SISTEMAS DE ECUACIONES LINEALES: TEOREMA DE ROUCHÉ- FROBENIUS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SISTEMAS DE ECUACIONES LINEALES: TEOREMA DE ROUCHÉ- FROBENIUS"

Transcripción

1 R.F.- - SISTES DE ECUCIONES INEES: TEORE DE ROUCHÉ- FROBENIUS Recordeos que u siste de ecucioes co icógits es u siste de l for: Dode: ij so úeros reles se ll coeficietes del siste,,,, so úeros reles recie el ore de térios idepedietes,,,, so ls icógits del siste. Si todos los térios idepedietes so ulos, el siste se ll hoogéeo. tri se le ll tri de los coeficietes, l tri que se otiee de l terior ñdiedo los térios idepedietes: se deoi tri plid. NOTCIÓN TRICI DE UN SISTE: Si desigos por X l tri colu ford por ls icógits por B l tri colu de los térios idepedietes el siste se puede escriir sí: X B NOTCIÓN VECTORI: Desigdo por C,C,, C ls colus de l tri, el siste puede escriirse tié sí: C C C B Est relció epres el vector colu B coo coició liel de ls colus de l tri de los coeficietes del siste. Si tl coició liel eiste, los coeficietes de ls colus so precisete l solució del siste. Ejeplos:.- Escriir e for tricil el siguiete siste: for tricil es: Pg.

2 R.F Escriir e for vectoril el siste terior. for vectoril es: TEORE DE ROUCHE FROBENIUS.- U siste de ecucioes lieles es coptile si solo si el rgo de l tri de los coeficietes es igul l rgo de l tri plid. Deostrció: El siste puede escriirse e for vectoril C C C B ) Si el siste es coptile, eiste l eos u solució (s,s,, s ) tl que. C s C s C s B, por lo tto l tri colu de los térios idepedietes es coició liel de ls colus de l tri de los coeficietes rgo rgo ) Si rgo rgo, etoces l colu de los térios idepedietes es coició liel de ls colus de l tri por tto eiste úeros s,s,, s tles que. B C s C s C s. Por lo tto (s,s,, s ) es u solució del siste el siste es coptile. Sistes de ecucioes co icógits Deterido :si r Sirgo rgo r,siste coptile I det er i do :si r < Si rgo rgo, siste Icoptile Sistes hoogéeos: U siste de ecucioes lieles se dice hoogéeo si los térios idepedietes so todos ulos. Por lo tto todo siste hoogéeo es siepre coptile. (Pues rgo rgo ) ) Si rgo º de icógits Siste coptile deterido, solo tiee l solució (,,, ), lld solució trivil. ) Si rgo < º de icógits Siste coptile ideterido. SISTES DE CRER Defiició: U siste de ecucioes lieles es u siste de Crer si el úero de ecucioes es igul l de icógits el deterite de l tri de los coeficietes del siste es distito de cero. Ejeplo: El siste es de Crer pues el úero de ecucioes es igul l de icógits. Proposició.- Todo siste de Crer es coptile deterido (tiee solució úic). Deostrció: Cosidereos u siste de Crer de ecucioes co icógits:... su epresió tricil X B. Coo el siste es de Crer eiste - por lo tto: - X - B X - B de dode oteeos: X B revidete Pg.

3 R.F i es igul l deterite de l tri oteid de l cir l colu i-ési por l colu de los térios idepedietes, dividido por el deterite de l tri de los coeficietes del siste. Ejeplos:.- Resuelve, plicdo l regl de Crer, el siste Es u siste de Crer pues det() solució es:,.- Resuelve, plicdo l regl de Crer, el siste El siste es de Crer l ser. plicdo l regl de Crer, l solució es:,, ÉTODO DE TRIZ INVERS Si e u siste de ecucioes lieles X B, dode es u tri cudrd se cuple que eiste - por lo tto: - X - B X - B Pg.

4 R.F.- - Ejeplo: Epres e for tricil resuelve utilido l tri ivers: Solució: Epresió tricil:... { X B eiste. Seos que ( ) dj t.( )..,,,,,,,, dj () ( ) ( ) t dj Teeos: X B X B X B Por lo tto:,, EJERCICIOS: Ejercicio.- Discutir el siguiete siste de ecucioes lieles segú los vlores del práetro resolverlo:, Si rgo úero de icógits siste coptile deterido; solo dite l solució trivil:,,. Si ( rgo < ), rgo < º de icógits el siste es coptile ideterido. Solució:, t t t Ejercicio.- Estudir el siguiete siste segú los vlores de resolverlo siepre que se posile ) ( Si rgo rgo (º de icógits) el siste será coptile deterido. Veos que vlores de ul l deterite de, pr esos vlores o es posile que se deterido. Pg.

5 R.F.- - ) Si, rgo rgo úero de icógits, el siste es coptile deterido: ) (, ) (, ) ( ) Si ( rgo < ) rgo,, * rgo rgo rgo Siste Icoptile. c) Si ( rgo < ) rgo, * rgo Rgo rgo < úero de icógits el siste es coptile ideterido:. Solució: t, t, t Ejercicio.- Discutir segú los vlores de el siste: ) ( ) ( ) ( ) ( ) ( Hllreos los vlores de que ul det () ) ( ) Si rgo rgo úero de icógits siste coptile deterido. Pg.

6 R.F.- - ) Si, ( rgo < ),, rgo *, rgo. Por lo tto: rgo rgo siste icoptile. c) Si, ( rgo < ),, rgo *, rgo rgo rgo < º de icógits siste coptile ideterido. d) Si, ( rgo < ), rgo *, rgo rgo rgo siste icoptile. Ejercicio.- Estudir segú los vlores del práetro el siste. ) (,. Vos clculr el rgo de : El rgo de es distito de cero pues. eores de orde dos que coteg :,. El rgo de será si rgo si. ) Si rgo rgo < úero de icógits el siste es coptile ideterido. ) Si rgo, rgo rgo el siste es icoptile. Pg.

3. SISTEMAS DE ECUACIONES LINEALES

3. SISTEMAS DE ECUACIONES LINEALES Teorí ejercicios de teátics II. Álger Sistes de ecucioes lieles - -. SISTES DE ECUCIONES INEES. DEFINICION U ecució liel es u ecució de l for e l que, so los coeficietes de ls icógits, es el tério idepediete

Más detalles

1. Discutir según los valores del parámetro k el sistema

1. Discutir según los valores del parámetro k el sistema . Discutir segú los vlores del práetro el siste C Si, el (º de icógits) S. C. D. Teiedo e cut lo terior se discute el tipo de solució del siste pr los vlores del práetro que ulr el deterite de l tri de

Más detalles

TEMA 1. ÁLGEBRA LINEAL

TEMA 1. ÁLGEBRA LINEAL Te Álgebr Liel Mteátics TEMA. ÁLGEBRA LINEAL - VECTORES DE R Defiició R {(,,..., )/,,..., R } (-tupls de os reles ordeds) Defiios e este cojuto opercioes: Su () Pr culesquier eleetos, (,,..., ), (y,y,...,y

Más detalles

DETERMINANTES. A toda matriz cuadrada se le puede hacer corresponder un número (determinante) cuyo cálculo se puede hacer de las siguientes maneras:

DETERMINANTES. A toda matriz cuadrada se le puede hacer corresponder un número (determinante) cuyo cálculo se puede hacer de las siguientes maneras: Deterites DETERMINNTES. DEFINICIÓN. tod tri udrd se le uede her orresoder u úero (deterite uo álulo se uede her de ls siguietes ers:.. DETERMINNTE DE SEGUNDO ORDEN. det Es deir, es el roduto de los eleetos

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES . Sistems de ecucioes lieles SISTEAS DE ECUACIONES Se deomi ecució liel quell que tiee l form de u poliomio de primer grdo, es decir, ls icógits o está elevds potecis, i multiplicds etre sí, i e el deomidor.

Más detalles

TEMA1: MATRICES Y DETERMINANTES:

TEMA1: MATRICES Y DETERMINANTES: TEM: MTRICES Y DETERMINNTES: MTRICES: U triz de diesió, es u tbl ford por fils y colus. j i siedo ij,.,,., ) ( Por ejeplo: Se ll Mtriz Fil l que tiee u sol fil, ejeplo: Se ll Mtriz Colu l que tiee u sol

Más detalles

TEMA 3: RADICALES 3.1 DEFINICIÓN. Colegio Mater Salvatoris. Se llama raíz n-ésima de un número a, y se representa n a, a otro nº b tal que b n = a.

TEMA 3: RADICALES 3.1 DEFINICIÓN. Colegio Mater Salvatoris. Se llama raíz n-ésima de un número a, y se representa n a, a otro nº b tal que b n = a. Colegio Mter Slvtoris TEMA : RADICALES.1 DEFINICIÓN Se ll ríz -ési de u úero, se represet, otro º tl que. Se l epresió geerl de u ríz -esi es el ídice es el rdicdo c Al síolo lo llos Rdicl c es el coeficiete

Más detalles

TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES

TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES TEM. VECTORES Y MTRICES.. PLICCIONES . VECTORES Y MTRICES.. PLICCIONES... Cálculo del rgo de u mtri.... Cálculo de l ivers de u mtri.... Resolució de ecucioes mtriciles.... Discusió resolució de sistems

Más detalles

Matrices = A. Matriz cuadrada, si tiene el mismo nº de filas que de columnas. ... ... ... ...

Matrices = A. Matriz cuadrada, si tiene el mismo nº de filas que de columnas. ... ... ... ... Mtrices Mtrices INTRODUCCIÓN E el te terior heos usdo l tri plid de u siste, pr ejr, co ás coodidd, los úeros que iterviee e u siste liel E otros uchos proles es útil dispoer ejr u cojuto de úeros dispuestos

Más detalles

Tema 9. Sistemas de Ecuaciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 9

Tema 9. Sistemas de Ecuaciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 9 Te Sistes de Ecuciones.- Introducción..- Sistes de Ecuciones Lineles..- Método de Guss..- Discusión de Sistes Lineles..- Regl de Crer..- Mtri Invers..- Ecuciones Mtriciles..- Rngo de un Mtri..- Ejercicios

Más detalles

Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo.

Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo. III. LOGARITMACION A) Defiició d e l og ri to : Se deoi logrito de u úero l expoete l que h que elevr u úero, lldo se, pr oteer u úero ddo. Siólicete: log x x 0 De l defiició de logrito podeos deducir:

Más detalles

1.- POTENCIAS DE EXPONENTE ENTERO

1.- POTENCIAS DE EXPONENTE ENTERO º ESO - UNIDAD.- POTENCIAS Y RAÍCES OBJETIVOS MÍNIMOS DE LA UNIDAD.- Clculr potecis de se rciol y epoete etero.- Relizr opercioes co potecis de epoete etero usdo sus propieddes.- Epresr úeros e otció cietífic.-

Más detalles

APUNTE: Sistemas de Ecuaciones Lineales

APUNTE: Sistemas de Ecuaciones Lineales APUNTE: Sistes de Ecucioes Lieles UNIVERSIDAD NACIONAL DE RIO NEGRO Asigtur: Mteátic Crrers: Lic. e Adiistrció, Lic. e Turiso, Lic. e Hotelerí Profesor: Prof. Mel Chresti Seestre: do Año: Idice Te Pági

Más detalles

Algunas funciones elementales

Algunas funciones elementales Apédice B Algus fucioes eleetles B Fució poteci -ési U fució poteci -ési es u fució de l for f ( ) dode l se es u vrile y el epoete u úero turl Es l for ás secill de ls fucioes polióics f ( ) Ls fucioes

Más detalles

5 3 = (5)(5)(5) = 125

5 3 = (5)(5)(5) = 125 Potecició: Es el resultdo que se obtiee l ultiplicr l bse por si is cuts veces lo idique el expoete: = ( )( )( )... BASE = ()()() = POTENCIA EXPONENTE Bse: Es el úero que se ultiplic por si iso. Expoete:

Más detalles

Resumen: Límites, Continuidad y Asíntotas

Resumen: Límites, Continuidad y Asíntotas Resue: Líites, Cotiuidd y Asítots epre que se pued sustituir probles e l epreó de Los csos e los que o se pued sustituir es: k cudo tegos Es ideterido el go del y depede de l regl de los gos. : *? ** *

Más detalles

Licenciatura en Electrónica y Computación: Métodos Numéricos

Licenciatura en Electrónica y Computación: Métodos Numéricos CIICp VLORES Y VECTORES PROPIOS Los vlores y vectores propios se cooce tmié como eigevlores y eigevectores. Estos vlores y vectores propios se utiliz geerlmete e sistems lieles de ecucioes homogéeos que

Más detalles

UNIDAD 3: SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma:

UNIDAD 3: SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma: IE Pdr Povd (Gudi) Mtátics plicds ls CC II Dprtto d Mtátics Bloqu I: Álgr il Profsor: Ró ort Nvrro Uidd : ists d Ecucios ils UNIDD : ITEM DE ECUCIONE INEE DEFINICIONE U sist d cucios lils co icógits s

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

EXPRESIONES ALGEBRAICAS RACIONALES GUÍA CIU NRO: 8

EXPRESIONES ALGEBRAICAS RACIONALES GUÍA CIU NRO: 8 Repúlic Bolivri de Veezuel Miisterio de l Defes Uiversidd Nciol Eperietl Politécic de l Fuerz Ard Núcleo Crcs Curso de Iducció Uiversitri CIU Cátedr: Rzoieto Mteático EXPRESIONES ALGEBRAICAS RACIONALES

Más detalles

X obtener las relaciones que deben

X obtener las relaciones que deben odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint

Más detalles

TEMA 1. VECTORES Y MATRICES 1.2. MATRICES. OPERACIONES ELEMENTALES

TEMA 1. VECTORES Y MATRICES 1.2. MATRICES. OPERACIONES ELEMENTALES TEM VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES VECTORES Y MTRICES MTRICES: OPERCIONES ELEMENTLES Cocepo de riz Eleeos Tipos de rices Su y difereci de rices Produco de u úero por u riz Trsposició

Más detalles

ECUACIONES DE SEGUNDO GRADO. Resolver la ecuación de segundo grado aplicando propiedades de la

ECUACIONES DE SEGUNDO GRADO. Resolver la ecuación de segundo grado aplicando propiedades de la ECUACIONES DE SEGUNDO GRADO Ojetivos: Defiir ecució de segudo grdo. Resolver l ecució de segudo grdo plicdo propieddes de l iguldd. Resolver l ecució de segudo grdo plicdo fctorizcioes. Resolver l ecució

Más detalles

Vectores 1 ; Ejercicio nº 1.- Ejercicio nº 2.-

Vectores 1 ; Ejercicio nº 1.- Ejercicio nº 2.- Vectores. dij so los sigietes ectores Si ) Ejercicio º.- ( ) : Oté ls coordeds de Ls coordeds de dos ectores so ). ; ; los qe estr l figr: siedo Dij los ectores ) Ejercicio º.- ( ) : oté ls coordeds de

Más detalles

16/11/2015. Tema 1: Números reales REALES. Racionales (Q) Irracionales (I) Naturales (N) REALES (I) (Q) (Z) (N)

16/11/2015. Tema 1: Números reales REALES. Racionales (Q) Irracionales (I) Naturales (N) REALES (I) (Q) (Z) (N) rrcioles () //0 Te : úeros reles úeros reles (rcioles e irrcioles) Aproxició de úeros reles L rect rel Vlor soluto tervlo y seirrects Potecis de expoete etero otció cietífic dicles Potecis de expoete frcciorio

Más detalles

LOGARITMO 4º AÑO DEF. Y PROPIEDADES

LOGARITMO 4º AÑO DEF. Y PROPIEDADES LOGARITMO º AÑO DEF. Y PROPIEDADES E l epresió c, puede clculrse u de ests tres ctiddes si se cooce dos de ells resultdo de este odo, tres opercioes diferetes: º Poteci º Rdicció º Logrito c pr clculr,

Más detalles

UNIDAD 1 NÚMEROS REALES. es el sucesor de n. 4) Todo número natural tiene antecesor excepto el 1:, donde n 1

UNIDAD 1 NÚMEROS REALES. es el sucesor de n. 4) Todo número natural tiene antecesor excepto el 1:, donde n 1 Uiversidd Nciol de Slt Fcultd de Igeierí Aputes de Curso Me prepro pr estudir Igeierí UNIDAD 1 NÚMEROS REALES CONJUNTOS NUMÉRICOS El cojuto de los Núeros Nturles ( N ) Los úeros que se eple pr cotr 1,2,3,4,...

Más detalles

MATEMÁTICAS BÁSICAS RADICALES. 4 x, es exacto. OPERACIONES CON RADICALES. 16x es un radical racional porque su resultado,

MATEMÁTICAS BÁSICAS RADICALES. 4 x, es exacto. OPERACIONES CON RADICALES. 16x es un radical racional porque su resultado, Fcultd de Cotdurí Adiistrció. UNAM Rdicles Autor: Dr. José Muel Becerr Espios MATEMÁTICAS BÁSICAS RADICALES OPERACIONES CON RADICALES U rdicl es culquier rí idicd de u expresió. L rdicció es l operció

Más detalles

Álgebra para ingenieros de la Universidad Alfonso X

Álgebra para ingenieros de la Universidad Alfonso X Crrer: UAX Asigtur: temátics Fech: Pági de 9 Álger pr igeieros de l Uiversidd Alfoso X -trices y sistems de ecucioes lieles Opercioes co mtrices: A= m m B= m p p q q pq Sum: - s mtrices sumr tiee que teer

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTES DE ECUCINES INEES Ecucioes lieles. Se llm ecució liel co icógits tod ecució que pued escriirse de l form: dode so vriles y... so úmeros reles siedo i el coeficiete de l vrile i y el térmio idepediete

Más detalles

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ...

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ... Mtrices M - - Mtrices Se K un cuerpo MATRICES Definición- Un tl de n eleentos de K dispuestos en fils n coluns de l for recie el nore de tri de diensión n n n n En un tri el eleento ij ocup el lugr deterindo

Más detalles

POTENCIA DE UN NÚMERO.

POTENCIA DE UN NÚMERO. INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Resoluió Nº de oviere./0 Seretri De Eduió Distritl REGISTRO DANE Nº00-00099 Teléfoo Brrio Bstids St Mrt DEPARTAMENTO DE MATEMATICAS DOCENTE: LIC-ING.

Más detalles

1) Simplificar radicales: si dividimos el exponente de radicando y el índice del radical

1) Simplificar radicales: si dividimos el exponente de radicando y el índice del radical RADICALES jp ºESO BC TEORIA DE RADICALES Defiició de ríz -esi de u úero rel Llos ríz -ési de u úero rel otro úero rel b que elevdo l poteci os d coo resultdo el rdicdo b b Ejeplos : pues 8 pues ( ) 8 E

Más detalles

OPERACIONES CON POLINOMIOS.

OPERACIONES CON POLINOMIOS. OPERACIONES CON POLINOMIOS. EXPRESIONES ALGEBRAICAS. Ua epresió ateática que usa úeros o variables o abos para idicar productos o cocietes es u tério. Los térios,, (ab), so todos epresioes algebraicas.

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrices deterinntes Mtrices deterinntes. Ejercicios de Selectividd. º.- Junio 99. i) Define rngo de un triz. ii) Un triz de tres fils tres coluns tiene rngo

Más detalles

TEMA 2: SISTEMAS DE ECUACIONES LINEALES

TEMA 2: SISTEMAS DE ECUACIONES LINEALES Profesor: Rf Gozález Jiméez Istituto St Eulli TEM 2: SISTEMS DE ECUCIONES LINELES ÍNDICE 2..- Sistems de Ecucioes Lieles. Geerliddes. 2.2.- Sistems equivletes. 2.3.- Resolució de S.E.L. por mtriz ivers.

Más detalles

Tema 1: NÚMEROS REALES.

Tema 1: NÚMEROS REALES. I.E.S. Slvdor Serro - Deprteto de Mteátics MATEMÁTICAS ACADÉMICAS º ESO - 0 / Te : NÚMEROS REALES. Actividdes pr preprr el exe: Teorí: Cotest si so cierts ls siguietes fircioes: Todo úero etero es turl.

Más detalles

Matrices. Matrices especiales

Matrices. Matrices especiales UNIVERSIDD UÓNO DE NUEVO EÓN FUD DE INGENIERÍ EÁNI Y EÉRI tries triz: ojuto de eleetos ordedos e fils y olus os eleetos puede ser úeros reles o oplejos E este urso solo se osider tries o eleetos reles

Más detalles

Tema 2. Operaciones con Números Reales

Tema 2. Operaciones con Números Reales Te. Opercioes co úeros reles Te. Opercioes co Núeros Reles. Opercioes co frccioes.. Itroducció.. Su y difereci.. Producto y divisió.. Opercioes cobids. Potecis.. Expoete turl.. Expoete etero (egtivo).

Más detalles

Modelo 6 Opción A. Como me dicen que es y = 1 me están dando las condiciones

Modelo 6 Opción A. Como me dicen que es y = 1 me están dando las condiciones Modelo 6 Opción A Ejercicio º [ puntos] Deterin l función f : R R sbiendo que f ( que l rect tngente l gráfic de f en el punto de bscis es l rect. L rect tngente de f( en es " f( f (( " Coo e dicen que

Más detalles

TEMA 1. FUNCIONES REALES. DEFINICIÓN Y LÍMITES

TEMA 1. FUNCIONES REALES. DEFINICIÓN Y LÍMITES Uidd. Fucioes. Defiició y Líites TEMA. FUNCIONES REALES. DEFINICIÓN Y LÍMITES. Fucioes reles de vrible rel. Doiio de u fució.. Doiios de ls fucioes ás hbitules. Coposició de fucioes. Propieddes. Fució

Más detalles

REALES EALES. DEFINICIÓN Y LÍMITES

REALES EALES. DEFINICIÓN Y LÍMITES Uidd. Fucioes. Defiició y Líites TEMA. FUNCIONES REALES EALES. DEFINICIÓN Y LÍMITES. Fucioes reles de vrile rel. Doiio de u fució.. Doiios de ls fucioes ás hitules. Coposició de fucioes. Propieddes. Fució

Más detalles

Liceo Marta Donoso Espejo Raíces para Terceros

Liceo Marta Donoso Espejo Raíces para Terceros . Ríces cudrds y cúics Liceo Mrt Dooso Espejo Ríces pr Terceros Coeceos el estudio de ls ríces hciédoos l siguiete pregut: Si el áre de u cudrdo es 64 c 2, cuál es l edid de su ldo? Pr respoder esto deeos

Más detalles

Enteros (Z) Son todos los números que puede expresarse como el cociente de dos nº enteros, siendo el denominador distinto de cero

Enteros (Z) Son todos los números que puede expresarse como el cociente de dos nº enteros, siendo el denominador distinto de cero www.clseslcrt.co Clsificció de Núeros Reles Te.- Núeros Reles Reles R Rcioles Q Irrcioles Ι Eteros Z Nturles N Negtivos Deciles Exctos Frcciorios Deciles Periódicos Puros Deciles Periódicos Mixtos Rcioles

Más detalles

Resumen: Límites de funciones. Asíntotas

Resumen: Límites de funciones. Asíntotas Resue: Líites de ucioes. Asítots epre que se pued sustituir probles e l epreó de Los csos e los que o se pued sustituir es: k cudo tegos Es ideterido el go del y depede de l regl de los gos. Ejeplos: *?

Más detalles

C0MPLEJO EDUCATIVO Dr. OSCAR ABDALA ÁREA DE MATEMÁTICA. CONTENIDOS DE REVISIÓN PARA 3º AÑO Prof. Patricia Cardona

C0MPLEJO EDUCATIVO Dr. OSCAR ABDALA ÁREA DE MATEMÁTICA. CONTENIDOS DE REVISIÓN PARA 3º AÑO Prof. Patricia Cardona C0MPLEJO EDUCATIVO Dr. OSCAR ABDALA ÁREA DE MATEMÁTICA CONTENIDOS DE REVISIÓN PARA 3º AÑO Prof. Ptrici Crdo COMPLEJO EDUCATIVO Dr. OSCAR ABDALA CONTENIDOS DE REVISIÓN CONJUTOS NUMÉRICOS Nturles: N = 1

Más detalles

TEMA 3: RESOLUCIÓN DE SISTEMAS DE ECUACIONES MEDIANTE DETERMINANTES.

TEMA 3: RESOLUCIÓN DE SISTEMAS DE ECUACIONES MEDIANTE DETERMINANTES. TEM : RESOLUCIÓN DE SISTEMS DE ECUCIONES MEDINTE DETERMINNTES. º BCH(CN) TEM : RESOLUCIÓN DE SISTEMS DE ECUCIONES MEDINTE DETERMINNTES..-INTRODUCCIÓN. L resoluió de sistems de euioes está ligd l estudio

Más detalles

Tema 4. SISTEMAS DE ECUACIONES LINEALES

Tema 4. SISTEMAS DE ECUACIONES LINEALES Te SISTS D CUCIONS LINLS Sises de res ecucioes co res icógis So de l for: Ls lers i, ij i represe, respecivee, ls icógis, los coeficiees los érios idepediees L solució del sise es el cojuo de vlores de,

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?

Más detalles

TEMA 2 Números reales*

TEMA 2 Números reales* TEMA Núeros reles* Itroducció y propieddes. Vios e el te terior que todo úero rciol tiee u epresió decil fiit o periódic y vicevers. Por tto: Llreos úero irrciol todo úero que teg u epresió decil ifiit

Más detalles

Podemos decir también que número real es todo número que podemos representar en la recta numérica - 1, ¼ 0,

Podemos decir también que número real es todo número que podemos representar en la recta numérica - 1, ¼ 0, Uidd EL NÚMERO REAL E etps sucesivs del estudio de l Mteátic se trbj co cpos uéricos que v pliádose co l icorporció de uevos y distitos tipos de úeros. Así, se coiez lizdo el cpo de los úeros turles (

Más detalles

DEFINICIONES BÁSICAS, EXPONENTES Y RADICALES

DEFINICIONES BÁSICAS, EXPONENTES Y RADICALES . TERMINOLOGÍA Y NOTACIÓN A prtir de los coociietos de ritétic, se desrrollrá u leguje edite síolos térios, pr elorr u serie de técics de cálculo; el leguje ls técics, costitue u r iportte de l teátic,

Más detalles

Guía ejercicios resueltos Sumatoria y Binomio de Newton

Guía ejercicios resueltos Sumatoria y Binomio de Newton Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile Guí ejercicios resueltos Sumtori y Biomio de Newto Solució: ) Como o depede de j, es costte l sumtori. b) c) d) Auilir: Igcio Domigo Trujillo Silv

Más detalles

1. Números reales. 2. Raíces y potencias. 3. Operaciones con radicales. Matemáticas 3º ESO

1. Números reales. 2. Raíces y potencias. 3. Operaciones con radicales. Matemáticas 3º ESO Mteátis º ESO 1. Núeros reles Clsifiió de los úeros reles Aroxiió de deiles Itervlos. Ríes y oteis Notió ietífi. Oerioes Rdiió. Proieddes de ls oteis de exoete riol Rdiles equivletes Silifir rdiles Extrió

Más detalles

CONVEXIDAD R 2. Conjuntos convexos. Combinación lineal convexa de m puntos. λ x. Ejemplos de conjuntos convexos en R 2

CONVEXIDAD R 2. Conjuntos convexos. Combinación lineal convexa de m puntos. λ x. Ejemplos de conjuntos convexos en R 2 Cojutos coveos Ejeplos de cojutos coveos e R CONVEXIDAD Cojutos coveos Coveidad de fucioes DEFINICION: U cojuto A es coveo cuado, y A y λ [0,] se cuple λ + ( λ) y A R λ + ( λ) y λ = / y λ = 0 Cojuto coveo:

Más detalles

Transformaciones lineales

Transformaciones lineales Trsformcioes lieles [Versió prelimir] Prof. Isbel Arrti Z. 1 Se V y W espcios vectoriles sobre el cuerpo R de los úmeros reles. U trsformció liel o plicció liel de V e W es u fució T : V W que stisfce:

Más detalles

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a: odelo. Proble B.- (Clificción ái puntos) Se consider el siste linel de ecuciones dependiente del práetro rel ) Discútse en función de los vlores del práetro R. b) Resuélvse pr.. l siste se clsific en función

Más detalles

Matemáticas Aplicadas a la Ciencias Sociales II SISTEMAS DE ECUACIONES. , a toda ecuación que pueda escribirse de la forma: ...

Matemáticas Aplicadas a la Ciencias Sociales II SISTEMAS DE ECUACIONES. , a toda ecuación que pueda escribirse de la forma: ... Mtemátics Aplicds l Ciecis Sociles II SISTEMAS DE ECUACIONES Ecució liel Se llm ecució liel co icógits,,,,,, tod ecució que pued escriirse de l form: + + + + = dode,,,,, so úmeros reles El cojuto de úmeros

Más detalles

TEMA 4 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

TEMA 4 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Te Resolución de sises edine deerinnes Meáics II º chillero TEM RESOLUIÓN DE SISTEMS MEDINTE DETERMINNTES Resolución de sises Regl de rer Teore de Rouché-Froenius EJERIIO Resuelve plicndo l regl de rer

Más detalles

LOGARITMO 4º AÑO DEF. Y PROPIEDADES

LOGARITMO 4º AÑO DEF. Y PROPIEDADES LOGARITMO º AÑO DEF. Y PROPIEDADES En l epresión n c, puede clculrse un de ests tres cntiddes si se conocen dos de ells resultndo de este odo, tres operciones diferentes: º Potenci º Rdicción º Logrito

Más detalles

2.5 REGLA DE CRAMER (OPCIONAL)

2.5 REGLA DE CRAMER (OPCIONAL) CAPÍTULO etermites i. Cree u mesje pr su profesor. Utilizdo úmeros e lugr de letrs, tl y como se describió e el problem 9 de MATLAB.8, escrib el mesje e form mtricil pr que pued multiplicrlo por l derech

Más detalles

CAPÍTULO 3 Función Exponencial y Función Logarítmica. Por su uso e importancia, es necesario revisar las propiedades de las potencias, que se resumen

CAPÍTULO 3 Función Exponencial y Función Logarítmica. Por su uso e importancia, es necesario revisar las propiedades de las potencias, que se resumen CAPÍTULO 3 Fució Epoecil Fució Logrític 3.1) Repso de propieddes de ls potecis Por su uso e iportci, es ecesrio revisr ls propieddes de ls potecis, que se resue cotiució. ( ) 1 1 0 3.) Fució Epoecil Defiició

Más detalles

Fracción generatriz de un decimal. Denominador :1 seguido de tantos 0 como cifras decimales haya 1000 = 7 8

Fracción generatriz de un decimal. Denominador :1 seguido de tantos 0 como cifras decimales haya 1000 = 7 8 º BACHILLERATO (LOMCE) MATEMÁTICAS CC SS TEMA.- NÚMEROS- PROFESOR: RAFAEL NÚÑEZ NOGALES.- FRACCIONES Y DECIMALES Opercioes comids co frccioes Pr relizr vris opercioes se reliz primero los prétesis y se

Más detalles

2.- Dadas las matrices A y B. Calcula A+B, A-B, A 2, B 2, AB, BA

2.- Dadas las matrices A y B. Calcula A+B, A-B, A 2, B 2, AB, BA ejeriiosemees.om MTRICES Y DETERMINNTES. Dds ls mtries Hllr ) ) B ).B d) B. e) +B f) C. g) C.B h) C.D i) j) B k) + l) B.B uioes. Dds ls mtries B. Clul +B, B,, B, B, B uió D C B.B / / / / / / / / B / /

Más detalles

Modelo 5 de sobrantes de Opción A

Modelo 5 de sobrantes de Opción A Ejercicio. [ puntos] Se f : R l función dd por Modelo de sobrntes de 6 - Opción. Ln f siendo Ln l función logrito neperino. Estudi l eistenci de síntot horiontl pr l gráfic de est función. En cso de que

Más detalles

NÚMEROS NATURALES. DIVISIBILIDAD

NÚMEROS NATURALES. DIVISIBILIDAD NÚMEROS NATURALES. DIVISIBILIDAD NÚMEROS NATURALES Los úeros turles so los que sirve pr otr: 1,,, So ifiitos y for u ojuto que se deoi N. Está ordedos, lo que os perite represetrlos sore u ret uyo orige

Más detalles

SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso 03-04

SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso 03-04 SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - - Comprobr que culquier mriz cudrd M se puede expresr de form úic como sum de dos mrices, u siméric

Más detalles

Potencias y radicales

Potencias y radicales Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de

Más detalles

z 2 16 z Por tanto concluimos que log 3 2 z 5 Por tanto concluimos que z 2 Por tanto concluimos que log log 3 z 2 log a p p que resulta evidente

z 2 16 z Por tanto concluimos que log 3 2 z 5 Por tanto concluimos que z 2 Por tanto concluimos que log log 3 z 2 log a p p que resulta evidente UNIDAD.- LOGARIMOS. APLICACIONES (tem del libro). LOGARIMO DE UN NÚMERO Cosideremos l ecució: 8. Como vemos l icógit está e el epoete, lo que l hce diferete todos los tipos vistos hst hor. es el epoete

Más detalles

Bloque I. Números y medidas. Tema 4: Potencias y raíces. Uso de la calculadora TEORÍA

Bloque I. Números y medidas. Tema 4: Potencias y raíces. Uso de la calculadora TEORÍA IES LA ASUNCIÓN http://www.ieslsucio.org MATEMÁTICAS º ESO Bloque I. Núeros y edids. Te : Potecis y ríces. Uso de l clculdor TEORÍA. POTENCIAS * U poteci es u ultiplicció de fctores igules. Se escrie e

Más detalles

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A MTRICES. Determinr l mtriz trnspuest de cd un de ls siguientes;,, C 8. Efectú l siguiente operción con mtrices y clcul. Sen 8, y C determinr: ) t C ) (-C) t t c) -C( t -) d) - t -(C). Dds ls siguientes

Más detalles

RADICALES. Entre los números reales se encuentran los radicales, que se pueden expresar como raíz de un índice n 2 de un número real.

RADICALES. Entre los números reales se encuentran los radicales, que se pueden expresar como raíz de un índice n 2 de un número real. RADICALES Etre los úeros reles se euetr los rdiles, ue se uede exresr oo ríz de u ídie de u úero rel. Ríz eési de u úero rel. Si R y Ν, o, direos ue l ríz eési de es u úero rel r y lo otreos sí: r, si

Más detalles

ECUACIONES LINEALES SIMULTANEAS HOMOGENEAS

ECUACIONES LINEALES SIMULTANEAS HOMOGENEAS ECUACIONES LINEALES SIMULTANEAS HOMOGENEAS Métodos Numéricos /Aálisis Numérico/ Cálculo Numérico Objetivo: Resolució de sistems de ecucioes lieles homogées por métodos proimdos. SISTEMAS DE ECUACIONES

Más detalles

Matemáticas 1 EJERCICIOS RESUELTOS:

Matemáticas 1 EJERCICIOS RESUELTOS: Mtemátics EJERCICIOS RESUELTOS: Series umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Series umérics Clculr l

Más detalles

Sucesiones de funciones

Sucesiones de funciones Tem 7 Sucesioes de fucioes Defiició 7. Se A IR y F A, IR el cojuto de ls fucioes de A e IR. Llmremos sucesió de fucioes de A culquier plicció de IN F A, IR, y l deotremos por f } = ó f } =. 7. Covergeci

Más detalles

1. POTENCIAS Y RAÍCES DE NÚMEROS ENTEROS

1. POTENCIAS Y RAÍCES DE NÚMEROS ENTEROS C/ Eilio Ferrri, 87 - Mdrid 8017 www.slesissjose.es Deprteto de Ciecis Nturles MT01. POTENCIAS Y RAÍCES DE NÚMEROS ENTEROS 1. POTENCIAS Y RAÍCES DE NÚMEROS ENTEROS Ates de epezr Seguro que ás de u vez

Más detalles

Estructuras Discretas. Unidad 3 Teoría de números

Estructuras Discretas. Unidad 3 Teoría de números Estructurs Discrets Uidd 3 Teorí de úmeros Coteido. Divisiilidd, Números rimos Teorem fudmetl de l ritmétic. 2. Algoritmo de l divisió Máximo comú divisor y míimo comú múltilo, Algoritmo de Euclides. 3.

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuel Púlic Experimetl Descocetrd Nº Dr. Crlos Ju Rodríguez Mtemátic º Año Ciclo Básico de Secudri Teorí Nº Primer Trimestre Cojuto de los úmeros rcioles Los úmeros rcioles so quellos que puede ser expresdos

Más detalles

ÁLGEBRA APUNTES. EXPONENTES y RADICALES. Ing. Francisco Raúl Ortíz González UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

ÁLGEBRA APUNTES. EXPONENTES y RADICALES. Ing. Francisco Raúl Ortíz González UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ARAGÓN DIVISIÓN DE LAS CIENCIAS FÍSICO-MATEMÁTICAS Y DE LAS INGENIERÍAS INGENIERÍA MECÁNICA-ELÉCTRICA APUNTES EXPONENTES RADICALES

Más detalles

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m

( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m Igreso Potecició e R: Ddo u úmero rel, que le llmremos bse y u umero turl, l que le llmremos epoete. defiimos: =.... Propieddes de l potecició: veces ( epoete) Ests propieddes se eplic mejor si se etiede

Más detalles

COMBINATORIA. Las variaciones ordinarias se representan por el símbolo Vm,n o por V

COMBINATORIA. Las variaciones ordinarias se representan por el símbolo Vm,n o por V COMBINATORIA Por Aálisis Cobitorio o Cobitori, se etiede quell prte del álgebr que se ocup del estudio y propieddes de los grupos que puede forrse co eleetos ddos, distiguiédose etre sí: por el úero de

Más detalles

APLICACIONES DE LAS MATRICES

APLICACIONES DE LAS MATRICES PLIIONES DE LS MTRIES Ejercicio nº.- ) Encuenr los vlores de pr los que l ri: no es inversible. Ejercicio nº.- lcul, si es posible, l invers de l ri: Pr los csos en los que. Ejercicio nº.- Hll un ri,,

Más detalles

BLOQUE 1: ÁLGEBRA. Tema 4: Sistemas de Ecuaciones Lineales

BLOQUE 1: ÁLGEBRA. Tema 4: Sistemas de Ecuaciones Lineales MTEMÁTICS º Bch BLOQUE : ÁLGEBR José Rmón Pdrón Tem : Sistems de Ecuciones Lineles MTEMÁTICS º Bch Tem : Sistems de Ecuciones Lineles TEOREM DE ROUCHÉ José Rmón Pdrón Supongmos el sistem siguiente: z z

Más detalles

Facultad de Ciencias Económicas, Administrativas Y Contables

Facultad de Ciencias Económicas, Administrativas Y Contables Fcultd de Ciecis Ecoóics, Adiistrtivs Y Cotles JOSÉ GERARDO CARDONA TORO Docete Uiversidd Lire Secciol Pereir Docete Uiversidd Tecológic de Pereir DAVID SANTIESTEBAN MURILLO Docete Uiversidd Lire Secciol

Más detalles

RADICALES. 1.2.1 Teorema fundamental de la radicación. 1.2.3 Reducción de radicales a índice común. 1.2.4 Potenciación de exponente fraccionario

RADICALES. 1.2.1 Teorema fundamental de la radicación. 1.2.3 Reducción de radicales a índice común. 1.2.4 Potenciación de exponente fraccionario RDICLES. Rdiles. Trsformioes de rdiles.. Teorem fudmetl de l rdiió.. Simplifiió de rdiles.. Reduió de rdiles ídie omú.. Poteiió de epoete friorio. Operioes o rdiles.. Produto de rdiles.... Etrió de ftores

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

MATEMÁTICA 1 JRC La disciplina es la parte más importante del éxito. Exponente. Variables o Parte literal

MATEMÁTICA 1 JRC La disciplina es la parte más importante del éxito. Exponente. Variables o Parte literal MATEMÁTICA JRC La disciplia es la parte ás iportate del éito POLINOMIOS EN R EXPRESIÓN ALGEBRAICA.- Es u cojuto de úeros letras, elazadas por cualquiera de las cuatro operacioes, adeás de la poteciació

Más detalles

UNIVERSIDAD AMERICANA. Curso BAN-03: Matemática I ( Jueves- Noche ) Prof. Edwin Gerardo Acuña Acuña PRÁCTICA DE FACTORIZACIÓN

UNIVERSIDAD AMERICANA. Curso BAN-03: Matemática I ( Jueves- Noche ) Prof. Edwin Gerardo Acuña Acuña PRÁCTICA DE FACTORIZACIÓN UNIVERSIDAD AMERICANA Escuel de Mteátic, I C-12. Curso BAN-03: Mteátic I ( Jueves- Noche ) Prof. Edwi Gerrdo Acuñ Acuñ PRÁCTICA DE FACTORIZACIÓN L fctorizció es epresr e for teátic u polioio o úero coo

Más detalles

Ecuaciones de recurrencia

Ecuaciones de recurrencia Ecucioes de recurreci Itroducció Comecemos co u ejemplo: Sucesió de Fibocci: ( ) = (,,,3,5,8,3,... ) Cd térmio, prtir del tercero, se obtiee sumdo los dos teriores, o se: 3 = + ( ) U expresió de este tipo,

Más detalles

Unidad 7: Sucesiones. Solución a los ejercicios

Unidad 7: Sucesiones. Solución a los ejercicios Mtemátics º Uidd 7: Sucesioes Uidd 7: Sucesioes. Solució los ejercicios Ejercicio Ecuetr el térmio geerl de ls siguietes sucesioes: ),,,,,... 5 6 7 b ) 0,, 8,5,, 5... b 5 6 c ) 0,,,,,,... 5 6 7 c Ejercicio

Más detalles

Ejercicios: 1. Coloca donde corresponda los siguientes números: N Z Q FRACCIONARIOS I

Ejercicios: 1. Coloca donde corresponda los siguientes números: N Z Q FRACCIONARIOS I TEMA : LOS NÚMEROS REALES LOS NÚMEROS REALES. CLASIFICACIÓN. Detro del cojuto de los úeros reles distiguios: NATURALES. Se desig co l letr N y so los úeros si deciles y positivos 0,,,,. ENTEROS. Se desig

Más detalles

NATURALES: surgen de la necesidad de contar o de ordenar. Se denotan con la letra N. N={1,2,3,4, }

NATURALES: surgen de la necesidad de contar o de ordenar. Se denotan con la letra N. N={1,2,3,4, } 1. CONJUNTOS NUMÉRICOS NATURALES: surge de l ecesidd de cotr o de order. Se deot co l letr N. N{1,,3,4, } L su de dos úeros turles es siepre otro úero turl. Pero co l rest o ps lo iso. Eje.: 6-8 ENTEROS:

Más detalles

LOS NÚMEROS REALES. La estructura del conjunto de los números reales es: Naturales Enteros { } { }

LOS NÚMEROS REALES. La estructura del conjunto de los números reales es: Naturales Enteros { } { } LOS NÚMEROS RELES L estructur del cojuto de los úeros reles es: Nturles N Eteros ( ) ( ) ( Z) : Rcioles Q : Núeros Reles R : Negtivos Frccioes Irrcioles() I N Eteros positivos ás el cero 0,1, 2, 3,...

Más detalles

FASE COGNITIVA. LOS NUMEROS REALES Los números reales se conforman por los decimales finitos, decimales infinitos periódicos e infinitos no periódicos

FASE COGNITIVA. LOS NUMEROS REALES Los números reales se conforman por los decimales finitos, decimales infinitos periódicos e infinitos no periódicos Vlorr l iportci de coocer el siste de los úeros reles eplicr ls crcterístics de ls diferetes clses de úeros reles 1. Pr qué sirve los úeros reles? Qué clse de úeros reles cooces? Cuáles so ls crcterístics

Más detalles

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568.

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568. Hoja de Probleas º Algebra. Hallar u úero cuadrado perfecto de cico cifras sabiedo que el producto de esas cico cifras es 568. Solució: Sea x 0 4 x 0 3 x 3 0 x 4 0 x 5 el úero que buscaos y sea a 0 b 0

Más detalles

PROPIEDAD FUNDAMENTAL DE LOS RADICALES

PROPIEDAD FUNDAMENTAL DE LOS RADICALES Mtemátics Aplicds ls Ciecis Sociles I DEFINICIÓN DE RAÍZ ENÉSIMA Llmremos ríz eésim de "" y lo represetremos sí que cumpl l codició de que elevdo "" se igul "": x / x Al úmero "" se le llm ídice de l ríz.

Más detalles

1. Números reales. 2. Raíces y potencias. 3. Operaciones con radicales. Matemáticas 4º ESO

1. Números reales. 2. Raíces y potencias. 3. Operaciones con radicales. Matemáticas 4º ESO Mteátis º ESO 1. Núeros reles Clsifiió de los úeros reles Frió geertriz de u úero deil Reresetió de úeros rioles e l ret rel Aroxiioes Itervlos. Ríes y oteis Proieddes de ls oteis de exoete riol Rdiles

Más detalles

Definición: Llamamos función exponencial a una función que se expresa de la forma: x. ( x)

Definición: Llamamos función exponencial a una función que se expresa de la forma: x. ( x) FUNCIÓN EXPONENCIAL Defiició: Llmmos fució epoecil u fució que se epres de l form: f = = co > 0 ( ), dode f ( ) : R R > 0 Ates de trbjr específicmete, co ls fucioes epoeciles, recordemos lguos coceptos

Más detalles

Licdo Eliezer Montoya Resumen de los Métodos de Integración 1. Tablas de derivación

Licdo Eliezer Montoya Resumen de los Métodos de Integración 1. Tablas de derivación Licdo Eliezer Motoy Rese de los Métodos de Itegrció Tbls de derivció dy L derivd por defiició f ( ) D f y d D ( ) D ( ) D ( ) ) D ( ) D ( c) 0 D D ( ) ) D D ( ) ) D ( v) D ( ) D ( v) 3) D ( v) D v vd vd

Más detalles