Intensidad del campo eléctrico

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Intensidad del campo eléctrico"

Transcripción

1 Intensidad del campo eléctrico

2 Intensidad del campo eléctrico Para describir la interacción electrostática hay dos posibilidades, podemos describirla directamente, mediante la ley de Coulomb, o través de un intermediario al que llamamos campo. Campo eléctrico: Una carga eléctrica Q, define un campo eléctrico en los puntos situados alrededor de ella a una distancia R, el cual tendrá sentido hacia Q cuando esta sea negativa y sentido contrario cuando Q sea positiva. E El campo eléctrico es una propiedad del espacio, adquirida por la presencia de una carga eléctrica.

3 Este vector se denomina intensidad del campo eléctrico ó también campo eléctrico creado por la carga Q. Su magnitud es: E = k Q R 2 En el sistema internacional de unidades la intensidad del campo eléctrico se mide en (N/C), y va dirigido según la recta que une el punto donde se encuentra la carga q (de prueba) con el punto donde se halla la carga Q(genera el campo). Se puede decir entonces que la fuerza eléctrica con que la carga Q afecta a la carga q, es igual al producto de esta carga q por la intensidad del campo eléctrico creado por Q. F = q E

4 Por otra parte, si conocemos el sentido de la fuerza, podemos conocer el sentido del campo eléctrico. Como la fuerza es un vector y q es un escalar, el campo eléctrico también es un vector que tendrá la misma dirección y sentido que La fuerza, si q es positiva. En cambio, si q es negativa, el campo eléctrico tendrá la dirección de la fuerza pero sentido contrario a esta. E E + q F F -q

5 Ahora analicemos que sucede cuando el campo eléctrico es creado por muchas cargas eléctricas. Esto se determina basándose, en que la interacción eléctrica entre dos cargas no depende de la presencia de un tercera carga. De lo anterior podemos deducir que sí hay muchos cuerpos cargados el campo eléctrico creado por ellos es igual a la suma vectorial de los campos eléctricos creados independientemente por cada carga. En otras palabras los campos eléctricos se superponen, que exista interacción entre ellos. Esta propiedad excepcional de los campos eléctricos se denomina. SUPERPOSICIÓN.

6 Líneas de campo eléctrico en un dipolo. Recuerda que la carga de p r u e b a q s e a s u m e siempre positiva.

7 Líneas de fuerza Este concepto introducido por Faraday, permite visualizar la dirección, sentido y, de cierta manera, magnitud de un campo eléctrico. Para representarlo se dibujan líneas continuas en cada punto, llamadas líneas de fuerza tangente, en la dirección del campo eléctrico.

8 Características de las líneas de fuerza 1. La tangente a esta línea en un punto, da la dirección del campo eléctrico en ese punto, apuntan alejándose de las cargas positivas y acedándose a las negativas. 2. Las líneas de fuerza empiezan sobre las cargas positivas y terminan sobre las negativas (si tenemos cargas de un solo signo, se supondrá que las cargas de otro signo, están en el infinito).

9 3. La distancia entre dos líneas de fuerza es inversamente proporcional al campo eléctrico medio comprendido entre las dos líneas. a menor distancia entre las líneas mayor campo eléctrico. 4. El número de líneas de que emergen o terminan en una carga es proporcional a la magnitud de la carga, es decir, a mayor número de carga mayor número de líneas de fuerza. Es importante notar que las líneas de fuerza no se pueden cruzar debido a que en un punto del espacio solo puede haber un campo eléctrico producto de la suma de todos los campos eléctricos.

10 Reglas para dibujar las líneas de fuerza 1. Las líneas salen de las cargas positivas y entran en las negativas. 2. El número de líneas que entran o salen es proporcional al valor de la carga. 3. Las líneas se dibujan de forma simétrica. 4. Las líneas empiezan o terminan solo en las cargas puntuales. 5. La densidad de línea es proporcional al valor del campo eléctrico.

11 Ejercicio. 1. Realizar un esquema de las líneas de fuerza entre dos cargas positivas y entre dos negativas. 2. Calcular la intensidad de campo eléctrico a 50 cm de una carga puntual de 0, C. 3. Cuál es la aceleración de un electrón de carga e y de masa m, situado dentro de un campo eléctrico E? 4. Se tiene un campo eléctrico uniforme dirigido verticalmente hacia arriba, cuya magnitud es E= N/C. Calcular a) El módulo de la fuerza de ejercida por este campo sobre el electrón. b) La rapidez que adquirirá el electrón en el campo anterior cuando haya recorrido 1 cm partiendo del reposo. Despreciar el efecto gravitatorio. c) El tiempo que necesita el electrón para recorrer 1 cm. d) La energía cinética del electrón en el caso anterior. Datos necesario: Masa electrón y carga q = 2 e

12 Líneas de fuerza entre dos cargas positivas y dos cargas negativas El campo eléctrico es una propiedad del espacio adquirida por la presencia de una carga eléctrica. Las líneas de campo permiten visualizar la dirección y el sentido de un campo. Las líneas se inician en las cargas positivas y terminan en las negativas.

13 Potencial electrostático En cursos pasados estudiaste la energía potencial gravitacional de un cuerpo dentro de un campo gravitacional y esto nos simplifico mucho el análisis de situaciones, Esta idea también es aplicable a los campos eléctricos. Muchas de las dificultades de trabajar con los campos eléctricos surgen debido a la naturaleza vectorial del mismo, estas dificultades se pueden despreciar utilizando los conceptos de Energía Potencial Eléctrica (U) y Escalar Potencial Eléctrico (V)

14 Energía Potencial Eléctrica. La fuerza eléctrica (F) ejercida por un campo eléctrico (E) es igual al producto de la carga(q) por el campo eléctrico(e), cuando la carga produce un desplazamiento (d) a lo largo de cualquier trayectoria que una dos puntos (a y b). El trabajo de esta fuerza es: F=qE F <ø a +q d b W = sumatoria de a hasta b(q E d) W =sumatoria d a hasta b (q E d cos ø)

15 El trabajo de las fuerzas gravitacionales es independiente de la trayectoria recorrida para ir de a hacia b. Entonces el trabajo realizado por la fuerza eléctrica también será independiente de la trayectoria. Diremos por lo tanto que las fuerza son conservativas. De este modo, podemos expresar el trabajo realizado por la fuerza eléctrica como la diferencia de los valores de una cantidad llamada energía potencial eléctrica (U) tiene en los dos puntos. W= Ua - Ub Entonces la diferencia de energía potencial eléctrica dentro de un campo eléctrico, es igual al trabajo realizado por la fuerza eléctrica, producida por el campo se ejerce sobre la carga. En consecuencia la energía potencial en un punto se definirá si elegimos un punto de referencia arbitrario y le asignamos la energía potencial cero.

16 Ejercicios 1.- Cuál es el trabajo realizado por una fuerza de F producida por un campo eléctrico E constante, cuya intensidad es de 300 (N/C), sobre una carga q de 0,000001C, cuando esta se desplaza una distancia de 20 cm en dirección del campo? 2.- calcula el trabajo realizado por la fuerza F producida por un campo eléctrico E constante, cuya intensidad es de N/C, sobre una carga de 0,0001 C, cuando esta se desplaza formando un ángulo de 60 grados con la dirección del campo, avanzando un distancia de 30 cm. 3.- calcula el trabajo realizado por la fuerza F producida por un campo eléctrico E constante, cuya intensidad es de 3000(N/C), sobre una carga q de 0,0001 C, cuando está se desplaza una distancia de 30 cm en dirección perpendicular al campo? 4.- Qué conclusiones podemos extraer de los tres ejercicios anteriores?

17 Potencial eléctrico Introduciremos el concepto de energía potencial eléctrica por unidad de carga, como diferencia de potencial entre dos puntos. a la diferencia de energía potencial de una carga, dentro de un campo eléctrico entre dos puntos divididos por el valor de la carga o también al trabajo realizado por la fuerza eléctrica producida por el campo dividido por la carga, es decir: Va - Vb= Ua - Ub = W q q Va - Vb La diferencia potencial, se escribe generalmente Vab y se denomina voltaje entre a y b, es un escalar y su unidad de medida es el: joule/ Coulomb = volt

18 Evidentemente si se conoce la diferencia de potencial entre dos puntos a y b, se puede conocer el trabajo que una carga q puede realizar entre estos puntos como: W = q Vab Este trabajo se convierte generalmente en energía cinética de la carga q o si el medio es viscoso y la carga se desplaza con velocidad constante, en calor, debido a los choques con las moléculas del medio. Finalmente, se reemplazamos W por su expresión en función del campo eléctrico obtenemos. Vab = sumatoria a hasta b (E * d) Vab= sumatoria a hasta b (E * d cosø)

19 Como se indicó para la energía potencial, el potencial en un punto puede ser definido si elegimos un punto de referencia arbitrario y le asignamos el potencial cero. Resumiendo, al igual que la fuerza, la energía potencial eléctrica U de la carga q que se halla en un campo eléctrico cualquiera, es proporcional a la magnitud de la carga, es decir: U = q V La magnitud V de esta ecuación es la energía potencial por unidad de carga y se denomina potencial eléctrico o potencial del campo eléctrico.

20 Potencial producido por una carga puntual. Si se considera el campo eléctrico producido por una carga puntual y se toma una pequeña variación de posición ( de a hasta b) en la dirección del campo eléctrico (Angulo = 0), entre ambos vectores. Se puede definir potencial entre los dos puntos de variación como: Vab = kq(ra ) rb. ra a b rb

21 Resumen: El vector E se conoce como campo eléctrico que vence la dificultad del concepto de fuerza a distancia, desarrollando por el inglés Michael Faraday ( ). El campo eléctrico es una propiedad del espacio adquirida por presencia de una carga eléctrica. Diferencia de potencial entre dos puntos corresponde a la diferencia de energía potencial de una carga dentro de un campo eléctrico entre dos puntos divididos por el valor de la carga, o también al trabajo realizado por la fuerza producida por el campo dividido en la carga.

22 Ejercicios 1. Una carga q de - 0, se desplaza en dirección de un campo eléctrico E constante, cuya intensidad es de 300 N/C, entre los puntos a y b separados por una distancia de 20 cm. Cuál es la diferencia de potencial entre estos puntos? 2. Una carga q de 0, se desplaza en dirección de un campo eléctrico E constante, cuya intensidad es de 300 N/C, entre los puntos a y b separados por una distancia de 20 cm. Cuál es la diferencia de potencial entre estos puntos? 3. Existe una diferencia con el trabajo realizo en los ejercicios 1 y 2. Comente la diferencia entre ambos resultados.

23 1. Cuales son las dos posibilidades para describir una interacción electrostática? 2. La presencia de que cuerpo produce un campo eléctrico? 3. Cual es la dirección y sentido del campo eléctrico producido por una carga positiva y por una negativa? Considere las cargas individualmente. 4. Cómo se puede obtener la fuerza de interacción eléctrica de un carga en un campo eléctrico? Considere expresión matemática. 5. Cuál es la expresión matemática para el calcula de la intensidad del campo eléctrico? 6. Cuál es la unidad de medida del campo eléctrico en el sistema internacional? 7. Cuál es o son las consideraciones de una carga de prueba? Considere naturaleza eléctrica y magnitud. 8. Cómo será la dirección de la fuerza que experimenta una carga dentro de un campo eléctrico? Considere la dirección del campo eléctrico y la naturaleza de la carga. 9. Qué son las líneas de fuerza y cuales son sus principales características? 10.Dibuje las líneas de fuerza en un dipolo, entre dos cargas de igual signo. 11.Calcula la intensidad del campo eléctrico a 50 cm y 1 m de una carga puntual negativa de 0,0001 C. Realice un esquema de la situación. 12. Cuál será la aceleración que experimenta un electrón de carga e dentro de un campo eléctrico E? 13.Se tiene un campo eléctrico uniforme dirigido verticalmente hacia arriba cuya magnitud es E= N/C. Calcular. a) el módulo de la fuerza ejercidas por este campo sobre una partícula alfa. b) La rapidez que adquirirá la partícula alfa en el campo cuando haya recorrido 1cm partiendo del reposo. Desprecie el efecto gravitatorio. c) El tiempo que necesita para recorrer 1 cm d) La energía cinética de la partícula alfa descrita. Datos: masa: 6,68 10^ (-27) Carga q= 2e. 14. Cómo se calcula el trabajo realizado por un carga eléctrica dentro de un campo eléctrico? 15. Cuál es la relación que existe entre la energía potencial eléctrica y el trabajo realizado por la fuerza eléctrica? 16. Cómo se define el potencial eléctrico? 17. Una carga q de 0,00001 C se desplaza, en dirección de un campo eléctrico E constante, cuya intensidad es de 300 N/C, entre los puntos a y b separados una distancia de 40 cm. Cuál es la diferencia de energía potencial entre estos puntos?

TEMA 3: CAMPO ELÉCTRICO

TEMA 3: CAMPO ELÉCTRICO TEMA 3: CAMPO ELÉCTRICO o Naturaleza electrica de la materia. o Ley de Coulomb. o Principio de superposicion. o Intensidad del campo eléctrico. o Lineas del campo electrico. o Potencial eléctrico. o Energia

Más detalles

Tema 3 : Campo Eléctrico

Tema 3 : Campo Eléctrico Tema 3 : Campo Eléctrico Esquema de trabajo: 1.- Carga eléctrica 2.- Ley de Colulomb 3.- Campo eléctrico. Intensidad de campo eléctrico. 4.- Energía potencial eléctrica. 5.- Potencial eléctrico. Superficies

Más detalles

PROBLEMAS CAMPO ELÉCTRICO

PROBLEMAS CAMPO ELÉCTRICO PROBLEMAS CAMPO ELÉCTRICO 1. Explica las semejanzas y las diferencias entre los campos gravitatorio y eléctrico 2. En una región del espacio, la intensidad del campo eléctrico es nula. Debe ser nulo también

Más detalles

CÓMO DETECTAR UN CAMPO ELÉCTRICO?

CÓMO DETECTAR UN CAMPO ELÉCTRICO? CAMPO ELÉCTRICO! E Es aquella región de espacio que rodea a una carga eléctrica. Este campo funciona como transmisor mediante el cual una carga interactúa con otra que está a su alrededor CÓMO DETECTAR

Más detalles

FISICA 2º BACHILLERATO CAMPO ELECTRICO

FISICA 2º BACHILLERATO CAMPO ELECTRICO ) CMPO ELÉCTRICO Cuando en el espacio vacío se introduce una partícula cargada, ésta lo perturba, modifica, haciendo cambiar su geometría, de modo que otra partícula cargada que se sitúa en él, estará

Más detalles

Campo y potencial eléctrico de una carga puntual

Campo y potencial eléctrico de una carga puntual Campo y potencial eléctrico de una carga puntual La ley de Coulomb nos describe la interacción entre dos cargas eléctricas del mismo o de distinto signo. La fuerza que ejerce la carga Q sobre otra carga

Más detalles

CAMPO ELÉCTRICO CARGAS PUNTUALES

CAMPO ELÉCTRICO CARGAS PUNTUALES CARGAS PUNTUALES Ejercicio 1. Junio 2.007 Dos partículas con cargas de +1 μc y de -1 μc están situadas en los puntos del plano XY de coordenadas (- 1,0) y (1,0) respectivamente. Sabiendo que las coordenadas

Más detalles

Concepto de Campo. Homogéneo No homogéneo. 4Un campo de temperaturas (Escalar) 4Un campo de velocidades (Vectorial) 4Campo gravitacional (Vectorial)

Concepto de Campo. Homogéneo No homogéneo. 4Un campo de temperaturas (Escalar) 4Un campo de velocidades (Vectorial) 4Campo gravitacional (Vectorial) CAMPO ELECTRICO Concepto de Campo l El concepto de Campo es de una gran importancia en Ciencias y, particularmente en Física. l l La idea consiste en atribuirle propiedades al espacio en vez de considerar

Más detalles

Módulo 1: Electrostática Campo eléctrico

Módulo 1: Electrostática Campo eléctrico Módulo 1: Electrostática Campo eléctrico 1 Campo eléctrico Cómo puede ejercerse una fuerza a distancia? Para explicarlo se introduce el concepto de campo eléctrico Una carga crea un campo eléctrico E en

Más detalles

PROBLEMAS COMPLEMENTARIOS

PROBLEMAS COMPLEMENTARIOS Problema nº1 Indica si dos protones separados por 10-18 m tenderán a acercarse por efecto de la gravedad o a repelerse por efecto electrostático. Datos: G = 6,6 10-11 N m 2 / 2, m p = 1,6 10-27, q p =

Más detalles

INTENSIDAD DE CAMPO ELECTRICO (E)

INTENSIDAD DE CAMPO ELECTRICO (E) CAMPO ELECTRICO Región donde se produce un campo de fuerzas. Se representa con líneas que indican la dirección de la fuerza eléctrica en cada punto. Una carga de prueba observa la aparición de fuerzas

Más detalles

Última modificación: 1 de agosto de

Última modificación: 1 de agosto de Contenido CAMPO ELÉCTRICO EN CONDICIONES ESTÁTICAS 1.- Naturaleza del electromagnetismo. 2.- Ley de Coulomb. 3.- Campo eléctrico de carga puntual. 4.- Campo eléctrico de línea de carga. 5.- Potencial eléctrico

Más detalles

Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética.

Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. 1 Carga eléctrica Campo léctrico xceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. Un culombio es la

Más detalles

TEMA 2. CAMPO ELECTROSTÁTICO

TEMA 2. CAMPO ELECTROSTÁTICO TEMA 2. CAMPO ELECTROSTÁTICO CUESTIONES TEÓRICAS RELACIONADAS CON ESTE TEMA. Ejercicio nº1 Indica qué diferencias respecto al medio tienen las constantes K, de la ley de Coulomb, y G, de la ley de gravitación

Más detalles

CAMPO ELÉCTRICO MODELO 2016

CAMPO ELÉCTRICO MODELO 2016 CAMPO ELÉCTRICO MODELO 2016 1- Una carga puntual, q = 3 μc, se encuentra situada en el origen de coordenadas, tal y como se muestra en la figura. Una segunda carga q 1 = 1 μc se encuentra inicialmente

Más detalles

Interacción electromagnética I. Campo eléctrico

Interacción electromagnética I. Campo eléctrico Interacción electromagnética I. Campo eléctrico Cuestiones y problemas 1. Si entre las dos placas de un condensador plano separadas 3 cm entre sí, existe un campo eléctrico uniforme de 7.10 4 N/C: a) Qué

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

LECCIÓN Nº 03 POTENCIAL ELECTRICO. ENERGIA POTENCIAL

LECCIÓN Nº 03 POTENCIAL ELECTRICO. ENERGIA POTENCIAL LECCIÓN Nº 03 POTENCIAL ELECTRICO. ENERGIA POTENCIAL 3.1. CONCEPTO Es una magnitud fisica escalr, se define como el trabajo realizado por un agente exaterno contra el campo electrico, pro cada unidad de

Más detalles

GUIA DE FÍSICA Campo Eléctrico. Es el espacio que rodea a una carga eléctrica y en el cual una carga eléctrica soporta una fuerza eléctrica

GUIA DE FÍSICA Campo Eléctrico. Es el espacio que rodea a una carga eléctrica y en el cual una carga eléctrica soporta una fuerza eléctrica GUIA DE FÍSICA Campo Eléctrico Nombre: Curso. 4º Medio: Profesor: Mario Meneses Señor CAMPO ELECTRICO Es el espacio que rodea a una carga eléctrica y en el cual una carga eléctrica soporta una fuerza eléctrica

Más detalles

Experimento 1. Líneas de fuerza y líneas equipotenciales. Objetivos. Teoría

Experimento 1. Líneas de fuerza y líneas equipotenciales. Objetivos. Teoría Experimento 1. Líneas de fuerza y líneas equipotenciales Objetivos 1. Describir el concepto de campo, 2. Describir el concepto de líneas de fuerza, 3. Describir el concepto de líneas equipotenciales, 4.

Más detalles

RELACIÓN DE PROBLEMAS CAMPO ELÉCTRICO 1. Se tienen dos cargas puntuales; q1= 0,2 μc está situada a la derecha del origen de coordenadas y dista de él 3 m y q2= +0,4 μc está a la izquierda del origen y

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico 1(10) Ejercicio nº 1 Dos cargas eléctricas iguales, situadas en el vacío a 0,2 milímetros de distancia, se repelen con una fuerza de 0,01 N. Calcula el valor de estas cargas. Ejercicio nº 2 Hallar a qué

Más detalles

FÍSICA 2ºBach CURSO 2014/2015

FÍSICA 2ºBach CURSO 2014/2015 PROBLEMAS CAMPO ELÉCTRICO 1.- (Sept 2014) En el plano XY se sitúan tres cargas puntuales iguales de 2 µc en los puntos P 1 (1,-1) mm, P 2 (-1,-1) mm y P 3 (-1,1) mm. Determine el valor que debe tener una

Más detalles

LECCIÓN Nº 02 CAMPO ELECTRICO. LINEAS DE FUERZA. LEY DE GAUSS

LECCIÓN Nº 02 CAMPO ELECTRICO. LINEAS DE FUERZA. LEY DE GAUSS LECCIÓN Nº 02 CAMPO ELECTRICO. LINEAS DE FUERZA. LEY DE GAUSS 2.1. CAMPO ELECTRICO En lugar de manejar el campo de fuerzas, resulta más cómodo definir un campo vectorial denominado campo eléctrico, E.

Más detalles

Física 2º Bacharelato

Física 2º Bacharelato Física 2º Bacharelato DPARTAMNTO D FÍSICA QUÍMICA lectrostática 11/02/08 Nombre: Problemas 1. n la región comprendida entre dos placas cargadas, x véase la figura, existe un campo eléctrico uniforme de

Más detalles

j, E c = 5, J, E P = J)

j, E c = 5, J, E P = J) CAMPO ELÉCTRICO 2 1. Una carga positiva de 2 µc se encuentra situada inmóvil en el origen de coordenadas. Un protón moviéndose por el semieje positivo de las X se dirige hacia el origen de coordenadas.

Más detalles

Física 2º Bach. Campo eléctrico 19/02/ Calcula: a) La intensidad del campo eléctrico en el centro M de la base de un triángulo

Física 2º Bach. Campo eléctrico 19/02/ Calcula: a) La intensidad del campo eléctrico en el centro M de la base de un triángulo Física 2º Bach. Campo eléctrico 19/02/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [3 PUNTOS /UNO] 1. Dos conductores esféricos concéntricos huecos, de radios 6,00 y 10,0 cm, están cargados con

Más detalles

ELECTROESTÁTICA. Física 1º bachillerato Electroestática 1

ELECTROESTÁTICA. Física 1º bachillerato Electroestática 1 ELECTROESTÁTICA 1. Naturaleza eléctrica. 2. Interacción electroestática. 3. Campo eléctrico. 4. Energía potencial eléctrica. 5. Potencial eléctrico. 6. Corriente eléctrica continua. 7. Ley de Ohm. 8. Asociación

Más detalles

8 Se tienen tres cargas situadas en los vértices de un triángulo equilátero cuyas coordenadas (expresadas en cm) son: A (0,2) ; B ( 3, 1) ; C ( 3, 1).

8 Se tienen tres cargas situadas en los vértices de un triángulo equilátero cuyas coordenadas (expresadas en cm) son: A (0,2) ; B ( 3, 1) ; C ( 3, 1). 1 Se tienen dos cargas puntuales sobre el eje X: 1 = 0,2 μc está situada a la derecha del origen y dista de él 1 m; 2 = +0,4 μc está a la izuierda del origen y dista de él 2 m. a) En ué puntos del eje

Más detalles

Interacción Electrostática

Interacción Electrostática Interacción Electrostática Área Física Resultados de aprendizaje Reconocer las características de las cargas eléctricas en diversos problemas. Resolver problemas de electrostática mediante las leyes de

Más detalles

1. INTRODUCCIÓN HISTÓRICA. Gilbert ( ) descubrió que la electrificación era un fenómeno de carácter general.

1. INTRODUCCIÓN HISTÓRICA. Gilbert ( ) descubrió que la electrificación era un fenómeno de carácter general. ELECTROSTÁTICA 1 Introducción. 2 Carga eléctrica. 3 Ley de Coulomb. 4 Campo eléctrico y principio de superposición. 5 Líneas de campo eléctrico. 6 Flujo eléctrico. 7 Teorema de Gauss. Aplicaciones.. 1.

Más detalles

28.1. Los campos. Capítulo 28

28.1. Los campos. Capítulo 28 28 El campo eléctrico El 25 de agosto de 1989, doce años después de su lanzamiento, la nave espacial Voyager 2 pasó cerca del planeta Neptuno, a una distancia de 4.4 10 9 km. de la Tierra. Entre otros

Más detalles

Campo eléctrico Cuestiones

Campo eléctrico Cuestiones Campo eléctrico Cuestiones C-1 (Junio - 97) Puede existir diferencia de potencial eléctrico entre dos puntos de una región en la cual la intensidad del campo eléctrico es nula? Qué relación general existe

Más detalles

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q. 1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo

Más detalles

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 6 EL CAMPO ELECTROSTÁTICO

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 6 EL CAMPO ELECTROSTÁTICO CAMPO ELÉCTRICO REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 6 EL CAMPO ELECTROSTÁTICO El concepto físico de campo El concepto campo surge ante la

Más detalles

CAMPO ELÉCTRICO Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en

CAMPO ELÉCTRICO Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en CAMPO ELÉCTRICO 1.- 2015-Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en el vacío colocadas en los puntos A (0,0), B(3,0) y C(0,4),

Más detalles

Introducción histórica

Introducción histórica Introducción histórica Tales de Mileto (600 a.c.) observó la propiedad del ámbar de atraer pequeños cuerpos cuando se frotaba. Ámbar en griego es electron ELECTRICIDAD. En Magnesia existía un mineral que

Más detalles

Essential University Physics

Essential University Physics Essential University Physics Richard Wolfson 20 Carga Eléctrica, Fuerza, y Campo PowerPoint Lecture prepared by Richard Wolfson Slide 20-1 En esta exposición usted aprenderá Como la materia y muchas de

Más detalles

CAMPO ELÉCTRICO Nm 2

CAMPO ELÉCTRICO Nm 2 CAMPO ELÉCTRICO 1. Dos cargas eléctricas positivas e iguales de valor 3x10-6 C están situadas en los puntos A(0,2) y B(0,-2) del plano XY. Otras dos cargas iguales Q están localizadas en los puntos C(4,2)

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com ELECTROSTÁTICA 1- Dos cargas eléctricas puntuales q 1 =-5µC y q 2 =2 µc están separadas una distancia de 10 cm. Calcule: a) El valor del campo y del potencial eléctricos en un punto B, situado en la línea

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 22 enero 2016

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 22 enero 2016 2016-Modelo A. Pregunta 3.- Una carga puntual, q = 3 μc, se encuentra situada en el origen de coordenadas, tal y como se muestra en la figura. Una segunda carga q 1 = 1 μc se encuentra inicialmente en

Más detalles

BACHILLERATO FÍSICA 3. CAMPO ELÉCTRICO. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA 3. CAMPO ELÉCTRICO. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA 3. CAMPO ELÉCTRICO R. Artacho Dpto. de Física y Química Índice CONTENIDOS 1. Interacción electrostática 2. Campo eléctrico 3. Enfoque dinámico 4. Enfoque energético 5. Movimiento de

Más detalles

Temario 4.Campo Eléctrico

Temario 4.Campo Eléctrico Campo Eléctrico 1 1 Temario 4.Campo Eléctrico 4.1 Concepto y definición de campo eléctrico 4.2 Campo eléctrico producido por una y varias cargas puntuales. 4.3 Lineas de Campo 4.4 Un conductor eléctrico

Más detalles

Síntesis Examen Final

Síntesis Examen Final Síntesis Examen Final Presentación El siguiente material permitirá repasar los contenidos que se evaluarán en el Examen Final de la Asignatura que estudiamos durante el primer semestre y/o revisamos en

Más detalles

El término magnetismo

El término magnetismo El término magnetismo tiene su origen en el nombre que en Grecia clásica recibía una región del Asia Menor, entonces denominada Magnesia (abundaba una piedra negra o piedra imán capaz de atraer objetos

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones 1. Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho punto?

Más detalles

CAMPO ELECTRICO. Campo Eléctrico. Introducción.

CAMPO ELECTRICO. Campo Eléctrico. Introducción. CAMPO ELECTRICO Introducción. El campo eléctrico es la zona del espacio donde cargas eléctricas ejercen su influencia. Es decir que cada carga eléctrica con su presencia modifica las propiedades del espacio

Más detalles

fig. 1 sobre un objeto, es igual al cambio en su energía cinética, y esto se representa mediante la siguiente ecuación

fig. 1 sobre un objeto, es igual al cambio en su energía cinética, y esto se representa mediante la siguiente ecuación C U R S O: FÍSICA MENCIÓN MATERIAL: FM-14 ENERGÍA II ENERGÍA CINÉTICA, POTENCIAL GRAVITATORIA Y MECÁNICA Aunque no existe una definición formal de energía, a este nivel la podemos entender simplemente

Más detalles

K= 1. R2 Ur es un vector unitario en la dirección que une ambas cargas.

K= 1. R2 Ur es un vector unitario en la dirección que une ambas cargas. Tema 9 Campo eléctrico 1. Fuerza eléctrica Ley de Coulomb La fuerza con la que se atraen o repelen dos cargas es directamente proporcional al producto de la de ambas cargas e inversamente proporcional

Más detalles

FÍSICA de 2º de BACHILLERATO CAMPO ELÉCTRICO

FÍSICA de 2º de BACHILLERATO CAMPO ELÉCTRICO FÍSICA de 2º de BACHILLERATO CAMPO ELÉCTRICO PROBLEMAS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 2010) DOMINGO

Más detalles

NORMAL SUPERIOR LA HACIENDA

NORMAL SUPERIOR LA HACIENDA NORMAL SUPERIOR LA HACIENDA DPTO. DE CIENCIAS NATURALES ASIGNATURA: FISICA NIVEL 11 o GRADO DOCENTE: MATÍAS ENRIQUE PUELLO CHAMORRO 1 1. Campo eléctrico Las cargas eléctricas no precisan de ningún medio

Más detalles

TEMA 3:ELECTROSTATICA

TEMA 3:ELECTROSTATICA TEMA 3:ELECTROSTATICA Escribir y aplicar la ley de Coulomb y aplicarla a problemas que involucran fuerzas eléctricas. Definir el electrón, el coulomb y el microcoulomb como unidades de carga eléctrica.

Más detalles

CAMPO MAGNÉTICO FCA 06 ANDALUCÍA

CAMPO MAGNÉTICO FCA 06 ANDALUCÍA 1.- Un hilo recto, de longitud 0,2 m y masa 8 10-3 kg, está situado a lo largo del eje OX en presencia de un campo magnético uniforme = 0,5 j a) Razone el sentido que debe tener la corriente para que la

Más detalles

Seminario de Física. 2º bachillerato LOGSE. Unidad 2. Campo Eléctrico. A) Interacción Electrostática: Principio de Superposición de campos eléctricos.

Seminario de Física. 2º bachillerato LOGSE. Unidad 2. Campo Eléctrico. A) Interacción Electrostática: Principio de Superposición de campos eléctricos. A) Interacción Electrostática: Principio de Superposición de campos eléctricos. 1.- La distancia entre el electrón y el protón en el átomo de hidrógeno es 5,3 10-11 m. Compara los módulos de las fuerzas

Más detalles

CAMPO ELÉCTRICO. JUNIO

CAMPO ELÉCTRICO. JUNIO CAMPO ELÉCTRICO. JUNIO 1997: 1.- Se sitúan tres cargas eléctricas q 1, q 2 y q 3, en los puntos A (0,0,0); B (0,4,0) y C (0,4,3), respectivamente, donde las coordenadas vienen dadas en metros. Se pide:

Más detalles

masa es aproximadamente cuatro veces la del protón y cuya carga es dos veces la del mismo? e = 1, C ; m p = 1, kg

masa es aproximadamente cuatro veces la del protón y cuya carga es dos veces la del mismo? e = 1, C ; m p = 1, kg MAGNETISMO 2001 1. Un protón se mueve en el sentido positivo del eje OY en una región donde existe un campo eléctrico de 3 10 5 N C - 1 en el sentido positivo del eje OZ y un campo magnetico de 0,6 T en

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones (97-R) Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho

Más detalles

CAMPO ELÉCTRICO. Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas.

CAMPO ELÉCTRICO. Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas. CAMPO LÉCTRICO 1. INTRODUCCIÓN Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas. Una carga de prueba es una carga considerada siempre positiva, ue

Más detalles

C E. Circulación y energía por unidad de carga

C E. Circulación y energía por unidad de carga C E Circulación y energía por unidad de carga Circulación en un campo vectorial: Es otra forma de obtener información sobre las características del campo en estudio. Circulación en un campo vectorial:

Más detalles

Capítulo 1: Interacción Eléctrica

Capítulo 1: Interacción Eléctrica Capítulo 1: Interacción Eléctrica Un poco de historia Tales de Mileto (624-543 A. C.) Observó que unas briznas de hierba seca eran atraídas por un trozo de ámbar que antes había frotado con su túnica.

Más detalles

Interacción Eléctrica

Interacción Eléctrica Capítulo 1: Interacción Eléctrica Tales de Mileto (624-543 A. C.) Observó que unas briznas de hierba seca eran atraídas por un trozo de ámbar que antes había frotado con su túnica. Electricidad por frotación

Más detalles

7 Campo magnético. Actividades del interior de la unidad

7 Campo magnético. Actividades del interior de la unidad 7 Campo magnético Actividades del interior de la unidad 1. Dibuja las líneas del campo magnético de un imán recto y de un imán de herradura. En ambos casos, las líneas salen del polo norte y regresan al

Más detalles

Cuestiones de Campo Gravitatorio propuestas para Selectividad

Cuestiones de Campo Gravitatorio propuestas para Selectividad 1 a) Explique el concepto de escape y deducir razonadamente su expresión. b) Qué ocurriría en la realidad si lanzamos un cohete desde la superficie de la Tierra con una velocidad igual a la velocidad de

Más detalles

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s 1- Un electrón es lanzado con una velocidad de 2.10 6 m/s paralelamente a las líneas de un campo eléctrico uniforme de 5000 V/m. Determinar: a) La distancia que ha recorrido el electrón cuando su velocidad

Más detalles

A. No existe. B. Es una elipse. C. Es una circunferencia. D. Es una hipérbola equilátera.

A. No existe. B. Es una elipse. C. Es una circunferencia. D. Es una hipérbola equilátera. CUESTIONES SOBRE CAMPO ELECTROSTÁTICO 1.- En un campo electrostático, el corte de dos superficies equiescalares con forma de elipsoide, con sus centros separados y un mismo eje mayor: No existe. B. Es

Más detalles

1. V F El producto escalar de dos vectores es siempre un número real y positivo.

1. V F El producto escalar de dos vectores es siempre un número real y positivo. TEORIA TEST (30 %) Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo la opción que crea correcta. Acierto=1 punto; blanco=0; error= 1. 1. V F El producto escalar de

Más detalles

5 a) Explique el funcionamiento de un transformador eléctrico. b) Podría funcionar con corriente continua? Justifique la respuesta.

5 a) Explique el funcionamiento de un transformador eléctrico. b) Podría funcionar con corriente continua? Justifique la respuesta. 1 a) Fuerza magnética sobre una carga en movimiento. b) En qué dirección se debe mover una carga en un campo magnético para que no se ejerza fuerza sobre ella? 2 Un electrón, un protón y un átomo de helio

Más detalles

Campo Eléctrico PAU. eléctrico no uniforme, que viene dado por

Campo Eléctrico PAU. eléctrico no uniforme, que viene dado por CY 01. Dos partículas de masa 10 g se encuentran suspendidas desde un mismo punto por dos hilos de 30 cm de longitud. Se suministra a ambas partículas la misma carga, separándose de modo que los hilos

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones (97-R) Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones (97-R) Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho

Más detalles

Ejercicios propuestos para examen de supletorio de Física II. Ley de Coulomb

Ejercicios propuestos para examen de supletorio de Física II. Ley de Coulomb Ejercicios propuestos para examen de supletorio de Física II Ley de Coulomb 1. Tres cargas iguales de 4 μc cada una se sitúan en el vacío sobre los vértices de un triángulo rectángulo, cuyos catetos miden

Más detalles

Electricidad y Magnetismo. Ley de Coulomb.

Electricidad y Magnetismo. Ley de Coulomb. Electricidad y Magnetismo. Ley de Coulomb. Electricidad y Magnetismo. 2 Electricidad y Magnetismo. 3 Electricidad y Magnetismo. 4 Electricidad y Magnetismo. 5 Electricidad y Magnetismo. Electrización es

Más detalles

PROBLEMAS DE CAMPO ELÉCTRICO

PROBLEMAS DE CAMPO ELÉCTRICO PROBLEMAS DE CAMPO ELÉCTRICO 1) Dos pequeñas esferas cargadas están separadas una distancia de 5 cm. La carga de una de las esferas es cuatro veces la de la otra y entre ambas existe una fuerza de atracción

Más detalles

INTERACCIÓN ELÉCTRICA

INTERACCIÓN ELÉCTRICA INTERACCIÓN ELÉCTRICA 1. La carga eléctrica. 2. La ley de Coulomb. 3. El campo eléctrico. 4. La energía potencial. 5. El potencial electroestático. 6. El campo eléctrico uniforme. 7. El flujo de campo

Más detalles

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que

Más detalles

Unidad Nº 10. Magnetismo

Unidad Nº 10. Magnetismo Unidad Nº 10 Magnetismo 10.1. Definición y propiedades del campo magnético. Fuerza magnética en una corriente. Movimiento de cargas en un campo magnético. 10.2. Campos magnéticos creados por corrientes.

Más detalles

Cargas del mismo signo. Cargas de signo contrario. En lo que viene, dibujaremos de color rojo las cargas negativas y azul las positivas

Cargas del mismo signo. Cargas de signo contrario. En lo que viene, dibujaremos de color rojo las cargas negativas y azul las positivas LEY DE COULOMB Dos cargas se atraen si son de distinto signo y se repelen si son del mismo signo con una fuerza cuyo módulo viene dado por F = k q 1 q r F q 1 r q F Cargas del mismo signo q 1 F r F q Cargas

Más detalles

Campo eléctrico. Fig. 1. Problema número 1.

Campo eléctrico. Fig. 1. Problema número 1. Campo eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica

Más detalles

=. En un instante dado, la partícula A se mueve con velocidad ( )

=. En un instante dado, la partícula A se mueve con velocidad ( ) Modelo 2014. Pregunta 3B.- En una región del espacio hay un campo eléctrico 3 1 E = 4 10 j N C y otro magnético B = 0,5 i T. Si un protón penetra en esa región con una velocidad perpendicular al campo

Más detalles

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía Física y Química 1º Bachillerato LOMCE IES de Castuera Tema 10 Trabajo y Energía FyQ 1 2015 2016 Rev 01 Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre

Más detalles

EJERCICIOS PROPUESTOS SOBRE ELECTROMAGNETISMO. Ley de Coulomb

EJERCICIOS PROPUESTOS SOBRE ELECTROMAGNETISMO. Ley de Coulomb EJERCICIOS PROPUESTOS SOBRE ELECTROMAGNETISMO Ley de Coulomb 1. Tres cargas iguales de 4 μc cada una se sitúan en el vacío sobre los vértices de un triángulo rectángulo cuyos catetos miden 12 cm y 16 cm.

Más detalles

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN MEDIA SUPERIOR

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN MEDIA SUPERIOR 1. REPASO NO. 1 FÍSICA IV LEY DE COULOMB Y CAMPO ELÉCTRICO 1. Una partícula alfa consiste en dos protones (qe = 1.6 x10-19 C) y dos neutrones (sin carga). Cuál es la fuerza de repulsión entre dos partículas

Más detalles

TEMA 0. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

TEMA 0. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS TEMA 0. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. Trabajo mecánico. 2. Teorema de la energía cinética. 3. Fuerzas conservativas y energía potencial. 4. Conservación de la energía mecánica. 5. Consejos

Más detalles

V 0 = K Q r. Solución: a) Aplicando la expresión del módulo del campo y la del potencial: 400 V 100 N C -1 = 4 m

V 0 = K Q r. Solución: a) Aplicando la expresión del módulo del campo y la del potencial: 400 V 100 N C -1 = 4 m PROBLEMAS DE FÍSICA º BACHILLERATO Campos eléctrico y magnético /0/03. A una distancia r de una carga puntual Q, fija en un punto O, el potencial eléctrico es V = 400 V y la intensidad de campo eléctrico

Más detalles

Tema 9: Introducción a la Dinámica

Tema 9: Introducción a la Dinámica Tema 9: Introducción a la Dinámica 1º Ingenieros Aeronáuticos Escuela Técnica Superior de Ingenieros Universidad de Sevilla 1 Situación en la asignatura Primer Parcial Introducción Mecánica Cinemática

Más detalles

2. Una carga eléctrica positiva se mueve en un campo eléctrico uniforme. Razone cómo varía su energía potencial electrostática si la carga se mueve:

2. Una carga eléctrica positiva se mueve en un campo eléctrico uniforme. Razone cómo varía su energía potencial electrostática si la carga se mueve: ELECTROSTÁTICA 2001 1. El campo eléctrico en un punto P, creado por una carga q situada en el origen, es de 2000 N C - 1 y el potencial eléctrico en P es de 6000 V. a) Determine el valor de q y la distancia

Más detalles

Cuestiones y problemas sobre campo eléctrico y corriente eléctrica

Cuestiones y problemas sobre campo eléctrico y corriente eléctrica Cuestiones y problemas sobre campo eléctrico y corriente eléctrica CUESTIONES 1. Un conductor sólido y esférico está cargado eléctricamente. Cuál de las siguientes combinaciones es la verdadera con respecto

Más detalles

Fundamentos Físicos de la Informática. Capítulo 1 Campos electrostáticos. Margarita Bachiller Mayoral

Fundamentos Físicos de la Informática. Capítulo 1 Campos electrostáticos. Margarita Bachiller Mayoral Fundamentos Físicos de la Informática Capítulo 1 Campos electrostáticos Margarita Bachiller Mayoral Campos electrostáticos Tipos de carga Fuerza eléctrica Principio de superposición Margarita Bachiller

Más detalles

FISICA 1º y 2º BACHILLERATO TRABAJO Y ENERGÍA

FISICA 1º y 2º BACHILLERATO TRABAJO Y ENERGÍA A) Trabajo de fuerzas constantes y trayectoria rectilínea. Cuando sobre una partícula actúa una fuerza constante, y esta partícula describe una trayectoria rectilínea, definimos trabajo realizado por la

Más detalles

Interacciones Eléctricas La Ley de Coulomb

Interacciones Eléctricas La Ley de Coulomb Interacciones Eléctricas La Ley de Coulomb 1. Introducción La Electrostática se ocupa del estudio de las interacciones entre cargas eléctricas en reposo. Las primeras experiencias relativas a los fenómenos

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

IES Francisco Giner de los Ríos 2016/2017 Física y Química 1º Bachillerato nocturno (FQ NB1B-Noct) UD 8. El movimiento

IES Francisco Giner de los Ríos 2016/2017 Física y Química 1º Bachillerato nocturno (FQ NB1B-Noct) UD 8. El movimiento UD 8. El movimiento 1- Sistemas de referencia. 2- Magnitudes vectoriales. 3- Interpretaciones gráficas de los movimientos. 4- Componentes intrínsecas de la aceleración. 1- Sistemas de referencia: 1.1.

Más detalles

PRINCIPIOS DE LA DINÁMICA

PRINCIPIOS DE LA DINÁMICA Capítulo 3 PRINCIPIOS DE LA DINÁMICA CLÁSICA 3.1 Introducción En el desarrollo de este tema, cuyo objeto de estudio son los principios de la dinámica, comenzaremos describiendo las causas del movimiento

Más detalles

UD 10. Leyes de la dinámica

UD 10. Leyes de la dinámica UD 10. Leyes de la dinámica 1- Concepto de fuerza. 2- Primer principio de la dinámica. 3- Segundo principio de la dinámica. 4- Tercer principio de la dinámica. 5- Momento lineal. 6- Fuerzas: Peso, Normal,

Más detalles

Electrostática. Ley de Coulomb. Campo eléctrico. Líneas de campo. Potencial eléctrico creado por una carga puntual

Electrostática. Ley de Coulomb. Campo eléctrico. Líneas de campo. Potencial eléctrico creado por una carga puntual Electricidad Ley de Coulomb Electrostática Sistemas de unidades d Campo eléctrico. Líneas de campo Potencial eléctrico creado por una carga puntual Estructura atómica Electrones Núcleo: protones y neutrones

Más detalles

CAMPO ELÉCTRICO º bachillerato FÍSICA

CAMPO ELÉCTRICO º bachillerato FÍSICA Ejercicio 1. Modelo 2.014 El campo electrostático creado por una carga puntual q, situada en el origen de coordenadas, viene dado por la expresión: E = 9 u r 2 r NC 1, donde r se expresa en m y u r es

Más detalles

Instituto de Física Universidad de Guanajuato Agosto 2007

Instituto de Física Universidad de Guanajuato Agosto 2007 Instituto de Física Universidad de Guanajuato Agosto 2007 Física III Capítulo I José Luis Lucio Martínez El material que se presenta en estas notas se encuentra, en su mayor parte, en las referencias que

Más detalles

Física 2º Bach. Campo eléctrico 11/02/09

Física 2º Bach. Campo eléctrico 11/02/09 Física 2º ach ampo eléctrico 11/02/09 EPRTMENTO E FÍSI E QUÍMI Problemas Nombre: [3 PUNTO /UNO] 1 Una partícula de 2,00 µg y 5,00 p entra perpendicularmente a un campo eléctrico constante producido por

Más detalles

1. Recordatorio sobre la interacción gravitatoria y la eléctrica: fuerza y energía.

1. Recordatorio sobre la interacción gravitatoria y la eléctrica: fuerza y energía. 1. Recordatorio sobre la interacción gravitatoria y la eléctrica: fuerza y energía. A1. Dadas las siguientes magnitudes: fuerza, trabajo, variación de energía potencial y energía potencial, indica cuáles

Más detalles

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006 Física III año 26 CINEMATICA MECÁNICA CLÁSICA La cinemática estudia el movimiento de los cuerpos, sin tener en cuenta las causas que lo producen. Antes de continuar establezcamos la diferencia entre un

Más detalles