Juegos bipersonales de suma nula Juegos semi-infinitos. Mª Enriqueta Vercher González Universitat de València

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Juegos bipersonales de suma nula Juegos semi-infinitos. Mª Enriqueta Vercher González Universitat de València"

Transcripción

1 Juegos bipersoales de suma ula Juegos semi-ifiitos Mª Eriqueta Vercher Gozález Uiversitat de Valècia

2 Ídice Itroducció Juego bipersoal de suma ula Pares de equilibrio Estrategias mixtas eorema del Miimax Determiació de estrategias óptimas Juegos semi-ifiitos Referecias Homeae a Marco A. López Cerdá. Alacat

3 eoría de Juegos La eoría de Juegos es ua colecció de modelos matemáticos formulados para estudiar la toma de decisioes e ambiete de coflicto y/o cooperació. U uego costa de ugadores que debe elegir de ua lista de alterativas sobre las que tiee diferetes preferecias (Vo Neuma ad Morgester, 1944) U uego puede describirse mediate u árbol de decisió (forma extesiva) o mediate la descripció de todas las estrategias puras de cada ugador y los pagos asociados a cada estrategia pura (forma ormal). Homeae a Marco A. López Cerdá. Alacat

4 Eemplos Juegos -persoales Juegos bipersoales fiitos rectagulares de suma ula cooperativos: dilema del prisioero multi-etápicos Juegos de supervivecia Juegos estocásticos ifiitos Juegos sobre el cuadrado uidad semi-ifiitos Homeae a Marco A. López Cerdá. Alacat

5 Forma ormal de u uego Ua estrategia pura π i Ε i para u ugador J i, i=1,, es u programa completo de acció, que e cualquier istate del uego dicta la elecció a tomar. La fució de pago a cada ugador explicita el pago que recibe cada ugador para cada couto de estrategias puras: Ρ i : E 1 E 2 E R i=1,, U couto de estrategias π está e equilibrio si y solo si π Ε se tiee que P (π, π ( -1) ) Ρ (π ), =1 U ugador racioal o deseará separarse de este couto π1 E1 P1 ( π1, π 2) P1 ( π ) y π 2 E2 P2 ( π1, π 2) P2 ( π ) Homeae a Marco A. López Cerdá. Alacat

6 Juego bipersoal de suma ula U uego bipersoal es de suma ula si y solo si para todo π E1 E2 P1( π ) + P2 ( π ) = 0 U uego bipersoal de suma ula (rectagular) queda defiido por los dos coutos de estrategias puras y la fució de pago al ugador J 1, respectivamete: E = α L, α, E = β, L, β y P( α, ) = a { 1, m} 2 { 1 } i i 1 β La fució de pago puede represetarse mediate ua matriz (m ), siedo J 1 (I) el ugador fila y J 2 (II) el ugador columa. Homeae a Marco A. López Cerdá. Alacat

7 Juego bipersoal de suma ula Los pares de equilibrio (α i0, β 0 ) verifica que: i = 1,..., m ai a 0 i0 y = 1,..., a 0 i0 ai 0 0 Siedo el elemeto el máximo de la columa ( 0 ) y el a i0 0 míimo de la fila (i 0 ), es decir es u puto de silla de la fució de pago del ugador I: i = 1,..., m ai = P( αi, β ) ai ai = P( αi, β ) = 1,..., Los pares de equilibrio so equivaletes e itercambiables, y coduce al pago de equilibrio que se cooce como valor del uego. a i0 0 Homeae a Marco A. López Cerdá. Alacat

8 Juegos si putos de silla Para uegos si putos de silla o se puede decidir que estrategia dará meor resultado al ugador. No se da ua situació de equilibrio y el uego o tiee valor. Eemplo: Cosideremos u uego dode co matriz de pagos 4 1 El beeficio máximo que puede asegurarse I 2 3 ' v I = max i= 1,.., m = 1,.., ai ' v II = mi = 1,.., i= 1,.., m ai { mi } = max{ 2,1} = 2 El tope a la gaacia de I que puede impoer II { max } = mi{ 4,3} = 3 E { α, α }, = { β β } 1 = 1 2 E 2 1, 2 Homeae a Marco A. López Cerdá. Alacat

9 Estrategias mixtas Ua estrategia mixta es ua distribució de probabilidad sobre el couto de estrategias puras. Respectivamete: m m X = x R : xi 0, xi = 1 e Y = y R : y 0, y i= 1 = 1 = 1 El pago esperado si se elige las estrategias x e y es P( x, y) = m i= 1 = 1 x a i i y = x Ay El valor maximi v I y la estrategia maximi x X so, resp. v )} y v( x) = I = max x X v( x) = max x X {mi = 1,.., P( x, β El valor miimax v II y la estrategia miimax y Y so, resp. v, y)} y v( y) = II = mi y Y v( y) = mi y Y {max i= 1,.., m P( α i Homeae a Marco A. López Cerdá. Alacat v v I II

10 Estrategias mixtas El valor maximi v I es la gaacia esperada que puede asegurarse el ugador I si elige ua estrategia maximi x X, tal que v(x)=v I. El valor miimax v II es el tope a la gaacia esperada del ugador I si elige ua estrategia miimax y Y, tal que v(y)=v II. E particular, v(y 0 ) es la pérdida máxima del ugador II si elige ua estrategia y 0 Y. Se tiee, además, que: v ' I v I v II v ' II Homeae a Marco A. López Cerdá. Alacat

11 eorema del Miimax U resultado fudametal e la eoría de Juegos es el eorema del Miimax v I = v II mediate el cual se establece la optimalidad de las estrategias maximi y miimax para ambos ugadores. La primera demostració de este teorema se debe a Vo Neuma (1928), que utilizó u teorema de separació estricta y u teorema de alterativa (véase Owe, 1968). E el libro de Parthasarathy ad Raghava (1971) puede ecotrarse ua colecció exhaustiva de teoremas geerales del miimax. Homeae a Marco A. López Cerdá. Alacat

12 eorema Geeral del Miimax Sea X m R, Y R covexos o vacíos y sea dos coutos compactos Sea f x (.) ua fució covexa y sc if para todo x X, f : Y R, f ( y) f ( x, y) x x = Sea f y (.) ua fució cócava y sc sup para todo y Y, f : X R, f ( x) f ( x, y) y y = Etoces, se tiee que: max x X mi y Y f ( x, y) = mi f : X Y R y Y max x X f ( x, y) Homeae a Marco A. López Cerdá. Alacat

13 eorema Geeral del Miimax Se sigue de la demostració que existe u puto de silla (x 0,y 0 ) de la fució f(x,y). Para u uego rectagular (X,Y,A) co fució de pago f(x,y)=x Ay, se demuestra que x 0 es ua estrategia maximi e y 0 es ua estrategia miimax, cumpliédose que max x 0 X f ( x, y ) = v = mi y Y f ( x 0, y) Los coutos de estrategias óptimas so: X m m = x R : xi 0, xi = 1, x A ( v,... v) e Y = y R : y 0, i= 1 = 1 y = 1, Ay ( v,... v) Homeae a Marco A. López Cerdá. Alacat

14 Determiació de estrategias óptimas Dado que los coutos de estrategias óptimas so poliedros acotados o vacios, para su determiació será suficiete calcular las estrategias óptimas básicas. eorema (Shapley ad Sow, 1950) Para u uego rectagular (X,Y,A) co valor v 0. Las estrategias óptimas ( x, y) X Y so básicas si, y solo si, existe S {1,,m} y {1,,} tales que la submatriz A S es regular, x y i = 0 i S y x A = v = 0 y A y = v i S. i, Homeae a Marco A. López Cerdá. Alacat

15 Determiació de estrategias óptimas Aplicado el siguiete procedimieto iterativo se determia tato el valor del uego como las estrategias óptimas básicas: Calcular todas las submatrices M (sxs) regulares de A Comprobar si se satisface simultáeamete: 1 ( i) v = 1 us M ( ii) Para ( iii) Para x s y s u s = vu = s vu M s M 1, completado co ceros 1 edríamos ua solució óptima, siedo básicas las estrategias óptimas obteidas. x A u, completado co ceros Ay u m v v Homeae a Marco A. López Cerdá. Alacat

16 Juegos rectagulares y PL La equivalecia existete etre u uego rectagular y u par de programas lieales duales simétricos fue establecida por Datzig e Determiar las estrategias óptimas de los ugadores I y II se sigue de la resolució de los programas ( I) Mi x u ( II) Max u y s. a. x m A u x 0 m s. a. E particular, resulta más secillo obteer las estrategias optimas resolviedo el PL asociado al ugador II. Homeae a Marco A. López Cerdá. Alacat m Ay u y 0 m

17 Juegos semi-ifiitos U uego bipersoal de suma ula semi-ifiito está defiido por u couto de vectores { a, t } R Los coutos de estrategias puras so La matriz semi-ifiita de pagos seria Este tipo de uegos ha sido tratado por Soyster (1975), cuado es umerable, aplicado resultados de dualidad sobre coos. is (1979) aplica técicas de aproximació, usado subprogramas lieales fiitos, para dar ua demostració alterativa del teorema del miimax y prueba que el ugador II siempre tiee estrategias óptimas. t { 1 } E = E,..., 1 y 2 = P ( t, ) = a t Homeae a Marco A. López Cerdá. Alacat

18 Juegos semi-ifiitos lieales Si los ugadores I y II elige ua distribució de probabilidad discreta sobre sus correspodietes coutos de estrategias puras, se sigue que los coutos de estrategias mixtas so: Jugador I: Γ={λ= (λ t ) t / º fiito de λ t 0, λ t 0 y t λ t =1} Jugador II: Y:={y R / i=1,.., y i =1, y i 0} Fució de pago del ugador I: P(λ, y)= t λ t a t y λ Γ, y Y Los valores maximi y miimax: v I :=sup λ Γ {mi =1,.., P(λ, e )} v II := if y Y {sup t a t y } Homeae a Marco A. López Cerdá. Alacat

19 Juegos semi-ifiitos lieales Aplicado el eorema de alterativa geeralizado de Stiemke: (I) o (II) (López y Vercher, 1983), siedo ( I) ( II) { } 0 0 at x 0, t tiee ua solució x tal que at x 0 para algu t 0 it r( co{ a, t } ) t se demuestra que: eorema del miimax. Cualquier uego semi-ifiito lieal verifica v I =v II. Para cualquier uego co valor fiito el ugador II siempre tiee estrategias óptimas. Codicioes adicioales para que el ugador I tega estrategias óptimas. Por eemplo, que el couto de vectores {a t, t } sea compacto (Gobera et al, 1984). Homeae a Marco A. López Cerdá. Alacat

20 Juegos semi-ifiitos covexos Sea F ={f t, t } familia de fucioes covexas. Ua estrategia pura del ugador I cosiste e elegir ua fució de F. Los coutos de estrategias mixtas se defie: Jugador I: Γ={λ= (λ t ) t /º fiito λ t 0, λ t 0, t λ t =1} Jugador II: C:=couto cerrado covexo o vacio de R Fució de pago del ugador I: P(λ, x)= t λ t f t (x) λ Γ, x C Los valores maximi y miimax so: v I :=sup l G {if x C P(λ, x)} v II := if x C {sup t f t (x)} Homeae a Marco A. López Cerdá. Alacat

21 eorema del Miimax Codició (R). Las fucioes covexas e F o tiee igua direcció de recesió comú co las direccioes de recesió de C, i.e. 0 + C ( t rec f t ) = {0} eorema (López y Vercher, 1986) Sea (F, C) u uego semiifiito que verifique la codició (R), etoces ua y solo ua de las siguietes alterativas se cumple: Existe u vector x C tal que f t (x) 0 para todo t Existe λ= (λ t ) t /º fiito λ t 0, λ t 0, tales que para algu ξ>0 se tiee que t λ t f t (x) ξ, para todo x C Homeae a Marco A. López Cerdá. Alacat

22 eorema del Miimax eorema del miimax (López y Vercher, 1986) Para cualquier uego semi-ifiito (F, C) que verifique la codició (R): v I =v II. Se ha demostrado que: Para cualquier (R)-uego semi-ifiito, cuyo valor del uego es fiito, el ugador II siempre tiee estrategias óptimas. E las codicioes ateriores, si el couto de vectores L(F ) es compacto (por eemplo), tambié el couto de estrategias óptimas del ugador I es o vacio. Siedo L( F ) = f u t *, ( ), * ( ) ut dom f t ut Homeae a Marco A. López Cerdá. Alacat 2010 t R

23 Estrategias óptimas Las estrategias óptimas de los uegos (F, C) que verifica la codició (R) y tiee valor cero admite ua curiosa iterpretació geométrica: Los úicos hiperplaos que separa L(F ) e hipo I C, siedo I C (u):= if x C u x, tiee la ecuació u ρ [ x *, 1 ] = 0 dode x* es ua estrategia óptima de II. Si L(F ) es compacto: hipo I C co(l(f ) ). Los vectores que perteece a esta itersecció so u ρ = t u dom ( f t u t λut c c ) f t ( u t ) t y λ=(λ t ) t es u estrategia óptima del ugador I. λ = u dom(f Homeae a Marco A. López Cerdá. Alacat 2010 t t c t ) λ u t 23

24 Estrategias puras óptimas Si es el couto de estrategias puras del ugador I. Si es u couto compacto covexo de R m hemos caracterizado la existecia de estrategias puras óptimas: Sea (F, C) u uego que verifica la codició (R), tal que (i) f t (x) es cócava e t y cot sobre, para x C. Etoces, el valor del uego es fiito y el ugador I tiee estrategias puras óptimas. Sea (F, C) u uego covexo, siedo C compacto tal que (i) f t (x) es cotiua sobre, para cada x C (ii) (x):={t /f t (x)=max t f t (x)} es covexo. Etoces, el valor del uego es fiito y el ugador I tiee estrategias puras óptimas. Homeae a Marco A. López Cerdá. Alacat

25 Referecias G. B. Datzig, e Activity Aalysis of Productio ad Allocatio, Koopmas (ed), Wiley M. A. Gobera, M.A.Lopez. J. Pastor ad E. Vercher (1984) Nieuw Archief voor Wiskude (4) 2, M. A. Lopez ad E. Vercher (1983) Cuaderos de Bioestadística y sus Aplicacioes Iformáticas I, M. A. Lopez ad E. Vercher (1986) Joural of Optimizatio heory ad Applicatios 50, G. Owe, Game heory, Sauders, Parthasarathy ad. E. S. Raghava, Some topics i two-perso games, America Elsevier R.. Rockafellar, Covex Aalysis, Priceto Uiv. Press, L. S. Shapley ad R. N. Sow, e Cotributios to the theory of games, vol. I, Kuh ad ucker (eds), Priceto Uiv. Press, A. L. Soyster (1975) Maagemet Sciece 21, S. H. is (1979) Nieuw Archief voor Wiskude 27, J. Vo Neuma (1928) Mathematische Aale 100, J. Vo Neuma ad O. Morgester, heory of games ad Ecoomic behavior, Priceto Uiv. Press, Homeae a Marco A. López Cerdá. Alacat

Resumen que puede usarse en el examen

Resumen que puede usarse en el examen Resume que puede usarse e el exame ema. Optimizació Irrestrigida. Codicioes ecesarias y suficietes de optimalidad. Proposició (C. Necesarias) Sea x* u míimo local irrestrigido de f :!! y supogamos que

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

ANALISIS CONVEXO CAPITULO CONVEXIDAD

ANALISIS CONVEXO CAPITULO CONVEXIDAD CAPITULO 2 ANALISIS CONVEXO 2.1 CONVEXIDAD Bajo este título geérico, se itroduce e esta secció las ocioes de cojuto covexo, fució cócava y fució covexa. Coceptos todos ellos que juega u destacado papel

Más detalles

4.- Aproximación Funcional e Interpolación

4.- Aproximación Funcional e Interpolación 4- Aproximació Fucioal e Iterpolació 4 Itroducció Ua de las mayores vetajas de aproximar iformació discreta o fucioes complejas co fucioes aalíticas secillas, radica e su mayor facilidad de evaluació y

Más detalles

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos:

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos: T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Variable aleatoria: defiició y tipos: Ua variable aleatoria es ua fució que asiga u úmero real, y sólo uo, a cada uo de los resultados de u eperimeto aleatorio.

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

Series de números reales

Series de números reales Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió

Más detalles

Trabajo Práctico Nro. 9 ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES Y SERIES DE FOURIER

Trabajo Práctico Nro. 9 ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES Y SERIES DE FOURIER F.I.U.B.A AÁLISIS AEÁICO III rabajo Práctico ro. 9 rabajo Práctico ro. 9 ECUACIOES DIFERECIALES E DERIVADAS PARCIALES Y SERIES DE FOURIER I.- Itroducció a las Ecuacioes Difereciales e Derivadas Parciales

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN Igeiería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo e Varias Variables 08-1 Igeiería Matemática Guía Semaa 9 Teorema de los multiplicadores de Lagrage

Más detalles

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2 Calcula: L L a Dada ua sucesió que tiede a idica a partir de qué térmio se cumple la codició que se idica: a a Si a a Si 7 Si a partir del térmio 9 Si Hallar: d) 7 a partir del térmio 97 d) Deduce los

Más detalles

TRABAJO DE GRUPO Series de potencias

TRABAJO DE GRUPO Series de potencias DPTO. MATEMÁTICA APLICADA FACULTAD DE INFORMÁTICA (UPM) TRABAJO DE GRUPO Series de potecias CÁLCULO II (Curso 20-202) MIEMBROS DEL GRUPO (por orde alfabético) Nota: Apellidos Nombre Este trabajo sobre

Más detalles

α β la cual puede presentar

α β la cual puede presentar 5.4 Covergecia de ua serie de Fourier 8 5.4 Covergecia de ua serie de Fourier Teorema de covergecia de las series de fourier Ua serie de Fourier es ua fució ( ) f x cotiua e [, ] α β la cual puede presetar

Más detalles

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica. 5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad Evaluació NOMBRE APELLIDOS CURSO GRUPO FECHA CALIFICACIÓN Calcula el térmio geeral de ua progresió geométrica que tiee de térmio a y por razó /. a) b) c) El 6 es: a) b) 0 c) / 6 7 El es: a) b) c) 0 El

Más detalles

Jueves, 25 de abril. Dificultades de los modelos PNL. Dónde está la solución óptima? Otro ejemplo: Óptima Local frente a Global

Jueves, 25 de abril. Dificultades de los modelos PNL. Dónde está la solución óptima? Otro ejemplo: Óptima Local frente a Global . Jueves, de abril Teoría sobre la programació o lieal Programació separable Dificultades de los modelos PNL PL: Etregas: material de clase PNL: Aálisis gráfico de la programació o lieal e dos dimesioes:

Más detalles

Práctica 2 VARIABLES ALEATORIAS CONTINUAS

Práctica 2 VARIABLES ALEATORIAS CONTINUAS Práctica. Objetivos: a) Apreder a calcular probabilidades de las distribucioes Normal y Chi-cuadrado. b) Estudio de la fució de desidad de la distribució Normal ~ N(µ;σ) c) Cálculo de la fució de distribució

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales 38 Matemáticas : Cálculo diferecial e IR Capítulo Sucesioes y series de úmeros reales Sucesioes Defiició 37- Llamaremos sucesió de úmeros reales a cualquier aplicació f: N R y la represetaremos por { a,

Más detalles

Cálculo de ceros de funciones

Cálculo de ceros de funciones Cálculo de ceros de fucioes El objetivo de la presete secció es el de resolver la ecuació f(x) = 0, siedo f ua fució cotiua, co ua precisió prefijada. Geeralmete esta precisió se medirá por medio del error

Más detalles

FUNCIONES VECTORIALES DE VARIABLE ESCALAR

FUNCIONES VECTORIALES DE VARIABLE ESCALAR CAPITULO II CALCULO II Competecia FUNCIONES VECTORIALES DE VARIABLE ESCALAR Recooce y aplica satisfactoriamete las operacioes, procedimietos, reglas y métodos del cálculo itegral y diferecial e las fucioes

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecuacioes Difereciales de Primer Orde Defiició lasificació de las Ecuacioes Difereciales Ua ecuació diferecial es aquélla que cotiee las derivadas o difereciales de ua o más variables depedietes

Más detalles

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias INTRODUCCIÓN A LA CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIAS Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Se puede utilizar diferetes coceptos de covergecia para las sucesioes

Más detalles

Definición 13.1 Llamamos serie trigonométrica a una serie de funciones reales, de la forma. + n +ib n

Definición 13.1 Llamamos serie trigonométrica a una serie de funciones reales, de la forma. + n +ib n ema 3 Series de Fourier. Hemos visto, e el tema 8, que alguas fucioes reales puede represetarse mediate su desarrollo e serie de potecias, lo que sigifica que puede aproximarse mediate poliomios. Si embargo,

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 3: Series de térmios positivos. Criterios de covergecia. Series de térmios positivos Elaborado por los profesores Edgar Cabello y Marcos Gozález La característica fudametal de ua serie cuyos

Más detalles

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados Métodos Numéricos SC 854 Auste a curvas c M Valezuela 007 008 7 de marzo de 008 1 Defiició del problema E el problema de auste a curvas se desea que dada ua tabla de valores i,f i ecotrar ua curva que

Más detalles

Sucesiones. Límite de una

Sucesiones. Límite de una Capítulo 3 Sucesioes. Límite de ua sucesió 3.. Itroducció La oció de sucesió es u istrumeto importate para el estudio de u gra úmero de problemas relativos a las fucioes. Ua sucesió es, simplemete, ua

Más detalles

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC.

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC. APLICACIONES INFORMÁTICAS EN QUÍMICA Problemas Tema 2.3: Series, represetació de fucioes y costrucció de tablas e HC Grado e Química º SEMESTRE Uiversitat de Valècia Facultad de Químicas Departameto de

Más detalles

1. Serie de Potencias

1. Serie de Potencias . Serie de Potecias Recordemos que dada ua sucesió {b } N, podemos defiir ua serie: E el caso particular e que b = a (x c) b la serie tedría la forma b = a (x c) y es llamada serie de potecias cetrada

Más detalles

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 005 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( putos) Dibuje el recito defiido por las siguietes iecuacioes: + y 6; 0 y; / + y/3 ; 0; ( puto) Calcule

Más detalles

Competencia Matemática E. Paenza. Sexta Realización 1991

Competencia Matemática E. Paenza. Sexta Realización 1991 Competecia Matemática E. Paeza Seta Realizació 99 Resolució de los problemas Participate N : Problema. Sea C u cuadrilátero coveo. Si el área del cada uo de los cuatro triágulos determiados por las dos

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura - Ferado Sáchez - - 5 Números Cálculo I complejos 14 10 2015 E el cuerpo de los úmeros reales ecuacioes como x 2 + 1 = 0 o tiee solució: el poliomio x 2 + 1 o tiee raíces reales. Hace falta exteder el

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 3) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 3) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 200 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( puto) U establecimieto poe a la veta tres tipos de camisas A, B y C. Se sabe que la razó etre los

Más detalles

Teoremas de convergencia. Integral sobre... Convergencia... Convergencia...

Teoremas de convergencia. Integral sobre... Convergencia... Convergencia... covergecia este capítulo teemos como objetivo demostrar las propiedades más importates de la Itegral de Lebesgue. teemos que demostrar todavía las propiedades fudametales de liealidad y aditividad respecto

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - 1er cuatrimestre 015 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1 ESTIMACIÓN PUNTUAL. ESTIMACIÓN POR INTERVALOS DE CONFIANZA. 1. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA El objetivo básico de la iferecia estadística es hacer iferecias o sacar coclusioes sobre la població

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 5: Series de potecias. Operacioes co series de potecias. Series de potecias Elaborado por los profesores Edgar Cabello y Marcos Gozález Cuado estudiamos las series geométricas, demostramos la

Más detalles

MÉTODOS MATEMÁTICOS ESPACIOS DE HILBERT Y OPERADORES LINEALES. Profesora: Mª Cruz Boscá TEMA 2: ESPACIOS EUCLÍDEOS Y DE HILBERT

MÉTODOS MATEMÁTICOS ESPACIOS DE HILBERT Y OPERADORES LINEALES. Profesora: Mª Cruz Boscá TEMA 2: ESPACIOS EUCLÍDEOS Y DE HILBERT ÉTODOS ATEÁTICOS ESPACIOS DE HILBERT Y OPERADORES LINEALES Profesora: ª Cruz Boscá TEA : ESPACIOS EUCLÍDEOS Y DE HILBERT Sea u espacio lieal L (X, +, ) sobre el cuerpo k Producto itero o escalar y espacio

Más detalles

Polinomio Mínimo en Campos Cuadráticos

Polinomio Mínimo en Campos Cuadráticos Poliomio Míimo e Campos cuadráticos Poliomio Míimo e Campos Cuadráticos 1. Método de solució Partiedo de que u cuerpo cuadrático es K = Q ( a + b), vamos a propoer u método o estructura para ecotrar el

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema. Espacios Vectoriales ) LOS NÚMEROS El sistema de úmeros reales cosiste e u cojuto R de elemetos llamados úmeros reales y dos operacioes deomiadas: adició y multiplicació,

Más detalles

1. Propiedades de los estimadores

1. Propiedades de los estimadores . Propiedades de los estimadores.. Eficiecia relativa. Defiició: Dados dos estimadores isesgados, ˆ y ˆ, de u parámetro, co variazas V ( ˆ ) y V ( ˆ ), etoces la eficiecia (eff) de ˆ respecto a ˆ, se defie

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 004 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( putos) Sabemos que el precio del kilo de tomates es la mitad que el del kilo de care. Además, el

Más detalles

Hoja de Problemas Tema 3. (Sucesiones y series)

Hoja de Problemas Tema 3. (Sucesiones y series) Depto. de Matemáticas Cálculo (Ig. de Telecom.) Curso 23-24 Hoja de Problemas Tema 3 (Sucesioes y series) Sucesioes de úmeros reales. Sea {a } N, {b } N sucesioes de úmeros reales. Demostrar o refutar

Más detalles

Funciones Exponencial y Logaritmo

Funciones Exponencial y Logaritmo . 9th May 2007 La fució expoecial Itroducció. Recuerdo Sabemos lo siguiete para la sucesió a = + h ) Si lim h 2, 0) etoces lim a = 0. 2 Si lim h / [ 2, 0] etoces lim a o existe. 3 Si lim h = 0 y lim h

Más detalles

valor absoluto de sus términos, se tiene la serie: que si es convergente, entonces también es convergente la serie alternada.

valor absoluto de sus términos, se tiene la serie: que si es convergente, entonces también es convergente la serie alternada. (Aputes e revisió para orietar el apredizaje) CONVERGENCIA ABSOLUTA TEOREMA. Si e la serie alterada ( ) valor absoluto de sus térmios, se tiee la serie: a + a + + a + a se toma el = que si es covergete,

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 4) Euciado Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 0-1 2 1 ( putos) Resuelva la siguiete ecuació matricial: A X - 2 B C, siedo A 1 0 1, B -2, C. 1

Más detalles

Tema 8. Derivabilidad y reglas de derivación. 8.1 Derivada de una función

Tema 8. Derivabilidad y reglas de derivación. 8.1 Derivada de una función Tema 8 Derivabilidad y reglas de derivació 8. Derivada de ua fució f : I R es derivable e a I si eiste el límite que llamaremos f 0 (a) f() f(a) lim a a Ejercicio 8.. Si f() 3 calcular f 0 () f(a + ) f(a)

Más detalles

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS SECCIONES A. Series de térmios de sigo variable. B. Series depedietes de parámetros. C. Ejercicios propuestos. 193 A. SERIES DE TÉRMINOS DE SIGNO VARIABLE. E

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b)

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b) MÉTODO DE MÍNIMOS CUADRADOS E muchos de los experimetos que se realiza e Física, se obtiee u cojuto de parejas de úmeros (abscisa, ordeada) por los cuales ecesitamos, para obteer u modelo matemático que

Más detalles

Ejercicios para exámenes de Matemáticas (CCAA y CTA) Vectores

Ejercicios para exámenes de Matemáticas (CCAA y CTA) Vectores Ejercicios para exámees de Matemáticas (CCAA y CTA Vectores Jua-Miguel Gracia 7 de octubre de 014 Ejercicio Sea a, b vectores de R 5 que satisface a = 10, a + b = 11, a b = 9 Demostrar que existe u β R

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

TEMA 10: La programación lineal como instrumento para la toma de decisiones de inversión

TEMA 10: La programación lineal como instrumento para la toma de decisiones de inversión Itroducció a las Fiazas 3º Curso de Direcció y Admiistració de Empresas TEMA 0: La programació lieal como istrumeto para la toma de decisioes de iversió E la empresa existe ua serie de restriccioes (recursos,

Más detalles

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García TEORÍA DE CÁLCULO I Para Grados e Igeiería Capítulo 3: Sucesioes y series Domigo Pestaa Galvá José Mauel Rodríguez García Figuras realizadas co Arturo de Pablo Martíez TEMA 3. Sucesioes y series 3. Sucesioes

Más detalles

bc (b) a b + c d = ad+bc a b = b a

bc (b) a b + c d = ad+bc a b = b a 1 Cojutos 1 Describa los elemetos de los siguietes cojutos A = { x x 1 = 0 } D = { x x 3 x + x = } B = { x x 1 = 0 } E = { x x + 8 = 9 } C = {x x + 8 = 9} F = { x x + 16x = 17 } Para los cojutos del ejercicio

Más detalles

Sucesiones de números reales Sucesiones convergentes: límite de una sucesión

Sucesiones de números reales Sucesiones convergentes: límite de una sucesión Sucesioes de úmeros reales Sucesioes covergetes: límite de ua sucesió Tato e la educació secudaria obligatoria como e el bachillerato se habla poco de las sucesioes de úmeros reales. Si acaso se dedica

Más detalles

EJERCICIOS DE SERIES DE FUNCIONES

EJERCICIOS DE SERIES DE FUNCIONES EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:

Más detalles

OPCIÓN A EJERCICIO 1 (A)

OPCIÓN A EJERCICIO 1 (A) IES Fco Ayala de Graada Septiembre de 013 (Modelo Reserva ) Solucioes Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SEPTIEMBRE 013 MODELO RESERVA OPIÓN A EJERIIO 1 (A) 8 3 3-5 3 5 Sea las matrices

Más detalles

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2...

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2... Vectores y matrices x 1 X x 2. x vector columa X x 1, x 2,...,x vector fila a 11 a 12... a 1m A a 21 a 22... a 2m............ a 1 a 2... a m Matriz traspuesta a 11 a 21... a 1 A a 12 a 22... a 2............

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales.

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales. Resume Tema 2: Muestreo aleatorio simple. Muestreo co probabilidades desiguales. M.A.S.: Muestreo aleatorio simple co probabilidades iguales si reemplazo. Hipótesis: Marco perfecto, si omisioes i duplicados

Más detalles

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL Viceç Fot Departamet de Didàctica de les CCEE i de la Matemàtica de la Uiversitat de Barceloa Resume: E este artículo se muestra como las trasformacioes

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo I

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo I - Ferado Sáchez - - Números Cálculo I complejos 09 0 07 E el cuerpo de los úmeros reales ecuacioes como x + = 0 o tiee solució: el poliomio x + o tiee raíces reales. Hace falta exteder el cocepto de úmero

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3 Estadística y sus aplicacioes e Ciecias Sociales Práctico 4 - Solució Curso 016 Ejercicio 1 5! 1) Como se trata de muestreo si reposició, se tiee C 5 3 3!! muestras de tamaño =3. ) Distribució muestral

Más detalles

Raices de Polinomios. Jorge Eduardo Ortiz Triviño

Raices de Polinomios. Jorge Eduardo Ortiz Triviño Raices de Poliomios Jorge Eduardo Ortiz Triviño jeortizt@ual.edu.co http://www.docetes.ual.edu.co/jeortizt/ Defiició U poliomio de grado es ua epresió de la forma: Dode a 0 P() = a + a - - +... +a +

Más detalles

TEMA 4. Series de números reales. Series de Potencias.

TEMA 4. Series de números reales. Series de Potencias. TEMA 4 Series de úmeros reales. Series de Potecias.. Sucesió de úmeros reales Las sucesioes de úmeros reales so ua buea herramieta para describir la evolució de ua magitud discreta, y el ite surge al estudiar

Más detalles

1. a) Mostrar que los siguientes conjuntos están acotados. x b) Mostrar que los siguientes conjuntos no están acotados superiormente

1. a) Mostrar que los siguientes conjuntos están acotados. x b) Mostrar que los siguientes conjuntos no están acotados superiormente FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 3 1. a) Mostrar que los siguietes cojutos

Más detalles

8.- LÍMITES DE FUNCIONES

8.- LÍMITES DE FUNCIONES 8.- LÍMITES DE FUNCIONES.- DOMINIO DE DEFINICIÓN. Halla el domiio de defiició de f() = + 5+6 Solució: El domiio es -{,}. Halla el domiio de defiició de f() = 6 Solució: El domiio es (-,-] [, ).. Halla

Más detalles

INTEGRALES DE RIEMANN

INTEGRALES DE RIEMANN NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES DE RIEMANN Ig. Jua Sacerdoti Departameto de Matemática Facultad de Igeiería Uiversidad de Bueos Aires 00 INDICE.- INTEGRAL..- INTRODUCCIÓN..-

Más detalles

EJERCICIOS DE RECURRENCIA

EJERCICIOS DE RECURRENCIA EJERCICIOS DE RECURRENCIA (co alguas solucioes) Resolver la recurrecia = 5 6 =, = y tambié ésta: = =, = Resolvamos la primera E primer lugar otamos que es ua recurrecia lieal, pues pasado todos los térmios

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

Guía 1 Matemática: Estadística NM 4

Guía 1 Matemática: Estadística NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

CURSO DE GEOMETRÍA ANALÍTICA. Oscar Cardona Villegas Héctor Escobar Cadavid

CURSO DE GEOMETRÍA ANALÍTICA. Oscar Cardona Villegas Héctor Escobar Cadavid CURSO DE GEOMETRÍA ANAÍTICA Oscar Cardoa Villegas Héctor Escobar Cadavid UNIVERSIDAD PONTIFICIA BOIVARIANA ESCUEA DE INGENIERÍAS 06 MÓDUO VARIEDADES INEAES Esta uidad abarca el estudio de la líea recta

Más detalles

e i y i y i y i 0 1 x 1i 2 x 2i k x ki

e i y i y i y i 0 1 x 1i 2 x 2i k x ki Demostracioes de Rgresió múltiple El modelo que se platea e regresió múltiple es: y i 0 1 x 1i x i k x ki u i dode x 1, x,,x k so las variables idepedietes o explicativas. La variable respuesta depede

Más detalles

6. ECUACIONES DE RECURRENCIA.

6. ECUACIONES DE RECURRENCIA. 6. ECUACIONES DE RECURRENCIA. 6.1. Itroducció. Las relacioes de recurrecia puede cosiderarse como técicas avazadas de coteo. Resuelve problemas cuya solució o puede obteerse usado variacioes, permutacioes,

Más detalles

Capítulo 9. Método variacional

Capítulo 9. Método variacional Capítulo 9 Método variacioal 9 Miimizació de la eergía 9 Familia de fucioes 9 Partícula ecerrada e ua dimesió etre [-aa] 9 Oscilador armóico e ua dimesió 93 Átomo de helio 93 Combiació lieal de fucioes

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

Series infinitas de números reales. Series convergentes

Series infinitas de números reales. Series convergentes Series ifiitas de úmeros reales. Series covergetes Series ifiitas de úmeros reales. Series covergetes Las sucesioes de úmeros reales se itrodujero co la iteció de poder cosiderar posteriormete sus sumas

Más detalles

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES

6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES 6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:

Más detalles

El método de Monte Carlo

El método de Monte Carlo El método de Mote Carlo El método de Mote Carlo es u procedimieto geeral para seleccioar muestras aleatorias de ua població utilizado úmeros aleatorios. La deomiació Mote Carlo fue popularizado por los

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

Determinación del tamaño de una muestra (para dos o más muestras)

Determinación del tamaño de una muestra (para dos o más muestras) STATGRAPHICS Rev. 457 Determiació del tamaño de ua muestra (para dos o más muestras) Este procedimieto determia el tamaño de muestra apropiado para estimar o realiar pruebas de hipótesis respecto a alguo

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 6)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 6) IES Fco Ayala de Graada Sobrates de 01 (Modelo 6 ) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 01 (MODELO 6) OPCIÓN A EJERCICIO 1_A Ua empresa vede tres artículos diferetes

Más detalles

MINITAB y MODELOS DE REGRESIÓN

MINITAB y MODELOS DE REGRESIÓN Prácticas de Fudametos Matemáticos para el estudio del Medio Ambiete www.um.es/docecia/jpastor jpastor@um.es MINITAB y MODELOS DE REGRESIÓN 1. Itroducció Ua de las cuestioes de mayor iterés e las Ciecias

Más detalles

IES Fco Ayala de Granada Modelo 2 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 2 DEL 2015 OPCIÓN A

IES Fco Ayala de Granada Modelo 2 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 2 DEL 2015 OPCIÓN A IES Fco Ayala de Graada Modelo del 015 (Solucioes) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO DEL 015 OPCIÓN A EJERCICIO 1 (A) 1-1 Sea las matrices A = 0 1-1, B = 1 1, C = ( 1),

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG Covolució Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció... Aálisis de Sistemas Discretos Lieales e Ivariates e el Tiempo.... Técicas

Más detalles

INSTITUCIÓN EDUCATIVA JAVIERA LONDOÑO SEVILLA. GUIA Nº 3: Sucesiones, Límite de Sucesiones y Límite de Funciones en R

INSTITUCIÓN EDUCATIVA JAVIERA LONDOÑO SEVILLA. GUIA Nº 3: Sucesiones, Límite de Sucesiones y Límite de Funciones en R P á g i a INSTITUCIÓN EDUCATIVA JAVIERA LONDOÑO SEVILLA GUIA Nº 3: Sucesioes, Límite de Sucesioes y Límite de Fucioes e R GRADO: º AREA: MATEMÁTICAS PROFESORA: Ebli Martíez M. ESTUDIANTE: PERIODO: III

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

PyE_ EF2_TIPO1_

PyE_ EF2_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EXAMEN FINAL RESOLUCIÓN

Más detalles

IES Fco Ayala de Granada Modelo 5 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 5 DEL 2015 OPCIÓN A

IES Fco Ayala de Granada Modelo 5 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 5 DEL 2015 OPCIÓN A SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 5 DEL 015 OPCIÓN A EJERCICIO 1 (A) Sea las matrices A = 1 0, B = 1 1 1 y C = 1 1 3 (1 5 putos) Resuelva la ecuació A X + B X = C. (1 5 putos) Calcule A 4

Más detalles

APROXIMACIÓN DE FILTROS CAPÍTULO 2

APROXIMACIÓN DE FILTROS CAPÍTULO 2 APROXIMACIÓN DE FILTROS CAPÍTULO . Aproximacioes de Filtros E el capítulo se mecioaro los filtros ideales, e la realidad o se puede lograr ua aproximació ideal, por lo que los filtros reales sólo puede

Más detalles

UN SISTEMA DINAMICO DISCRETO

UN SISTEMA DINAMICO DISCRETO UN SISTEMA DINAMICO DISCRETO Luis Arturo Polaía Q. Uiversidad Surcolombiaa Neiva. lapola@usco.edu.co RESUMEN Iicialmete e este trabajo se obtiee ua sucesió de estimacioes del lado del decágoo regular iscrito

Más detalles