Universidad del Rosario Economía Matemática II Taller 8 - Kuhn Tucker

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Universidad del Rosario Economía Matemática II Taller 8 - Kuhn Tucker"

Transcripción

1 . En los siguientes problemas de optimización: Universidad del Rosario Economía Matemática II Taller 8 - Kuhn Tucker a. Dibuje el conjunto K de puntos factibles y las curvas de nivel de la función objetivo. b. Es el conjunto K compacto, convexo y cumple la condicion de Slater? c. Solucione el problema y justifique porque es una solución. () Max x x 2 s.a x + x 2 x, x 2 0 Solución. El conjunto K es cerrado y acotado (por lo tanto compacto), convexo y cumple con Slater (tiene puntos interiores). Todos los puntos son cualificados, por lo tanto las condiciones de Kuhn- Tucker son necesarias para ser la solución al problema de maximización. Hay dos puntos que satisfacen las condiciones de Kuhn-Tucker, pero el que resuelve el problema es (x, x 2 ) = ( 2, 2 ), con multiplicadores de lagrange asociados (en el orden de las restricciones) λ = 2, λ 2 = 0,λ 3 = 0. (2) Figura : Q() Min (x ) 2 + x 2 2 s.a x + x 2 2 x + x 2 2 Solución. El conjunto K es cerrado y acotado (por lo tanto compacto), convexo y cumple con Slater (tiene puntos interiores). Todos los puntos son cualificados, por lo tanto las condiciones de Kuhn- Tucker son necesarias para ser la solución al problema de minimización. Acá claramente el punto que resuelve el problema de optimización y satisface las condiciones de Kuhn-Tucker es (x, x 2 ) = (, 0), con multiplicadores de lagrange asociados (en el orden de las restricciones) λ = 0 y λ 2 = 0 (Note que las restricciones no están activas).

2 Figura 2: Q(2) (3) Max 4x + 3y s.a x 2 + y 2 x y y 0 Solución. El conjunto K es cerrado y acotado (por lo tanto compacto), convexo y cumple con Slater (tiene puntos interiores). Todos los puntos son cualificados, por lo tanto las condiciones de Kuhn- Tucker son necesarias para ser la solución al problema de maximización. El punto que resuelve el problema de optimización es (x, y ) = ( 4 5, 3 5 ), con multiplicadores de lagrange asociados (en el orden de las restricciones) λ = 5 2, λ 2 = 0 y λ 3 = 0. A = (0:8;0:6) Figura 3: Q(3) (4) Max x 2 + y s.a x 2 + y 2 4 x 2 y x, y 0 2

3 Solución. El conjunto K es cerrado y acotado (por lo tanto compacto), NO es convexo y cumple con Slater (tiene puntos interiores). Existe un punto no cualificado (x, y) = (0, 0) en donde f(0, 0) = 0, se deben verificar otros posibles puntos usando el procedimiento de Kuhn- Tucker. El punto que resuelve el problema de optimización es (x, y ) = ( 5 2, 2 ), con multiplicadores de lagrange asociados (en el orden de las restricciones) λ =, λ 2 = 0, λ 3 = 0 y λ 4 = 0. Note que en este punto la función es mayor que en el punto no cualificado, f(x, y) = 7 4. Figura 4: Q(4) 2. Considere el siguiente problema de optimización Max x s.a x 2 ( x ) 2 x, x 2 0 a. Dibuje el conjunto de puntos factibles y las curvas de nivel de la función objetivo. Es compacto y convexo? Cumple la condicion de Slater? b. Calcule las condiciones de Kuhn Tucker. Existe algún punto donde se cumplan? c. Encuentre la solución del problema. Es este punto un punto cualificado? d. Agregue la restricción adicional 2x + x 2 2. Calcule las condiciones de Kuhn Tucker. Existe algún punto donde se cumplan? Solución. El conjunto K es cerrado y acotado (por lo tanto compacto), NO es convexo y cumple con Slater (tiene puntos interiores). Existe un punto no cualificado (x, y) = (, 0) que resulta ser el óptimo. Sin la restricción adicional no hay ningún punto que cumpla las condiciones de Kuhn- Tucker, con la restricción adicional el procedimiento de Kuhn- Tucker si encuentra el punto óptimo Porqué?. 3. Resuelva el siguiente problema: máx x 2 s.a x y 2 4 x 4 y 2 3

4 Figura 5: Q2 Solución. El conjunto de restricciones K es cerrado, convexo y cumple la condición de Slater, entonces la solución del problema debe cumplir las siguientes condiciones de Kuhn-Tucker: 2x = λ + λ λ (x y 2 + 4) = 0 2 (KT) (KT2) λ 2 (x 4 + y 0 = 2yλ + 2yλ 2 λ 3 2 ) = 0 λ 3 y = 0 λ 0 (KT3) λ 2 0 λ 3 0 Figura 6: Q3 (i) Solución interior: λ = λ 2 = λ 3 = 0 x = 0, entonces los puntos (0, a) con a (0, 2) son posibles soluciones. (ii) Solución en sobre la restricción pero no en las intersecciones: λ 2 = λ 3 = 0 2x = λ (KT)+(KT2) 0 = 2yλ tenemos x = 0 o y = 0, contradicción!! x = y 2 4 4

5 (iii) Solución en sobre la restricción 2 pero no en las intersecciones: λ = λ 3 = 0 2x = λ 2 (KT)+(KT2) 0 = 2yλ 2 tenemos x = 0 o y = 0, contradicción!! x = 4 y 2 (iv) Solución en sobre la restricción 3 pero no en las intersecciones: λ = λ 2 = 0 2x = 0 (KT)+(KT2) 0 = λ 3 tenemos que (0, 0) es candidato a ser solución. y = 0 (v) Solución en A(4, 0) que es la intersección de las representaciones de las restricciones 2 y 3: λ = 0 (KT) 8 = λ 2 0 = λ 3 tenemos que (4, 0) es candidato a ser solución. (vi) Solución en B(0, 2) que es la intersección de las representaciones de las restricciones y 2: λ 3 = 0 (KT) 0 = λ + λ 2 0 = 4λ + 4λ 2 tenemos que (0, 2) es candidato a ser solución. (vii) Solución en C( 4, 0) que es la intersección de las representaciones de las restricciones y 3: λ 2 = 0 (KT) 8 = λ 0 = λ 3 tenemos que ( 4, 0) es candidato a ser solución. Conclusión: los candidatos a ser solución son los puntos (0, a) con a [0, 2], (4, 0) y ( 4, 0). Sea f(x, y) = x 2 entonces f(0, a) = 0 f(4, 0) = f( 4, 0) = 6 entonces las soluciones son (4, 0) y ( 4, 0) 4. Un granjero tiene un terreno de h hectáreas, y un tractor que puede usar por t horas. Con cada hora de tractor, planta una hectárea, que produce tonelada de soya. El precio de la soya es $ por tonelada. No tiene costos de usar la tierra, o el tractor y cualquier recurso ocioso no produce nada (no puede alquilarlo a un vecino). Para cada una de las tres posibilidades (h menor o igual que t; igual, o mayor), determine cuánto está dispuesto a pagar el granjero por agrandar un poquito su terreno. Solución: Consideramos primero el caso en que h < t: Es obvio que el granjero utilizará todas sus hectáreas, y que por tanto sus beneficios serán π = h. Tenemos entonces que dπ/dh = : Esa es la respuesta. Pero para hacerlo más largo y técnico, tenemos que el granjero debe elegir H, T para maximizar sujeto a máx mính, T } H h T t. 5

6 El Lagrangiano de este problema es L = mính, T } + λ (h H) + λ 2 (t T ). Como h es menor que t; queda L = H + λ (h H) + λ 2 (t T ) ; por lo que la condición de primer orden es λ = y H = h (esto sale de Kuhn-Tucker). Por supuesto, los beneficios son π = h (como ya sabíamos). Si queremos hacer dπ/dh, podemos hacerlo directamente, o con el Teorema de la Envolvente: como π(h) = máx H L(H; h); tenemos dπ dh = L h = λ =. Siguiendo razonamientos parecidos a este, obtenemos que en los otros casos el granjero está dispuesto a pagar 0 por ampliar su terreno. El único caso curioso. es cuando h = t; en cuyo caso las dos restricciones están activas, pero el granjero no está dispuesto a pagar nada por relajarlas. 5. Considere el problema máx xy sujeto a x 2 + a 2 y 2. Encuentre V (a) de la función de máximo valor cuando a =. Solución: El Lagrangiano de este problema es Entonces, las condiciones de primer orden son: L = xy + λ( x 2 a 2 y 2 ). L x = y 2λx = 0 y = 2λx L y = x 2λa2 y = 0 x = 2λa 2 y Entonces, x 2 = y 2 a 2. Suponga que λ > 0, y 2 a 2 + a 2 y 2 =. Entonces, y = 2 a and x = 2. Entonces, λ = 2a. Si λ = 0, x = 0, y = 0, f(0, 0) = 0 < f(x, y ) = 2 2 a. Cuando a =, V (a) = L a = 2λ a(y ) 2 = 2a 2 V () = 2. 6

7 6. Considere el siguiente problema donde a IR: máx s.a. ax + y x 2 y y x 2 (a) Qué puede decir sobre la existencia de la solución del problema (P)? Solución. Como el conjunto de restricciones es compacto y la función objetivo es continua, entonces existe al menos una solución. (b) Puede usar el teorema de Kuhn-Tucker para resolver el problema (P)? Justifique su respuesta. Solución. Como el conjunto de restricciones es cerrado, convexo y cumple Slater, entonces la solución debe cumplir las condiciones de Kuhn-Tucker. (c) Resuelva el problema (P) para todo a IR. Muestre que hay tres posibles soluciones: una para a ( ; 2], otra para a ( 2; 2) y una última para a [2; ). Solución. Las condiciones de Kuhn-Tucker son: a = 2λ x + 2λ 2 x λ (x 2 y) = 0 (KT ) (KT 2) = λ + λ 2 λ 2 (y + x 2 ) = 0 (KT 3) λ 0 λ 2 0 Si λ 2 = 0 tenemos λ = lo cual es una contradicción. Por lo tanto λ 2 0 y la solución está en la restricción 2. (i) Solución en la restricción 2 pero no en los puntos de intersección. Entonces λ = 0, λ 2 =, x = a 2, y = a2 4. En este caso x (, ), por lo tanto necesitamos que a ( 2, 2). (ii) Solución en (-,0), tenemos a = 2λ 2λ 2 λ 2 = +λ a = 2λ 2 2λ λ = a 2, λ 2 = 2 a = λ + λ Para tener λ 0 necesitamos 2 a. (iii) Solución en (,0), tenemos a = 2λ + 2λ 2 λ 2 = + λ a = 2λ λ λ = a 2 = λ + λ 2 4, λ 2 = a Para tener λ 0 necesitamos a 2. Conclusión: Cuando a ( ; 2] la solución es (x, y ) = (, 0), cuando a ( 2; 2) la solución es (x, y ) = ( a 2, a2 4 ) cuando a [2; ) la solución es (x, y ) = (, 0). (d) Encuentre cuánto cambia la función de máximo valor de (P) con respecto al parámetro a. Al igual que al solucionar el problema (P), debe encontrar tres casos que dependen de los valores que puede tomar a. Solución. La función de máximo valor es: V (a) = ax + y a si a ( ; 2] V (a) = a si a ( 2; 2) a si a [2; + ) si a ( ; 2] V (a) = a 2 si a ( 2; 2) si a [2; + ) Usando el Teorema de la Envolvente se encuentra el mismo resultado. 7

8 7. Por qué no se pueden usar las condiciones de KT para resolver este problema? máx f(x, y) = y s.a. y 3 y 2 = 0 Solución. Primero, note que (0, 0) es solución del problema de optimización. Observe que f(x, y) = (0, ) y g(x, y) = ( 2x, 3y 2 ), que en (0, 0) es g(0, 0) = (0, 0). Lo anterior indica que no es posible encontrar λ tal que f(0, 0) = λ g(0, 0), es decir, el punto óptimo no satisface la CKT. El hecho es que el vector g(0, 0) no es linealmente independiente (pues el el vector nulo). 8

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

Clase 10: Extremos condicionados y multiplicadores de Lagrange

Clase 10: Extremos condicionados y multiplicadores de Lagrange Clase 10: Extremos condicionados y multiplicadores de Lagrange C.J. Vanegas 7 de abril de 008 1. Extremos condicionados y multiplicadores de Lagrange Estamos interesados en maximizar o minimizar una función

Más detalles

EL PROBLEMA GENERAL DE OPTIMIZACION

EL PROBLEMA GENERAL DE OPTIMIZACION EL PROBLEMA GENERAL DE OPTIMIZACION Terminología Tipos de soluciones Resultados teóricos sobre existencia y unicidad de soluciones Método gráfico de resolución Problemas de optimización Este tipo de problemas

Más detalles

5.- Problemas de programación no lineal.

5.- Problemas de programación no lineal. Programación Matemática para Economistas 7 5.- Problemas de programación no lineal..- Resolver el problema Min ( ) + ( y ) s.a 9 5 y 5 Solución: En general en la resolución de un problema de programación

Más detalles

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 IN3701 - Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 Acá va una pequeña guía con problemas resueltos de Geometría en Programación Lineal con problemas básicamente extraídos del

Más detalles

Optimización con restricciones de desigualdad: Condiciones de Kuhn-Tucker

Optimización con restricciones de desigualdad: Condiciones de Kuhn-Tucker Optimización con restricciones de desigualdad: Condiciones de Kuhn-Tucker Hasta ahora, hemos estudiado como maximizar o minimizar una función sujeta a restricciones en forma de ecuaciones de igualdad.

Más detalles

Departamento de Matemáticas. ITAM Programación lineal (+ extensiones). Objetivos y panorama del c

Departamento de Matemáticas. ITAM Programación lineal (+ extensiones). Objetivos y panorama del c Programación lineal (+ extensiones). Objetivos y panorama del curso. Departamento de Matemáticas. ITAM. 2008. Introducción Programación lineal http://allman.rhon.itam.mx/ jmorales La programación lineal

Más detalles

Clase 9 Programación No Lineal

Clase 9 Programación No Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 9 Programación No Lineal ICS 110 Optimización Profesor : Claudio Seebach Apuntes de Clases

Más detalles

DUALIDAD EN PROGRAMACION LINEAL

DUALIDAD EN PROGRAMACION LINEAL DUALIDAD EN PROGRAMACION LINEAL Relaciones primal-dual Asociado a cada problema lineal existe otro problema de programación lineal denominado problema dual (PD), que posee importantes propiedades y relaciones

Más detalles

Programación NO Lineal (PNL) Optimización sin restricciones

Programación NO Lineal (PNL) Optimización sin restricciones Programación NO Lineal (PNL) Optimización sin restricciones Ejemplos de los problemas que se aplica la programación NO Lineal: Problema de transporte con descuentos por cantidad : El precio unitario de

Más detalles

Programación lineal. Estimar M. Ejemplos.

Programación lineal. Estimar M. Ejemplos. Departamento de Matemáticas. ITAM. 2010. Los problemas P y P minimizar x c T x sujeta a Ax = b, x 0, b 0 minimizar c T x + M(y 1 + y 2 + + y m ) x sujeta a Ax + y = b, x 0, y 0. Cómo estimar M? Resultado

Más detalles

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 4 Optimización no Lineal

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 4 Optimización no Lineal OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 4 Optimización no Lineal ORGANIZACIÓN DEL TEMA Sesiones: El caso sin restricciones: formulación, ejemplos Condiciones de optimalidad, métodos Caso con restricciones:

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

Introducción a Programación Lineal

Introducción a Programación Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 18 Programación Lineal ICS 1102 Optimización Profesor : Claudio Seebach 4 de octubre de 2005

Más detalles

Conjuntos y funciones convexas

Conjuntos y funciones convexas Conjuntos y funciones convexas Un conjunto X R n se dice convexo si para todo par de puntos x 1 y x 2 en X, λ x 1 + ( 1- λ) x 2 X, para todo λ [0,1] Qué significa esto geométricamente? Un punto λ x 1 +

Más detalles

Máximos y mínimos. Mínimo global Máximo global máximo relativo mínimo relativo

Máximos y mínimos. Mínimo global Máximo global máximo relativo mínimo relativo Máximos y mínimos. Anteriormente estudiamos métodos para obtener los extremos de funciones de una variable. Extenderemos esas técnicas a funciones de dos variables. Sea una función de dos variables, definida

Más detalles

Jesús Getán y Eva Boj. Marzo de 2014

Jesús Getán y Eva Boj. Marzo de 2014 Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj 1 / 18 Jesús Getán y Eva Boj 2 / 18 Un Programa lineal consta de: Función objetivo. Modeliza

Más detalles

El haz de planos paralelos queda determinado por un vector normal, n A, B,

El haz de planos paralelos queda determinado por un vector normal, n A, B, HAZ DE PLANOS HAZ DE PLANOS PARALELOS Dado un plano, por ejemplo, π :3x4y2z1 cuyo vector normal es n 3, 4, 2, cualquier otro plano que tenga el mismo vector normal será un plano paralelo a. El plano π

Más detalles

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA Universidad de Valladolid Facultad de Ciencias Económicas y Empresariales Departamento de Economía Aplicada Subsección de Matemáticas Esquemas teóricos de la asignatura de las licenciaturas en Economía

Más detalles

Trabajo Práctico Optativo

Trabajo Práctico Optativo rofesor: Julio J. Elías Trabajo ráctico Optativo 1. El método de los multiplicadores de Lagrange Generalmente, en economía trabajamos con modelos que involucran optimización con restricciones. or ejemplo,

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1

Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1 Método Gráfico El procedimiento geométrico, es únicamente adecuado para resolver problemas muy pequeños (con no más de dos variables debido al problema de dimensionalidad). Este método provee una gran

Más detalles

Método de Multiplicadores de Lagrange: Una Versión Animada.

Método de Multiplicadores de Lagrange: Una Versión Animada. Método de Multiplicadores de Lagrange: Una Versión Animada. José D. Flores, PhD. Professor of Mathematics The University of South Dakota jflores@usd.edu Noviembre 2004 Abstract Resúmen: En este trabajo

Más detalles

Programación Lineal. El modelo Matemático

Programación Lineal. El modelo Matemático Programación Lineal. El modelo Matemático 1 Modelización Definición 1.1 Consideremos el problema de optimización con restricciones, definido como sigue Min f(x) s.a. g i (x) b i i = 1, 2,..., m (P OR)

Más detalles

PROGRAMACIÓN NO LINEAL INTRODUCCIÓN

PROGRAMACIÓN NO LINEAL INTRODUCCIÓN PROGRAMACIÓN NO LINEAL Conceptos generales INTRODUCCIÓN Una suposición importante de programación lineal es que todas sus funciones Función objetivo y funciones de restricción son lineales. Aunque, en

Más detalles

EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I. 1. (2.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que

EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I. 1. (2.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I DEBE CONTESTAR ÚNICAMENTE A 4 DE LOS SIGUIENTES 5 EJERCICIOS 1. (.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que Sea

Más detalles

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex. El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.

Más detalles

Santiago, julio 6 del Tercera Solemne Cálculo Varias Variables. Nombre:

Santiago, julio 6 del Tercera Solemne Cálculo Varias Variables. Nombre: Nombre: Santiago, julio 6 del 26. Tercera Solemne Cálculo Varias Variables. 1. La temperatura en un punto (x, y) sobre una placa metalica es T (x, y) 4x 2 4xy + y 2. Una hormiga camina sobre la placa alrededor

Más detalles

Práctica 6. Método de los multiplicadores de Lagrange. Extremos condicionados.

Práctica 6. Método de los multiplicadores de Lagrange. Extremos condicionados. Práctica 6. Método de los multiplicadores de Lagrange. Extremos condicionados. Análisis Matemático II. Departamento de Matemáticas. Diplomatura en Estadística / Ingeniería Técnica de Informática de Gestión

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES HOJA 5: Optimización 5-1. Hallar los puntos críticos de las siguiente funciones y clasificarlos: a fx, y = x y + xy.

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

TEORÍA DE LA EMPRESA. ADOLFO GARCÍA DE LA SIENRA Instituto de Filosofía Facultad de Economía Universidad Veracruzana

TEORÍA DE LA EMPRESA. ADOLFO GARCÍA DE LA SIENRA Instituto de Filosofía Facultad de Economía Universidad Veracruzana TEORÍA DE LA EMPRESA ADOLFO GARCÍA DE LA SIENRA Instituto de Filosofía Facultad de Economía Universidad Veracruzana asienrag@gmail.com. Conjuntos y funciones de producción El conjunto de posibilidades

Más detalles

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc.

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc. PROGRAMACIÓN LINEAL La programación lineal da respuesta a situaciones en las que se exige maximizar o minimizar funciones que se encuentran sujetas a determinadas limitaciones, que llamaremos restricciones.

Más detalles

Ejercicios resueltos. 4 continua en R luego continua en cualquier. , [ 1,1] = 0 que equivale a decir 1,1

Ejercicios resueltos. 4 continua en R luego continua en cualquier. , [ 1,1] = 0 que equivale a decir 1,1 Teoremas de continuidad y derivabilidad Ejercicios resueltos.- Demostrar que la siguiente ecuación tiene una solución en el intervalo, : 4 º. Se considera la función 4 continua en R luego continua en cualquier

Más detalles

UNIDAD 6.- PROGRAMACIÓN LINEAL

UNIDAD 6.- PROGRAMACIÓN LINEAL UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:

Más detalles

Tarea 1 - Vectorial 201420

Tarea 1 - Vectorial 201420 Tarea - Vectorial 040. Part :. - 3... Hacer parametrización de la curva de intersección del cilindro x + y = 6 y el plano x + z = 5. Encontrar las coordenadas de los puntos de la curva donde la curvatura

Más detalles

Optimización no lineal

Optimización no lineal Capítulo Optimización no lineal.1. Introducción En este capítulo se estudian algunos aspectos relacionados con la que hemos dado en llamar cuestión estática de los problemas de optimización. Se presentan

Más detalles

MATEMÁTICAS III. RESTRICCIONES DE IGUALDAD

MATEMÁTICAS III. RESTRICCIONES DE IGUALDAD MATEMÁTICAS III. PROBLEMAS Y CUESTIONES TEMA 4: RESTRICCIONES DE IGUALDAD OPTIMIZACIÓN CON Problema 1: Una empresa calcula que puede alcanzar unos beneficios anuales (en miles de euros) dados por la función:

Más detalles

INTRODUCCIÓN A LA PROGRAMACIÓN MATEMÁTICA

INTRODUCCIÓN A LA PROGRAMACIÓN MATEMÁTICA INTRODUCCIÓN A LA PROGRAMACIÓN MATEMÁTICA Dentro del campo general de la teoría de la optimización, también conocida como programación matemática conviene distinguir diferentes modelos de optimización.

Más detalles

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA UNIVERSIDAD DE VALLADOLID DEPARTAMENTO DE ECONOMÍA APLICADA SUBSECCIÓN DE MATEMÁTICAS MÉTODOS MATEMÁTICOS DE LA ECONOMÍA Economía Derecho Administración y Dirección de Empresas RELACIÓN DE PROBLEMAS DE

Más detalles

Introducción a la programación lineal

Introducción a la programación lineal Introducción a la programación lineal La programación lineal se aplica a modelos de optimización en los que las funciones objetivo y restricción son estrictamente lineales. La técnica se aplica en una

Más detalles

DERIVADAS PARCIALES Y APLICACIONES

DERIVADAS PARCIALES Y APLICACIONES CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras

Más detalles

Base y Dimensión de un Espacio Vectorial

Base y Dimensión de un Espacio Vectorial Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un

Más detalles

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú Teoría de la dualidad El desarrollo de esta teoría de la dualidad es debido al interés que existe en la interpretación económica

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO.

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Clase # 8 Hasta el momento sólo se han estudiado problemas en la forma estándar ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Maximizar Z. Restricciones de la forma. Todas las variables no negativas. b i 0 para

Más detalles

MÉTODO DEL DUAL (TEORIA DE DUALIDAD)

MÉTODO DEL DUAL (TEORIA DE DUALIDAD) MÉTODO DEL DUAL (TEORIA DE DUALIDAD) Todo problema de programación lineal tiene asociado con él otro problema de programación lineal llamado DUAL. El problema inicial es llamado PRIMO y el problema asociado

Más detalles

Funciones de Clase C 1

Funciones de Clase C 1 Capítulo 7 Funciones de Clase C 1 Vamos a considerar ahora la extensión a varias variables del concepto de función de clase C 1. Cada vez que establezcamos una propiedad de las funciones diferenciables,

Más detalles

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut 8.1 Para cada uno de los siguientes conjuntos, encontrar una desigualdad válida que agregada a la formulación

Más detalles

Áreas entre curvas. Ejercicios resueltos

Áreas entre curvas. Ejercicios resueltos Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio

Más detalles

Es claro que es una relación de equivalencia. Para ver que tener la misma cardinalidad y la cardinalidad están bien definidas queremos ver que

Es claro que es una relación de equivalencia. Para ver que tener la misma cardinalidad y la cardinalidad están bien definidas queremos ver que Capítulo II Cardinalidad Finita II.1. Cardinalidad Definimos I n para n N como I n = {k N : 1 k n}. En particular I 0 =, puesto que 0 < 1. Esto es equivalente a la definición recursiva { si n = 0 I n =

Más detalles

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL.

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL. PROGRAMACIÓN LINEAL. La programación lineal es una técnica de modelado (construcción de modelos). La programación lineal (PL) es una técnica matemática de optimización, es decir, un método que trata de

Más detalles

Las Funciones Trigonométricas. Sección 5.3 Funciones Trigonométricas de números reales

Las Funciones Trigonométricas. Sección 5.3 Funciones Trigonométricas de números reales 5 Las Funciones Trigonométricas Sección 5.3 Funciones Trigonométricas de números reales Qué hemos visto? Si el lado inicial de un ángulo,, coincide con la parte del eje de x que se encuentra en el primer

Más detalles

TERCER TRABAJO EN GRUPO Grupo 10

TERCER TRABAJO EN GRUPO Grupo 10 TERCER TRABAJO EN GRUPO Grupo 10 Problema 1.- Se considera la ecuación x 3 + x + mx 6 = 0. Utilizando el Teorema de Bolzano demostrar que: (i) Si m > 3 la ecuación tiene al menos una raíz real menor que.

Más detalles

Determine if this function achieves a maximum in A. Does it achieve a minimum?

Determine if this function achieves a maximum in A. Does it achieve a minimum? (1 Consider the set A = {(x, y R : x + y, y x }. (a Draw set A, its boundary and interior set. Discuss whether A is open, closed, bounded, compact and/or convex. Clearly explain your answer. (b Consider

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

MODELOS MATEMATICOS. Despacho B3-134, Teléfono: Tutorías: Martes y Miércoles de a 12.

MODELOS MATEMATICOS. Despacho B3-134, Teléfono: Tutorías: Martes y Miércoles de a 12. MODELOS MATEMATICOS Profesor: David Pérez Castrillo Despacho B3-134, Teléfono: 581-1405 Tutorías: Martes y Miércoles de 10.30 a 12. Método de evaluación: La nota final será la media de la nota obtenidad

Más detalles

Programa Oficial de Asignatura. Ficha Técnica. Presentación. Competencias y/o resultados del aprendizaje. Contenidos Didácticos

Programa Oficial de Asignatura. Ficha Técnica. Presentación. Competencias y/o resultados del aprendizaje. Contenidos Didácticos Ficha Técnica Titulación: Grado en Administración y Dirección de Empresas Plan BOE: BOE número 67 de 19 de marzo de 2014 Asignatura: Módulo: Métodos cuantitativos de la empresa Curso: 2º Créditos ECTS:

Más detalles

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica 1. a) Marcar en un eje los puntos a(1);b( 2) y c(4). b) Hallar los puntos simétricos respecto al origen

Más detalles

Álgebra Lineal V: Subespacios Vectoriales.

Álgebra Lineal V: Subespacios Vectoriales. Álgebra Lineal V: Subespacios Vectoriales. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamanca.ugto.mx

Más detalles

El Algoritmo E-M. José Antonio Camarena Ibarrola

El Algoritmo E-M. José Antonio Camarena Ibarrola El Algoritmo E-M José Antonio Camarena Ibarrola Introducción Método para encontrar una estimación de máima verosimilitud para un parámetro ѳ de una distribución Ejemplo simple 24 Si tiene las temperaturas

Más detalles

Complementos de Análisis. Año 2016

Complementos de Análisis. Año 2016 Complementos de Análisis. Año 2016 Práctica 8. Ecuaciones diferenciales ordinarias. 1 Modelando con ecuaciones diferenciales Modelar con ecuaciones diferenciales las siguientes situaciones. Intentar resolver

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009 ANÁLISIS I MATEMÁTICA ANÁLISIS II (Computación) Práctica 5 - Verano 2009 Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior. Calcular las derivadas

Más detalles

Instituto tecnológico de Minatitlán. Investigación de operaciones Ing. Erika Lissette Minaya mortera Unidad 3: programación no lineal

Instituto tecnológico de Minatitlán. Investigación de operaciones Ing. Erika Lissette Minaya mortera Unidad 3: programación no lineal Instituto tecnológico de Minatitlán Investigación de operaciones Ing. Erika Lissette Minaya mortera Unidad 3: programación no lineal Alejandra de la cruz francisco Ingeniería en sistemas computacionales

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Universidad Nacional de Colombia Departamento de Matemáticas 1000003-5 Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Vectores en R n Definición. El conjunto de las n-tuplas ordenadas de números reales se

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

PROBLEMAS DE OPTIMIZACIÓN CON RESTRICCIONES. PROBLEMA DE PROGRAMACIÓN NO- LINEAL (NLP).

PROBLEMAS DE OPTIMIZACIÓN CON RESTRICCIONES. PROBLEMA DE PROGRAMACIÓN NO- LINEAL (NLP). PROBLEMAS DE OPTIMIZACIÓN CON RESTRICCIONES. PROBLEMA DE PROGRAMACIÓN NO- LINEAL (NLP. Optimización con restricciones La presencia de restricciones reduce la región en la cual buscamos el óptimo. Los criterios

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 4

Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Ejercicio Determinar las funciones enteras f para las que Solución f( + w) = f()f(w), w C. En primer lugar, f(0) = f(0 + 0) = f(0)f(0) = f(0) 2,

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

Laboratorio N 8, Extremos condicionados, Multiplicadores de Lagrange.

Laboratorio N 8, Extremos condicionados, Multiplicadores de Lagrange. Universidad Diego Portales Facultad de Ingeniería. Instituto de Ciencias Básicas Asignatura: Cálculo III Laboratorio N 8, Extremos condicionados, Multiplicadores de Lagrange. Introducción. En este laboratorio

Más detalles

Rectas y Planos en el Espacio

Rectas y Planos en el Espacio Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. septiembre 2012 Verónica Briceño V. () Rectas y Planos en el Espacio septiembre 2012 1 / 20 En esta Presentación... En esta

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Soluciones de la ecuación diferencial lineal homogénea

Soluciones de la ecuación diferencial lineal homogénea Ecuaciones diferenciales lineales de orden superior Ampliación de matemáticas urso 2008-2009 Ecuación diferencial lineal de orden n (x dn y n + P (x dn y n + + P n (x dy + P n(xy = G(x ( donde, P,...,

Más detalles

Teorema del Valor Medio

Teorema del Valor Medio Tema 6 Teorema del Valor Medio Abordamos en este tema el estudio del resultado más importante del cálculo diferencial en una variable, el Teorema del Valor Medio, debido al matemático italo-francés Joseph

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0.

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0. ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. 6 de Junio de 8 Primera parte Ejercicio. onsideremos los rectángulos de lados paralelos a los ejes que pueden inscribirse en la elipse x

Más detalles

Resumen de Análisis Matemático IV

Resumen de Análisis Matemático IV Resumen de Análisis Matemático IV 1. Funciones inversas e implícitas y extremos condicionados 1.1. Teorema de la función inversa Teorema de la función inversa: Sea A abierto de R n, f : A R n tal que f

Más detalles

Programación Lineal. El método simplex

Programación Lineal. El método simplex Programación Lineal El método simplex El método simplex es una herramienta algebraica que permite localizar de manera eficiente el óptimo entre los puntos extremos de una solución a un problema de programación

Más detalles

Función de dos variables

Función de dos variables Funciones de dos y más variables, dominio y rango, y curva de nivel Marlon Fajardo Molinares - fenix.75@hotmail.com 1. Función de dos variables 2. Funciones de varias variables 3. Método para hallar el

Más detalles

Luego, en el punto crítico

Luego, en el punto crítico Matemáticas Grado en Química Ejercicios propuestos Tema 5 Problema 1. Obtenga y clasique los puntos críticos de las siguientes funciones: a fx, y = x +y, b fx, y = x y, c fx, y = x 3 + y. Solución del

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo. Contenidos Cálculo Coordinación de Matemática I MAT021 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo Contenidos Clase 1: La Ecuación Cuadrática. Inecuaciones de grado 2, con y sin valor absoluto. Clase

Más detalles

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a

Más detalles

March 25, 2010 CAPÍTULO 2: LÍMITES Y CONTINUIDAD DE FUNCIONES EN EL ESPACIO EUCLÍDEO

March 25, 2010 CAPÍTULO 2: LÍMITES Y CONTINUIDAD DE FUNCIONES EN EL ESPACIO EUCLÍDEO March 25, 2010 CAPÍTULO 2: LÍMITE Y CONTINUIDAD DE FUNCIONE EN EL EPACIO EUCLÍDEO 1. Producto Escalar en R n Definición 1.1. Dado x = (x 1,..., x n ), y = (y 1,..., y n ) R n, su producto escalar está

Más detalles

Tema 2.- Formas Cuadráticas.

Tema 2.- Formas Cuadráticas. Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas

Más detalles

3.3. Número de condición de una matriz.

3.3. Número de condición de una matriz. 96 33 Número de condición de una matriz Consideremos el sistema Ax = b, de solución u Queremos controlar qué cambios se producen en la solución cuando hacemos pequeños cambios en las componentes de b o

Más detalles

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q).

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q). TEMA 4: DERIVADAS 1. La derivada de una función. Reglas de derivación 1.1. La pendiente de una curva. La pendiente de una curva en un punto P es una medida de la inclinación de la curva en ese punto. Si

Más detalles

ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano

ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano ELEMENTOS DE GEOMETRÍA Eduardo P. Serrano Este Apunte de Clase está dirigido a los alumnos de la materia Elementos de Cálculo Numérico para Biólogos. Tiene por objeto exponer algunos conceptos básicos

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Estos apuntes están redactados por Maria de los Angeles Isidro Pérez y Egor Maximenko.

Más detalles

Esterilización 1 4. Envase 3 2

Esterilización 1 4. Envase 3 2 9.- Una empresa de productos lácteos fabrica dos tipos de leche: entera y desnatada. El proceso de fabricación se lleva a cabo mediante una máquina de esterilización y otra de envase, donde el tiempo (expresado

Más detalles

Autómatas Mínimos. Encontrar el autómata mínimo. Universidad de Cantabria. Introducción Minimización de Autómatas Deterministas Resultados Algoritmo

Autómatas Mínimos. Encontrar el autómata mínimo. Universidad de Cantabria. Introducción Minimización de Autómatas Deterministas Resultados Algoritmo Autómatas Mínimos Encontrar el autómata mínimo. Universidad de Cantabria Introducción Dado un lenguaje regular sabemos encontrar un autómata finito. Pero, hay autómatas más sencillos que aceptan el mismo

Más detalles

La Teoría del Consumidor. El Problema del Consumidor

La Teoría del Consumidor. El Problema del Consumidor La Teoría del Consumidor El Problema del Consumidor El Problema del Consumidor El consumidor elige la cesta de bienes que maximiza su bienestar (utilidad) dentro del conjunto de cestas de bienes factibles.

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO

UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO INVESTIGACIÓN DE OPERACIONES Laboratorio #1 GRAFICA DE REGIONES CONVEXAS Y SOLUCIÓN POR MÉTODO GRÁFICO DE UN PROBLEMA DE PROGRAMACIÓN

Más detalles

IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio 1 opción A, modelo 6 del 010 [ 5 puntos] Dada la función f : R R definida como f(x)= a.sen(x)+ bx + cx + d, determina los valores de las constantes a, b, c y d sabiendo que la gráfica

Más detalles

1. Derivadas parciales

1. Derivadas parciales Análisis Matemático II. Curso 2009/2010. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 3. ABLES DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARI- 1. Derivadas parciales Para

Más detalles

Programación Lineal Continua

Programación Lineal Continua Elisenda Molina Universidad Carlos III de Madrid elisenda.molina@uc3m.es 8 de octubre de 2008 Esquema 1 Formulación y Ejemplos 2 3 Ejemplo: Producción de carbón Una empresa minera produce lignito y antracita.

Más detalles

Programación Lineal (PL)

Programación Lineal (PL) Programación Lineal (PL) Se llama programación lineal al conjunto de técnicas matemáticas que pretenden resolver la siguiente situación. El objetivo es Optimizar, una función objetivo, lo cual implica

Más detalles

Espacios Vectoriales

Espacios Vectoriales Leandro Marín Octubre 2010 Índice Definición y Ejemplos Paramétricas vs. Impĺıcitas Bases y Coordenadas Para definir un espacio vectorial tenemos que empezar determinando un cuerpo sobre el que esté definido

Más detalles