza. Un rango típico es de 480ª C a 540ºC con un tiempo de 8 a 12 horas, si nos 11

12 excedemos en el tiempo o en la temperatura del tratamiento resulta en un ablandamiento y en una drástica reducción en la resistencia a la abrasión. Como resultado de un insuficiente tempering obtenemos una incompleta eliminación de la austenita. La cantidad de austenita retenida no se puede observar metalográficamente, utilizándose técnicas magnéticas ( como Mössbahuer) 12

TEMA 9. TRANSFORMACIONES DE FASE Y TRATAMIENTOS TÉRMICOS EN ALEACIONES Fe-C

TEMA 9. TRANSFORMACIONES DE FASE Y TRATAMIENTOS TÉRMICOS EN ALEACIONES Fe-C TEMA 9. TRANSFORMACIONES DE FASE Y TRATAMIENTOS TÉRMICOS EN ALEACIONES Fe-C Los Diagramas de Fase representan estados y transformaciones en condiciones de equilibrio, pero no aportan información sobre

Más detalles

los Aceros El porqué? Tratamientos térmicos Microestructura) Propiedades d Mecánicas FCEIA-UNR C Materiales FCEIA-UNR C-3.20.

los Aceros El porqué? Tratamientos térmicos Microestructura) Propiedades d Mecánicas FCEIA-UNR C Materiales FCEIA-UNR C-3.20. 11. Tratamientos t Térmicos de los Aceros El porqué? Tratamientos térmicos (Temperatura y tiempo) Microestructura) Propiedades d Mecánicas 1 El factor TIEMPO La mayoría de las transformaciones en estado

Más detalles

FUNDICIONES. Las fundiciones son aleaciones de hierro, también manganeso, fosforo y azufre. Las

FUNDICIONES. Las fundiciones son aleaciones de hierro, también manganeso, fosforo y azufre. Las FUNDICIONES Las fundiciones son aleaciones de hierro, carbono y silicio que generalmente contienen también manganeso, fosforo y azufre. Las fundiciones, que son las más utilizadas en la práctica, aparecen

Más detalles

ESPECIFICACIÓN DE LA MATERIA PRIMA

ESPECIFICACIÓN DE LA MATERIA PRIMA CAPÍTULO 3: ESPECIFICACIÓN DE LA MATERIA PRIMA Página 20 3. ESPECIFICACIÓN DE LA MATERIA PRIMA 3.1 Selección del material La elección del material adecuado para fabricar una pieza depende esencialmente

Más detalles

CAPÍTULO III TRATAMIENTOS TÉRMICOS DE LAS FUNDICIONES GRISES

CAPÍTULO III TRATAMIENTOS TÉRMICOS DE LAS FUNDICIONES GRISES CAPÍTULO III TRATAMIENTOS TÉRMICOS DE LAS FUNDICIONES GRISES 3.1 Introducción a los tratamientos térmicos. El tratamiento térmico de las fundiciones se realiza fundamentalmente para eliminar las tensiones

Más detalles

METALOGRAFÍA DE LA FUNDICIÓN. Introducción. Tipos De Fundición

METALOGRAFÍA DE LA FUNDICIÓN. Introducción. Tipos De Fundición 1 METALOGRAFÍA DE LA FUNDICIÓN La metalografía microscópica (o micrografía de metales) estudia los productos metalúrgicos, con el auxilio del microscopio, objetivando determinar sus constituyentes y su

Más detalles

Durelloy LAMINADO EN CALIENTE ALEACIÓN CON TRATAMIENTO TÉRMICO. Grados de Carbón Grados cromo-moly Grados cromo-níquel-moly C10xx* 41xx* 43xx*

Durelloy LAMINADO EN CALIENTE ALEACIÓN CON TRATAMIENTO TÉRMICO. Grados de Carbón Grados cromo-moly Grados cromo-níquel-moly C10xx* 41xx* 43xx* Durelloy Código de Color ROJO Durelloy es una aleación de acero horno eléctrico con un buen balance de granos finos y un endurecimiento por tratamiento térmico de 28 32 Rockwell C. Durelloy es fabricado

Más detalles

Ingeniería Mecánica. Guia de Materiales. Materiales alternativos.

Ingeniería Mecánica. Guia de Materiales. Materiales alternativos. Ingeniería Mecánica Guia de Materiales. Materiales alternativos. 1) Aceros al Carbono. Tipos y Características. Ejemplos. Un acero resulta básicamente una aleación de hierro y carbono con un contenido

Más detalles

BLOQUE IV.- Materiales metálicos. Tema 10.- Fundiciones

BLOQUE IV.- Materiales metálicos. Tema 10.- Fundiciones BLOQUE IV.- Materiales metálicos * William F. Smith Fundamentos de la Ciencia e Ingeniería de Materiales. Tercera Edición. Ed. Mc-Graw Hill * James F. Shackerlford Introducción a la Ciencia de Materiales

Más detalles

Práctica 10 RECONOCIMIENTO DE LOS MICROCONSTITUYENTES DE LAS FUNDICIONES DE HIERRO

Práctica 10 RECONOCIMIENTO DE LOS MICROCONSTITUYENTES DE LAS FUNDICIONES DE HIERRO Práctica 10 RECONOCIMIENTO DE LOS MICROCONSTITUYENTES DE LAS FUNDICIONES DE HIERRO OBJETIVO El alumno identificará los constituyentes principales de los diferentes tipos de hierro fundido. INTRODUCCIÓN

Más detalles

Tratamientos térmicos

Tratamientos térmicos Tratamientos térmicos Endurecimiento del acero Temple (revenido) Recocido Cementado Carburización por empaquetado Carburización en baño líquido Carburización por gas Carbonitrurado, cianurado y nitrurado

Más detalles

ADI: Obtención de ausferrita a partir de fundiciones esferoidales y su uso

ADI: Obtención de ausferrita a partir de fundiciones esferoidales y su uso ADI: Obtención de ausferrita a partir de fundiciones esferoidales y su uso José Crisanti * Se analiza cómo es posible mejorar las propiedades mecánicas de las fundiciones de hierro gris con grafito esferoidal

Más detalles

XVII- ACEROS DE HERRAMIENTAS PARA TRABAJO EN FRÍO

XVII- ACEROS DE HERRAMIENTAS PARA TRABAJO EN FRÍO Metalografía y Tratamientos Térmicos XVII - 1 - XVII- ACEROS DE HERRAMIENTAS PARA TRABAJO EN FRÍO Las normas SAE clasifican los aceros para herramientas y matrices en los siguientes grupos: W: de temple

Más detalles

ACEROS ESPECIALES. Página 1 de 11. HH Aleaciones S.A. de C.V Políticas de Privacidad Todos los derechos reservados México.

ACEROS ESPECIALES. Página 1 de 11. HH Aleaciones S.A. de C.V Políticas de Privacidad Todos los derechos reservados México. ACEROS ESPECIALES Página 1 de 11 1018 ACERO AL CARBON Análisis Químico (Típico) % C Mn P S 0.15/0.20 0.60/0.90 0.040 máx. 0.050 máx. Propiedades Mecánicas Resistencia a la Limite Elongacion Reducion de

Más detalles

PROPIEDADES ESTRUCTURALES I. Tratamiento Térmico del Acero

PROPIEDADES ESTRUCTURALES I. Tratamiento Térmico del Acero PROPIEDADES ESTRUCTURALES I Tratamiento Térmico del Acero Tratamiento térmico del acero Contenido: 1. Introducción 2. TT de Recocido 3. TT de Normalizado 4. TT de Temple 5. TT de Martempering 6. TT de

Más detalles

Estructuras de equilibrio

Estructuras de equilibrio Estructuras de equilibrio Austenita. Fase de alta temperatura que se obtiene calentando entre 28 a 56 por encima de la temperatura A 3 del acero. Las temperaturas muy elevadas conducen al crecimiento de

Más detalles

2a Parte CIENCIA DE MATERIALES FAC. DE CS. DE LA ELECTRÓNICA OTOÑO 2009

2a Parte CIENCIA DE MATERIALES FAC. DE CS. DE LA ELECTRÓNICA OTOÑO 2009 2a Parte CIENCIA DE MATERIALES FAC. DE CS. DE LA ELECTRÓNICA OTOÑO 2009 Determinan el comportamiento de los materiales ante el calor. Conductividad térmica: propiedad de los materiales de transmitir el

Más detalles

Importancia del hierro en la metalurgia

Importancia del hierro en la metalurgia DIAGRAMA Fe - C Importancia del hierro en la metalurgia Afinidad química Capacidad de solubilidad de otros elementos Propiedad alotrópica en estado sólido Capacidad para variar sustancialmente la estructura

Más detalles

TEMA IV.- ALEACIONES DE HIERRO Y CARBONO

TEMA IV.- ALEACIONES DE HIERRO Y CARBONO TEMA IV.- ALEACIONES DE HIERRO Y CARBONO El hierro puro apenas tiene aplicaciones industriales, pero formando aleaciones con el carbono (además de otros elementos), es el metal más utilizado en la industria

Más detalles

GUÍA DE DISCUSIÓN DE CONCEPTOS Y PROBLEMAS. " DIAGRAMA Fe - Fe 3 C "

GUÍA DE DISCUSIÓN DE CONCEPTOS Y PROBLEMAS.  DIAGRAMA Fe - Fe 3 C UNIVERSIDAD DON BOSCO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA Asignatura: CIENCIA DE LOS MATERIALES CUESTIONARIO GUÍA DE DISCUSIÓN DE CONCEPTOS Y PROBLEMAS " DIAGRAMA Fe - Fe 3 C " 1.- Describir

Más detalles

TRATAMIENTO DE LOS METALES PARA MEJORAR SUS PROPIEDADES.

TRATAMIENTO DE LOS METALES PARA MEJORAR SUS PROPIEDADES. TRATAMIENTO DE LOS METALES PARA MEJORAR SUS PROPIEDADES. Del estudio de las microestructuras de los aceros y de las propiedades mecánicas de cada una de ellas se puede extraer una importante conclusión.

Más detalles

PRINCIPALES ELEMENTOS CONSTITUYENTES DE LA FUNDICIÓN ESFEROIDAL

PRINCIPALES ELEMENTOS CONSTITUYENTES DE LA FUNDICIÓN ESFEROIDAL PRINCIPALES ELEMENTOS CONSTITUYENTES DE LA FUNDICIÓN ESFEROIDAL Dentro de los factores más importantes a tener en cuenta en una eficiente nodulización podemos considerar como el más importante la composición

Más detalles

1.7.2. Diagrama de fases hierro - carbono

1.7.2. Diagrama de fases hierro - carbono Capítulo 7 Aleaciones Ferrosas 1.7. Acero al carbono y fundiciones 1.7.1. Clasificación de las aleaciones ferrosas El AISI (American Iron and Steel Institute) y el SAE (Society of Automotive Engineers)

Más detalles

Cuando una pieza de acero durante su tratamiento térmico sufre una oxidación superficial, esta experimenta pérdidas de sus propiedades mecánicas

Cuando una pieza de acero durante su tratamiento térmico sufre una oxidación superficial, esta experimenta pérdidas de sus propiedades mecánicas Cuando una pieza de acero durante su tratamiento térmico sufre una oxidación superficial, esta experimenta pérdidas de sus propiedades mecánicas reflejada por bajos valores de dureza, produciendo mayor

Más detalles

ACEROS PARA TRABAJO EN FRÍO 9

ACEROS PARA TRABAJO EN FRÍO 9 ACEROS PARA TRABAJO EN FRÍO 9 EN/DIN AISI UNE ~D3 F5212 (U12) D2 ~F5211 (U12 mejorado) ~S1 ~F5242 ~1.2721 F5305 ~O2 F5229 (U13) calidad especial Böhler también

Más detalles

Tema 15 Clasificación de los metales ferrosos.

Tema 15 Clasificación de los metales ferrosos. Tema 15 Clasificación de los metales ferrosos. Los aceros son aleaciones de hierro y carbono que pueden contener cantidades apreciables de otros elementos de aleación. Existe una gran cantidad de aleaciones

Más detalles

TEMA 3: ALEACIONES Fe-C, PROPIEDADES Y CLASIFICACIÓN. 2.- Formas de encontrar el carbono en las aleaciones férreas

TEMA 3: ALEACIONES Fe-C, PROPIEDADES Y CLASIFICACIÓN. 2.- Formas de encontrar el carbono en las aleaciones férreas TEMA 3: ALEACIONES Fe-C, PROPIEDADES Y CLASIFICACIÓN 1.- Estados alotrópicos del Hierro (Fe) Según las condiciones de temperatura, el hierro puede presentar diferentes estados, con mayor o menor capacidad

Más detalles

Los constituyentes metálicos que se pueden presentar en los aceros al carbono son:

Los constituyentes metálicos que se pueden presentar en los aceros al carbono son: DE LOS ACEROS Los constituyentes metálicos que se pueden presentar en los aceros al carbono son: Ferrita Cementita Perlita Sorbita Troostita Martensita Bainita Austenita El análisis de las microestructuras

Más detalles

Tema 14 Endurecimiento por transformación de fase. Tratamientos térmicos.

Tema 14 Endurecimiento por transformación de fase. Tratamientos térmicos. Tema 14 Endurecimiento por transformación de fase. Tratamientos térmicos. Las fases en equilibrio solamente pueden darse cuando el material se enfría muy lentamente desde la fase de austenita. Cuando el

Más detalles

TEMAS Diciembre Belén Molina Sánchez UNIVERSIDAD ANTONIO DE NEBRIJA ASIGNATURA: MATERIALES I

TEMAS Diciembre Belén Molina Sánchez UNIVERSIDAD ANTONIO DE NEBRIJA ASIGNATURA: MATERIALES I TEMAS 22-23 Diciembre 2005 Belén Molina Sánchez 1 CURVAS TEMPERATURA-TIEMPO-TRANSFORMACIÓN El tiempo: la tercera dimensión. En los diagramas de fases se exigía que los cambios de temperatura tuviesen lugar

Más detalles

TEMA 3: ALEACIONES Fe-C, PROPIEDADES Y CLASIFICACIÓN. 2.- Formas de encontrar el carbono en las aleaciones férreas

TEMA 3: ALEACIONES Fe-C, PROPIEDADES Y CLASIFICACIÓN. 2.- Formas de encontrar el carbono en las aleaciones férreas TEMA 3: ALEACIONES Fe-C, PROPIEDADES Y CLASIFICACIÓN 1.- Estados alotrópicos del Hierro (Fe) Según las condiciones de, el hierro puede presentar diferentes estados, con mayor o menor capacidad para disolver

Más detalles

Capítulo II TRATAMIENTOS TÉRMICOS Y SELECCIÓN DEL MATERIAL PARA LA FABRICACIÓN DE LEVAS

Capítulo II TRATAMIENTOS TÉRMICOS Y SELECCIÓN DEL MATERIAL PARA LA FABRICACIÓN DE LEVAS Capítulo II TRATAMIENTOS TÉRMICOS Y SELECCIÓN DEL MATERIAL PARA LA FABRICACIÓN DE LEVAS 2.1) Introducción. Como se dijo en el capítulo anterior, para que un mecanismo leva-seguidor sea vida útil de la

Más detalles

5b. DIAGRAMA HIERRO-CARBONO

5b. DIAGRAMA HIERRO-CARBONO 5b. DIAGRAMA HIERRO-CARBONO MATERIALES 13/14 ÍNDICE ACERO DIAGRAMA Fe-C FASES EN EL DIAGRAMA PROPIEDADES MECANICAS DE LAS FASES 2 1. ACERO Constituyentes de las aleaciones Fe-C (fases) Ferrita : Solución

Más detalles

Electrodo Universal para Aceros Herramienta

Electrodo Universal para Aceros Herramienta 480 Electrodo Universal para Aceros Herramienta MAGNA 480 Electrodo Universal para Aceros Herramienta Suelda prácticamente todos los aceros herramienta y de troqueles en condiciones de dureza. CREA EN

Más detalles

DESGASTE DE DADOS (MATRICES) EN EXTRUSIÓN DE ALUMINIO

DESGASTE DE DADOS (MATRICES) EN EXTRUSIÓN DE ALUMINIO DESGASTE DE DADOS (MATRICES) EN EXTRUSIÓN DE ALUMINIO Composicion quimica del aluminio Par tículas de segunda fase Extrusión de per files Desgaste Composicion quimica del acero Nitruración COMPOSICION

Más detalles

CLASIFICACION GENERAL. FERROSOS Aceros y sus tipos Hierros y sus clases NO FERROSOS Bronces Latones NORMAS

CLASIFICACION GENERAL. FERROSOS Aceros y sus tipos Hierros y sus clases NO FERROSOS Bronces Latones NORMAS CLASIFICACION GENERAL Aceros y sus tipos Hierros y sus clases NO Bronces Latones NORMAS AISI SAE ASTM Internacional Normas Europeas CLASIFICACIÓN GENERAL CLASIFICACION GENERAL Aceros y sus tipos Hierros

Más detalles

Fundiciones grises aleadas de alta resistencia

Fundiciones grises aleadas de alta resistencia Fundiciones grises aleadas de alta resistencia Ing. Manuel Vega Utrera Docente de Ciencia e Ingeniería de Materiales y Metalurgia Universidad de Montevideo, Facultad de Ingeniería La fabricación de piezas

Más detalles

ThyssenKrupp Aceros y Servicios S.A.

ThyssenKrupp Aceros y Servicios S.A. Aceros para Herramientas Normas Nombre AISI W. Nr. DIN Moldes para plásticos THYROPLAST 2083/2083 SUPRA 420 1.2083 X42Cr13 Aplicaciones Se recomienda para todo tipo de herramientas de moldeo, aunque sus

Más detalles

ThyssenKrupp Aceros y Servicios S.A.

ThyssenKrupp Aceros y Servicios S.A. Aceros para Herramientas Moldes para plásticos Normas Nombre AISI W. Nr. DIN THYROPLAST 2738 P20+Ni 1.2738 40CrMnNiMo8 Aplicaciones Moldes para la industria plástica con grabado profundo y alta resistencia

Más detalles

I. OBJETIVOS TRATAMIENTOS TERMICOS

I. OBJETIVOS TRATAMIENTOS TERMICOS CICLO I-16 TECNOLOGIA DE LOS MATERIALES. UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELÉCTRICA Y MECÁNICA GUIA DE LABORATORIO # 12, 13, 14, 15 TRATAMIENTOS TERMICOS I. OBJETIVOS

Más detalles

ThyssenKrupp Aceros y Servicios S.A.

ThyssenKrupp Aceros y Servicios S.A. Aceros para Herramientas Normas Nombre AISI W. Nr. DIN Trabajo en caliente THYROTHERM 2344 EFS/EFS SUPRA H13 1.2344 X40CrMoV51 Aplicaciones Fabricación de herramientas para forja y estampa en caliente

Más detalles

INDICE. Prologo del editor

INDICE. Prologo del editor INDICE Prologo del editor V Prologo VII 1. Morfologia de los Procesos 1 1.1. Introduccion 1 1.2. Estructura básica de los procesos de manufactura 1 1.2.1. Modelo general de los procesos 2 1.2.2. Estructura

Más detalles

IMPORTANCIA DE LA MICROESTRUCTURA EN EL DESGASTE DE ACEROS HERRAMIENTAS

IMPORTANCIA DE LA MICROESTRUCTURA EN EL DESGASTE DE ACEROS HERRAMIENTAS Composición Química IMPORTANCIA DE LA MICROESTRUCTURA EN EL DESGASTE DE ACEROS HERRAMIENTAS Tratamiento térmico Desgaste Formación de carburos Microestructuras Austenita retenida Tratamiento térmico subcero

Más detalles

DIAGRAMA HIERRO-CARBONO

DIAGRAMA HIERRO-CARBONO DIAGRAMA HIERRO-CARBONO 1. Con el diagrama hierro-carbono simplificado de la figura, determina: a) Temperatura de solidificación del hierro puro b) Temperatura de solidificación de la ledeburita (el eutéctico)

Más detalles

Fundición en molde permanente

Fundición en molde permanente Fundición en molde permanente Fundición en molde permanente Generalidades Se usan moldes metálicos que se reutilizan muchas veces. Los metales que usualmente se funden en moldes permanentes son el estaño,

Más detalles

Gama de Tratamientos Térmicos

Gama de Tratamientos Térmicos Gama de Tratamientos Térmicos Endurecido de aceros de alta velocidad Austenizado entre 1150-1260 C, temple y tres revenidos, de mínimo dos horas cada uno. Son aceros con altos contenidos de Mo o W que

Más detalles

Departamento de Tecnologías 1 IES Valle del Sol. Selectividad 2015 SELECTIVIDAD 2014 SELECTIVIDAD 2013

Departamento de Tecnologías 1 IES Valle del Sol. Selectividad 2015 SELECTIVIDAD 2014 SELECTIVIDAD 2013 1 IES Valle del Sol No hay ejercicios de este tema No hay ejercicios de este tema. Selectividad 2015 SELECTIVIDAD 2014 SELECTIVIDAD 2013 1. Dos metales A y B solidifican a 1000 ºC y 500 ºC respectivamente

Más detalles

INTRODUCCION EQUIPO REQUERIDO

INTRODUCCION EQUIPO REQUERIDO INTRODUCCION Para comenzar, cabe aclarar que es fundamental poseer conocimientos sobre el sistema oxiacetilénico de soldadura, sobre todo sus normas generales de seguridad y la correcta manipulación de

Más detalles

Herramientas De Corte Materiales y Geometrías

Herramientas De Corte Materiales y Geometrías TECNOLOGÍA DE MATERIALES Herramientas De Corte Materiales y Geometrías TECNOLOGÍA INDUSTRIAL I Liceo Industrial Vicente Pérez Rosales Profesor: Richard Ayacura Castillo HERRAMIENTAS DE CORTE Materiales

Más detalles

XV.2. Tratamientos térmicos de las fundiciones de hierro

XV.2. Tratamientos térmicos de las fundiciones de hierro Metalografía y Tratamientos Térmicos XV - 1 - XV.2. Tratamientos térmicos de las fundiciones de hierro XV.2.1. Recocidos de las Fundiciones de Hierro: El término recocido cubre una variedad de tratamientos

Más detalles

Optimice sus elementos de molienda

Optimice sus elementos de molienda Optimice sus elementos de molienda Noticias sobre mantenimiento Servicio de Atención al Cliente Cada proceso de molienda va acompañado del fenómeno de desgaste. El desgaste es la pérdida de material de

Más detalles

Tema 5. Aleaciones metálicas. El sistema Fe-C.

Tema 5. Aleaciones metálicas. El sistema Fe-C. Tema 5. Aleaciones metálicas. El sistema Fe-C. Problemas sobre aleaciones Fe-C, y cinética de las transformaciones (W.D. Callister Ed. Reverté - Cap 9 y 10). 9.47. Cuál es el porcentaje de carbono de un

Más detalles

PROBLEMAS TEMA 2 TECNOLOGÍA INDUSTRIAL II

PROBLEMAS TEMA 2 TECNOLOGÍA INDUSTRIAL II 1. Dibujar un diagrama de equilibrio entre dos componentes cualesquiera A y B, solubles completamente en estado sólido que solidifican en su estado puro a 1000 y 1300 ºC, respectivamente. Situar en la

Más detalles

RAMAX 2. Acero inoxidable para portamoldes pretemplado

RAMAX 2. Acero inoxidable para portamoldes pretemplado RAMAX 2 Acero inoxidable para portamoldes pretemplado Esta información se basa en nuestro presente estado de conocimientos y está dirigida a proporcionar información general sobre nuestros productos y

Más detalles

Elgaloy Hard 30 REPARACIÓN Y MANTENIMIENTO. Clasificación:

Elgaloy Hard 30 REPARACIÓN Y MANTENIMIENTO. Clasificación: Elgaloy Hard 30 DIN 8555-83 E 1-UM-350 El Elgaloy Hard 30 deposita un metal soldado de tipo martensítico con una dureza de alrededor de 35 HRC. Utilizable como material de recargue, o de colchón con un

Más detalles

METALOGRAFÍA. Trabajo Especial 67.47. PROFESORA TITULAR: Ing a. Tiracchia. JEFE DE TRABAJOS PRÁCTICOS: Ing. Fuchinecco. ALUMNO: Ruben Gutiérrez.

METALOGRAFÍA. Trabajo Especial 67.47. PROFESORA TITULAR: Ing a. Tiracchia. JEFE DE TRABAJOS PRÁCTICOS: Ing. Fuchinecco. ALUMNO: Ruben Gutiérrez. METALOGRAFÍA 67.47 Trabajo Especial PROFESORA TITULAR: Ing a. Tiracchia. JEFE DE TRABAJOS PRÁCTICOS: Ing. Fuchinecco. ALUMNO: Ruben Gutiérrez. PADRÓN: 76644 Las aleaciones ferrosas Introducción Son básicamente

Más detalles

FUNDICIONES. 2 a 4,5 % C 0,5 a 3,5 % Si 0,4 a 2 % Mn 0,01 a 0,2 % S 0,04 a 0,8 % P

FUNDICIONES. 2 a 4,5 % C 0,5 a 3,5 % Si 0,4 a 2 % Mn 0,01 a 0,2 % S 0,04 a 0,8 % P FUNDICIONES FUNDICIONES Las fundiciones de hierro son aleaciones de hierro carbono del 2 al 5%, cantidades de silicio del 0.5 al 4%, del manganeso hasta 2%, bajo azufre y bajo fósforo. Se caracterizan

Más detalles

CAPÍTULO II INFLUENCIA DE UN TERCER ELEMENTO EN LA FUNDICIÓN GRIS

CAPÍTULO II INFLUENCIA DE UN TERCER ELEMENTO EN LA FUNDICIÓN GRIS CAPÍTULO II INFLUENCIA DE UN TERCER ELEMENTO EN LA FUNDICIÓN GRIS 2.1 Influencia de un tercer elemento sobre la temperatura de equilibrio. La presencia de elementos disueltos en las fases líquida y sólida

Más detalles

XV- TRATAMIENTOS DE FUNDICIONES DE HIERRO

XV- TRATAMIENTOS DE FUNDICIONES DE HIERRO Metalografía y Tratamientos Térmicos XV - 1 - XV- TRATAMIENTOS DE FUNDICIONES DE HIERRO Dentro de las aleaciones Fe-C, las fundiciones de hierro tienen gran importancia industrial, no sólo debido a las

Más detalles

13. SINTERIZADO PULVIMETALURGIA CARACTERÍSTICAS CARACTERIZACÓN DE POLVOS PROPIEDADES DE LA MASA DE POLVOS

13. SINTERIZADO PULVIMETALURGIA CARACTERÍSTICAS CARACTERIZACÓN DE POLVOS PROPIEDADES DE LA MASA DE POLVOS 13. SINTERIZADO 1 Materiales I 13/14 ÍNDICE CARACTERÍSTICAS CARACTERIZACÓN DE POLVOS PROPIEDADES DE LA MASA DE POLVOS COMPRESIBILIDAD RESISTENCIA EN VERDE SINTERABILIDAD COMPACTACIÓN DE POLVOS METÁLICOS

Más detalles

TEMA 3: DIAGRAMAS DE EQUILIBRIO

TEMA 3: DIAGRAMAS DE EQUILIBRIO TEMA 3: DIAGRAMAS DE EQUILIBRIO 1.- Aleaciones Características Los metales puros tienen poca aplicación en la industria. La mayoría de ellos se combinan con otros metales o no metales para mejorar sus

Más detalles

EVALUACIÓN MICROESTRUCTURAL DEL ACERO INOXIDABLE MARTENSÍTICO AISI 420 SOMETIDO A TRATAMIENTOS TERMICOS. R. Medina (1), C.P.

EVALUACIÓN MICROESTRUCTURAL DEL ACERO INOXIDABLE MARTENSÍTICO AISI 420 SOMETIDO A TRATAMIENTOS TERMICOS. R. Medina (1), C.P. EVALUACIÓN MICROESTRUCTURAL DEL ACERO INOXIDABLE MARTENSÍTICO AISI 420 SOMETIDO A TRATAMIENTOS TERMICOS R. Medina (1), C.P. Serna (2) (1) Departamento de Ingeniería Metalúrgica y de Materiales, Universidad

Más detalles

Electrodos Revestidos

Electrodos Revestidos 12 Electrodos Revestidos 12.1. ELECTRODOS PARA SOLDADURA DE ACEROS AL CARBONO PRAXAIR R-46 (AWS 5.1: E 6013)...201 PRAXAIR R-49 (AWS 5.1: E 6013)...201 PRAXAIR B-69 (AWS 5.1: E 7018-1)...201 PRAXAIR B-70

Más detalles

Informe 3: Ensayo de dureza en Acero con distintos tratamientos termicos. Ciencias de los Materiales CM3201

Informe 3: Ensayo de dureza en Acero con distintos tratamientos termicos. Ciencias de los Materiales CM3201 Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ciencia de los Materiales Informe 3: Ensayo de dureza en Acero con distintos tratamientos termicos Ciencias de los Materiales

Más detalles

Temple El temple es un proceso de calentamiento seguido de un enfriamiento rápido para conseguir mayor dureza y resistencia mecánica del acero.

Temple El temple es un proceso de calentamiento seguido de un enfriamiento rápido para conseguir mayor dureza y resistencia mecánica del acero. TEMPLE Y REVENIDO OBJETIVOS - Obtener alta dureza en un acero por medio del temple - Observar el comportaiento del acero al momento de hacer uso del método que se aplicara Temple El temple es un proceso

Más detalles

CIDEAD. 2º BACHILLERATO.TECNOLOGÍA INDUSTRIAL II. Tema 5.- Los tratamientos térmicos de los aceros.

CIDEAD. 2º BACHILLERATO.TECNOLOGÍA INDUSTRIAL II. Tema 5.- Los tratamientos térmicos de los aceros. Desarrollo del tema: 1. Estados alotrópicos del hierro. 2. Aleaciones hierro carbono. Su composición 3. Constitución de las aleaciones hierro carbono. 4. Estructura de las aleaciones Fe C 5. Diagrama de

Más detalles

Brocas de metal duro

Brocas de metal duro Brocas de metal duro La broca innovadora para el sector de la mecánica PLUS8, TECNOLOGíA ALEMANA CON ALMA ITALIANA. Zonas productivas y Centros de investigación y desarrollo en Europa y en Norte América

Más detalles

PROPOSITOS Y TIPOS DE RECOCIDO

PROPOSITOS Y TIPOS DE RECOCIDO PROPOSITOS Y TIPOS DE RECOCIDO Aumentar la maquinabilidad Aumentar la Tenacidad Disminuir la dureza Refinar el tamaño de grano Homogeneizar Abrillantar la superficie Aliviar las tensiones internas Recuperar

Más detalles

PREGUNTAS PRUEBAS PAU MATERIALES

PREGUNTAS PRUEBAS PAU MATERIALES PREGUNTAS PRUEBAS PAU MATERIALES JUNIO 2010 FE Opción A Defina brevemente las siguientes propiedades que presentan los compuestos metálicos: a) Elasticidad (0,5 puntos) b) Tenacidad (0,5 puntos) c) Maleabilidad

Más detalles

Tensiones residuales, distorsión y fisuración por temple

Tensiones residuales, distorsión y fisuración por temple Una consideración importante en muchos de los tratamientos térmicos descriptos hasta ahora es la variación de la velocidad de enfriamiento entre la superficie y el centro de la pieza térmicamente tratada.

Más detalles

Boletín Técnico Boletín Técnico N 14 Agosto/2009

Boletín Técnico Boletín Técnico N 14 Agosto/2009 Boletín Técnico Boletín Técnico N 14 Agosto/2009 Introducción Al soldar aceros inoxidables (y lo mismo ocurre con los otros materiales metálicos) se forman óxidos que en la mayor parte de las aplicaciones

Más detalles

Las fundiciones grises son aleaciones hipoeutécticas que tienen una composición que varía entre 93 y 93,8% de hierro, 2,5 y 4% de

Las fundiciones grises son aleaciones hipoeutécticas que tienen una composición que varía entre 93 y 93,8% de hierro, 2,5 y 4% de FUNDICIÓN GRIS CARACTERÍSTICAS GENERALES Las fundiciones grises son aleaciones hipoeutécticas que tienen una composición que varía entre 93 y 93,8% de hierro, 2,5 y 4% de carbono y 1 a 3% de silicio. Son

Más detalles

METALES Y ALEACIONES FERROSAS

METALES Y ALEACIONES FERROSAS METALES Y ALEACIONES FERROSAS 1. DEFINICION DE ALEACIONES Se trata de una mezcla sólida homogénea de dos o más metales, o de uno o más metales con algunos elementos no metálicos. Se puede observar que

Más detalles

Qué se busca al restaurar?

Qué se busca al restaurar? Aleaciones Qué se busca al restaurar? Estética y función Devolver la armonía óptica Devolver la forma anatómica Evitar la formación de nuevas lesiones Restablecer el comportamiento biomecánico Qué se busca

Más detalles

Shell Térmico Oil B. Aceite para transferencia térmica

Shell Térmico Oil B. Aceite para transferencia térmica Shell Térmico B es un aceite mineral puro de baja viscosidad, baja tensión de vapor y alta resistencia a la oxidación desarrollado para transferencia de calor ya sea en sistemas de calefacción cerrados

Más detalles

HOLDAX Acero pretemplado para moldes y portamoldes

HOLDAX Acero pretemplado para moldes y portamoldes INFORMACION TECNICA SOBRE ACERO PARA UTILLAJES HOLDAX Acero pretemplado para moldes y portamoldes Wherever tools are made Wherever tools are used Los datos en este impreso están basados en nuestros conocimientos

Más detalles

Materiales. Examen Final (28/06/2011) PARTE I: Seleccione la respuesta correcta. 0.2 p c/u. Una respuesta incorrecta elimina una correcta.

Materiales. Examen Final (28/06/2011) PARTE I: Seleccione la respuesta correcta. 0.2 p c/u. Una respuesta incorrecta elimina una correcta. Nombre: Materiales. Examen Final (28/06/2011) Grupo/profesor: PARTE I: Seleccione la respuesta correcta. 0.2 p c/u. Una respuesta incorrecta elimina una correcta. 1) Un material ferromagnético puede presentar

Más detalles

UNIDAD 5. TRATAMIENTOS TÉRMICOS DE LOS ACEROS

UNIDAD 5. TRATAMIENTOS TÉRMICOS DE LOS ACEROS UNIDAD 5. TRATAMIENTOS TÉRMICOS DE LOS ACEROS 1. DIAGRAMA HIERRO-CARBONO... Pág. 81 Enfriamiento del hierro Aceros Fundiciones Constituyentes de Fe-C (Austenita, ferrita α, ferrita, cementita, perlita,

Más detalles

Ministerio de Educación Perfil Profesional Sector Metalmecánica

Ministerio de Educación Perfil Profesional Sector Metalmecánica Ministerio de Educación Perfil Profesional Sector Metalmecánica OPERADOR DE HORNOS PARA TRATAMIENTOS TÉRMICOS MAYO 2011 Perfil Profesional del OPERADOR DE HORNOS PARA TRATAMIENTOS TÉRMICOS Alcance del

Más detalles

Un tratamiento térmico queda definido por su ciclo térmico y no por las propiedades que se logran con él.

Un tratamiento térmico queda definido por su ciclo térmico y no por las propiedades que se logran con él. CAPÍTULO 25: TRATAMIENTOS TÉRMICOS 25.1. INTRODUCCIÓN Un tratamiento térmico queda definido por su ciclo térmico y no por las propiedades que se logran con él. Para cada caso particular lo que hay que

Más detalles

BLOQUE IV.- Materiales metálicos

BLOQUE IV.- Materiales metálicos BLOQUE IV.- Materiales metálicos. Aceros * William F. Smith Fundamentos de la Ciencia e Ingeniería de Materiales. Tercera Edición. Ed. Mc-Graw Hill * James F. Shackerlford Introducción a la Ciencia de

Más detalles

PROCESOS DE SOLDADURA POR ARCO. Soldadura por Arco Metalico & TIG/GTAW

PROCESOS DE SOLDADURA POR ARCO. Soldadura por Arco Metalico & TIG/GTAW PROCESOS DE SOLDADURA POR ARCO Soldadura por Arco Metalico & TIG/GTAW CUADRO DE PROCESOS DE SOLDADURA PROCESO DE SOLDADURA POR ARCO La soldadura es reconocida en todo el mundo como un medio versatil de

Más detalles

MATERIALES INDUSTRIALES I. Capitulo 5 Aceros y Fundiciones

MATERIALES INDUSTRIALES I. Capitulo 5 Aceros y Fundiciones MATERIALES INDUSTRIALES I Capitulo 5 Aceros y Fundiciones conceptos ACEROS : aleaciones de Hierro y Carbono CARBONO : principal elemento de aleacion en Solución solida intersticial o compuesto intermetálico

Más detalles

UNIVERSIDAD DON BOSCO. FACULTAD DE ESTUDIOS TECNÓLÓGICOS TÉCNICO EN ING. MECANICA.

UNIVERSIDAD DON BOSCO. FACULTAD DE ESTUDIOS TECNÓLÓGICOS TÉCNICO EN ING. MECANICA. UNIVERSIDAD DON BOSCO. FACULTAD DE ESTUDIOS TECNÓLÓGICOS TÉCNICO EN ING. MECANICA. CICLO - AÑO 02-2013 GUIA DE LABORATORIO # 7. Nombre de la Práctica: Tratamientos térmicos 1. Lugar de Ejecución: Taller

Más detalles

CONFORMACIÓN PLASTICA DE METALES: FORJA

CONFORMACIÓN PLASTICA DE METALES: FORJA CONFORMACIÓN PLASTICA DE METALES: FORJA CONTENIDO Definición y Clasificación de los Procesos de Forja Equipos y sus Características Técnicas Variables Principales del Proceso Métodos Operativos (Equipos

Más detalles

CAPITULO 9 ELECTRODOS PARA RECONSTRUIR IXPIEZAS SOMETIDAS AL DESGASTE

CAPITULO 9 ELECTRODOS PARA RECONSTRUIR IXPIEZAS SOMETIDAS AL DESGASTE CAPITULO 9 ELECTRODOS PARA RECONSTRUIR IXPIEZAS SOMETIDAS AL DESGASTE RECUBRIMIENTOS DUROS Los electrodos para revestimientos duros, permiten recubrir por soldadura al arco, superficies expuestas al desgaste

Más detalles

TEMA 4: TRATAMIENTOS TÉRMICOS DEL ACERO. LA CORROSIÓN

TEMA 4: TRATAMIENTOS TÉRMICOS DEL ACERO. LA CORROSIÓN TEMA 4: TRATAMIENTOS TÉRMICOS DEL ACERO. LA CORROSIÓN 1.- Tratamientos térmicos del acero Los tratamientos térmicos son el conjunto de operacioners de calentamiento y enfriamiento para modificar la estructura

Más detalles

Desde un punto de vista tecnológico, al margen de consideraciones económicas, el empleo de materiales dúctiles presenta ventajas:

Desde un punto de vista tecnológico, al margen de consideraciones económicas, el empleo de materiales dúctiles presenta ventajas: Maleabilidad: La maleabilidad es la propiedad de la materia, que junto a la ductilidad presentan los cuerpos a ser labrados por deformación. Se diferencia de aquella en que mientras la ductilidad se refiere

Más detalles

Materiales de Construcción

Materiales de Construcción Juan Antonio Polanco Madrazo Soraya Diego Cavia Carlos Thomas García DPTO. DE CIENCIA E INGENIERÍA DEL TERRENO Y DE LOS MATERIALES Este tema se publica bajo Licencia: CreaDve Commons BY- NC- ND 4.0 Los

Más detalles

Sesión 7. El proceso cerámico tradicional (continuación)

Sesión 7. El proceso cerámico tradicional (continuación) Sesión 7 El proceso cerámico tradicional (continuación) Moldeo El moldeo de las pastas cerámicas tradicionales depende de las propiedades plásticas y de flujo de ésta. La facilidad con que cambia de forma

Más detalles

TIPOS DE TERMOPARES TERMOPARES

TIPOS DE TERMOPARES TERMOPARES TIPOS DE TERMOPARES Para escoger los materiales que forman el termopar se deben tomar en cuenta algunos factores que garanticen su mantenimiento y comercialización. De esta forma se han desarrollado los

Más detalles

ACERO. Elementos de Aleación

ACERO. Elementos de Aleación ACERO o Definición y Características El acero es una aleación de hierro y carbono (máximo 2.11% de carbono), al cual se le adicionan variados elementos de aleación, los cuales le confieren propiedades

Más detalles

División Metalurgia - INTEMA Universidad Nacional de Mar del Plata-CONICET

División Metalurgia - INTEMA Universidad Nacional de Mar del Plata-CONICET División Metalurgia - INTEMA Universidad Nacional de Mar del Plata-CONICET Desarrollo de componentes mecánicos de alta resistencia mediante fusión y colado Aplicación de Fundición de Grafito Esferoidal

Más detalles

Industria ACERO INOXIDABLE. Productos para la. Medellín Cra. 48B No 99 Sur - 59 San Bartolome - Bodega No. 27 PBX

Industria ACERO INOXIDABLE. Productos para la. Medellín Cra. 48B No 99 Sur - 59 San Bartolome - Bodega No. 27 PBX Productos para la Industria Bogotá Av. Calle 17 No 86-81 PBX 424 20 10-424 22 40 FAX 424 23 04 Cali Cra. 36 No 10-325 ACOPI Yumbo PBX 690 03 05 Pereira Av. 30 de Agosto No 103-67 Bodega No 3 PBX 320 03

Más detalles

Clasificación del acero

Clasificación del acero ACEROS ALEADOS Clasificación del acero n Los diferentes tipos de acero se agrupan en cinco clases principales: - aceros al carbono - aceros aleados - aceros de baja aleación ultrarresistentes - aceros

Más detalles

Informe de Materiales de Ingeniería CM4201. Informe N 2. Laboratorio A: Ensayo Jominy

Informe de Materiales de Ingeniería CM4201. Informe N 2. Laboratorio A: Ensayo Jominy Departamento de Ciencia de los Materiales Semestre Primavera 2012 Informe de Materiales de Ingeniería CM4201 Informe N 2 Laboratorio A: Ensayo Jominy Nombre alumno: Paulo Arriagada Grupo: 1 Fecha realización:

Más detalles

Boletín Técnico Boletín Técnico N 7 Enero/2009

Boletín Técnico Boletín Técnico N 7 Enero/2009 Boletín Técnico Boletín Técnico N 7 Enero/009 Introducción La corrosión por picado puede afectar a los aceros inoxidables. La prevención comienza con una especificación correcta del tipo de inoxidable

Más detalles

Sistema TIG. Soldadura. Artículos de Seguridad Página 101. Herramientas eléctricas Página 112. Equipos Página 50. Soldaduras Página 47

Sistema TIG. Soldadura. Artículos de Seguridad Página 101. Herramientas eléctricas Página 112. Equipos Página 50. Soldaduras Página 47 P R O C E S O Soldadura Sistema TIG Artículos de Seguridad Página 101 Herramientas eléctricas Página 112 Equipos Página 50 Soldaduras Página 47 Abrasivos Página 109 Accesorios para soldar Página 105 Gases

Más detalles