FUNCIONES TRIGONOMETRICAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FUNCIONES TRIGONOMETRICAS"

Transcripción

1 Unidad 4 Antes de comenzar con el análisis de esta unidad debemos recordar los siguientes temas: FUNCIONES TRIGONOMETRICAS Función Abreviatura Equivalencia Seno sin (sen) Coseno cos Tangente tan (tg) Cotangente cot (cotg) Secante sec Cosecante csc (cosec) Página 1 de 16

2 FUNCIONES TRIGONOMETRICAS E ANGULOS NOTABLES Sen 0 1 Cos 1 0 Tan 0 1 Teorema del Seno Existe una relación muy útil para la resolución de triángulos que relaciona los lados con los ángulos. Esta relación es conocida como teorema del seno En el triángulo AC C se verifica de donde h c = b sen(a) Análogamente en el triángulo BC C y obtenemos h c = a sen(b) Igualando ambas expresiones resulta la igualdad a sen(b) = b sen(a) expresión equivalente a Igualmente podemos considerar los triángulos rectágulos AA C y ABA al trazar la altura relativa al vértice A. Mediante un razonamiento análogo al anterior obtendremos e las expresiones obtenidas podemos deducir que expresión conocida como teorema del seno (o de los senos) y que demuestra que la relación que existe entre los lados de un triángulo y los senos opuestos es siempre la misma. El teorema es válido para cualquier tipo de triángulo. Página 2 de 16

3 Teorema del Coseno En el triángulo rectángulo AC C se verifica b 2 = m 2 + h c 2 siendo m la proyección ortogonal del lado b sobre c y h c la altura relativa al vértice C. En el triángulo rectángulo AC C se verifica b 2 = m 2 + h c 2 siendo m la proyección ortogonal del lado b sobre c y h c la altura relativa al vértice C. Si m y n son las proyecciones ortogonales de los lados b y a sobre el lado c y consideramos el triángulo rectángulo BC C resulta a 2 = h 2 c + n 2 = h 2 c + (c - m) 2 = = (h 2 c + m 2 ) + c 2-2cm = b 2 + c 2-2cm Expresión que proporciona el valor del cuadrado del lado opuesto a un ángulo agudo Como en el triángulo rectángulo AC C es m = b cos(a), si sustituimos en la expresión anterior a 2 = b 2 + c 2-2bc cos(a) Teorema del Coseno El cuadrado del lado opuesto a un ángulo agudo es igual a la suma de los cuadrados de los otros dos lados menos el doble producto de ellos por el coseno del ángulo comprendido. Sea el triángulo BAC obtusángulo en A. Si m es la proyección ortogonal del lado b sobre c tendremos a 2 = h 2 c + (c + m) 2 = c 2 + 2mc + (m 2 + h 2 c ) = = b 2 + c 2 + 2cm (*) Expresión que proporciona el valor del cuadrado del lado opuesto a un ángulo obtuso Como en el triángulo AC C resulta que m = b cos(180 - A) = - b cos(a) si sustituimos en (*) volvemos a obtener la expresión obtenida anteriormente para el teorema del coseno. Es decir, dicho teorema se verifica para cualquier tipo de triángulo. (Para el caso particular que A = 90º obtendríamos el teorema de Pitágoras) Tanto la expresión del cuadrado del lado opuesto a un ángulo agudo como la del cuadrado del lado opuesto a un ángulo obtuso son dos excelentes criterios para determinar con qué tipo de triángulo nos encontramos. Según que el cuadrado del lado de un triángulo sea Página 3 de 16

4 menor, igual o mayor que la suma de los cuadrados de los otros dos, el ángulo será agudo, recto u obtuso. Si los lado de un triángulo vienen dados por la terna (3,4,5) se trata de un triángulo rectángulo pues = 5 2. Si los lados vienen dado por la terna (3,5,7) se trata de un triángulo obtusángulo pues = 34 < 7 2. Si la terna de los lados es (7,8,10) el triángulo es acutángulo pues = 113 > 10 2 Unidades de medida a) Superficie: 1 centiarea = 1ca = 1m² 1 area = 1 a = 100 m² 1 hectaria = 1ha = m² b) Angulares: Sistema sexagesimal 1 giro=360 Sistema centesimal 1 giro =400partes Sistema natural 1radian 57, radianes 360 Relación entre los sistemas Sexagesimal-natural 1rd=360 /2 rd/360 =1/57 o sea aprox 1/60 1 =1rd/3438 o sea aprox 1/ =1rd/ o sea 1/ Una demostración vectorial del Teorema del Coseno Consideremos un triángulo cualquiera ABC en el que a + b = c y las longitudes de los lados de dicho triángulo son los módulos de los vectores a, b y c. Multiplicando escalarmente a por sí mismo tenemos: aa = (c - b)(c - b) = bb + cc - 2 bc = = b 2 + c 2-2 b c cos (b, c) Es decir a 2 = b 2 + c 2-2 b c cos (b, c) Página 4 de 16

5 Nivelación: Nivelación es el procedimiento mediante el cual se busca determinar: A) El desnivel existente entre dos (o mas), hechos físicos existentes entre sí. B) La relación entre uno (o mas), hechos físicos y un plano de referencia. El primer caso constituye la forma mas común de nivelación, en este caso comparamos dos (o varios) puntos (o planos) entre sí y determinamos el desnivel en metros o centímetros existente entre cada uno de ellos individualmente. En el segundo caso establecemos un nuevo "valor" llamado COTA que relaciona colectivamente a cada uno de los hechos físicos aludidos con el que se toma como referencia.(en el dibujo el nivel del mar). Concepto de PUNTO (topográfico): Es el lugar físico -dentro de un plano- que es objeto de un trabajo topográfico. ebe ser un objeto individual, de existencia física o virtual, de una cierta estabilidad temporal y con capacidad de ser posicionado mediante coordenadas (x, y, z). Son ejemplos de punto: una piedra, una estaca, un mojón, un clavo o ménsula adherida a una pared, incluso un lugar puntual cualquiera sobre la superficie terrestre. Casos especiales de puntos son los Puntos Fijos (PF) que son puntos de gran estabilidad física a los que algún ente se ha encargado de nivelar y se ha calculado su cota; y Puntos Trigonométricos iguales al caso anterior pero que además se les ha dado coordenadas de posición dentro de un plano (x e y, o N, S, E, O). Concepto de PLANO (topográfico): Es el lugar físico definido por dos o más puntos (reales o ficticios), que se encuentran a una misma cota. Son ejemplos de plano (para la topografía) la superficie de un reservorio de agua, una base de cemento, el cordón de una vereda, una superficie de tierra previamente horizontalizada, o incluso el plano visual de un nivel o teodolito, etc. Un caso especial del plano son los llamados planos de referencia o comparación, estos son planos reales o ficticios, con una cota conocida o asignada, natural o arbitraria, de gran estabilidad física y que se los puede tomar como referencia real para posicionar puntos o planos con respecto a ellos, son ejemplos de planos de referencia el nivel del mar, o el plano definido por los puntos de igual presión atmosférica en un instante determinado, o el definido por los puntos de igual gravedad. Página 5 de 16

6 Concepto de COTA (topográfico): Es el valor numérico del desnivel existente entre un punto o un plano cualquiera, y el plano de referencia elegido para un trabajo. Podemos utilizar distintos tipos de cotas: Absolutas: cuando están definidas con respecto a un plano de referencia aceptado como real y válido para una región, un país o un conjunto de países; que la respetan por tener un sustento técnico que las hace valederas. El sistema de referencia vertical de Argentina fue materializado a través de una serie corta de observaciones en el mareógrafo de Mar del Plata en En la década del cuarenta, la marca de referencia del mareógrafo fue conectada por nivelación de alta precisión a una marca mucho más estable en Tandil, localidad ubicada aproximadamente unos 200 Km. de la línea de costa. Este punto permanece hoy como el origen del sistema de nivelación nacional. Este marco de referencia fue extendido a todo el país a través de nivelaciones de alta precisión. La red de nivelación de primer orden fue completada por el IGM en el año 2001 y consiste de unos puntos distribuidos a lo largo de varias decenas de miles de kilómetros de líneas de nivelación geodésicas de alta precisión. Los puntos fijos del I.G.M. se reconocen por estar constituidos por un disco de bronce de unos 15 cm. de diámetro empotrados en pilotes de H A enterrados en inmediaciones de las rutas nacionales, esta red verdadera obra básica de todas las obras de infraestructura nacional se comenzó a construir en 1934, año en que se sanciona la Ley de la carta principio de la cartografía nacional, fue este un trabajo ciclópeo que tuvo como protagonistas a generaciones de Ingenieros Geógrafos, Técnicos Geógrafos Matemáticos y personal de maestranza del Instituto Geográfico Militar por décadas. Arbitrarias: Cuando están definidas sin ninguna base o razón mas que la voluntad de quien lleva a cabo el trabajo de nivelación, este tipo de cota se utiliza en los casos de trabajos que no tendrán conexión con otros y que su situación no afecte obras o trabajos concatenadas con el mismo a los efectos de no encarecer la obra con una nivelación adicional para obtener una cota que no es necesaria. Ficticias: Cuando no están definidas por ningún elemento físico, existen solo en los planos de proyecto de una obra y deben ser materializadas mediante replanteos, para darle existencia real. Tipos de Nivelación: Existen tres métodos de nivelación utilizados en los trabajos topográficos: nivelación geométrica, nivelación trigonométrica y nivelación satelital el cual utiliza el sistema de posicionamiento global; dos métodos mas que solo son utilizados por la geodesia, el método gravimétrico y el barométrico; y uno utilizado en cartografía mediante la restitución fotogramétrica. Página 6 de 16

7 1) Nivelación Geométrica Es el mas preciso y utilizado de todos, se lleva a cabo mediante la utilización de un nivel óptico o electrónico, existen cuatro tipos de nivelación geométrica definidos según su precisión: 1 y 2 orden (utilizados en geodesia), 3 y 4 orden (utilizados en topografía), el procedimiento es igual en todos ellos, solo cambian los instrumentos utilizados para medir y las precisiones que se deben respetar. También podríamos diferenciar dos tipos más según el trabajo a realizar: nivelación geométrica lineal, si se nivela desde un punto hasta otro siguiendo una trayectoria que une a ambos o nivelación geométrica de superficie, cuando nivelamos un sector o una línea desde una misma estación referida a un mismo plano de referencia. Se realiza mediante lecturas efectuadas con el Hilo Medio del retículo del nivel, sobre una mira graduada que se coloca a una distancia en general, no mayor de 60 o 70 mts., estas lecturas se restan convenientemente entre sí obteniéndose de esta manera el desnivel existente entre los dos puntos donde estuvo apoyada la mira. Este es el procedimiento en el caso en el que solo debamos obtener el desnivel existente entre dos puntos, pero en el caso en que es necesario el replanteo o la obtención de una o mas cotas, el cálculo se complica ya que debemos agregar dos nuevos elementos al cálculo: la cota y el plano Visual (PV) o cota del eje óptico del anteojo del nivel, paso intermedio que debemos calcular antes de calcular la cota de los demás puntos. Para el trabajo con cotas debemos tener al menos uno de los puntos, objetos del trabajo, con cota conocida o un PF en sus inmediaciones a los efectos de tomarlo como plano de referencia, de no ser así se deberá hacer una nivelación, llamada de "enlace" hasta un PF cercano para obtener una referencia, de no ser posible o económicamente conveniente siempre queda la opción de nivelar uno de los puntos mediante la colocación sobre él de un baroaltímetro (instrumento que a través de la medición de la presión barométrica nos da una altura sobre el nivel del mar bastante aproximada) o simplemente darle una cota arbitraria. Página 7 de 16

8 Supongamos como en el caso de la figura tener un PF como inicio del trabajo, esto facilita la tarea, se debe colocar la mira sobre este y se toma la lectura, en general solo se utiliza el hilo medio, aunque algunos prefieren tomar lecturas sobre los tres hilos y hacer luego la comprobación siguiente: (Hilo sup. + Hilo inf. ) / 2 = Hilo medio Lo cual no es necesario, y en la práctica suele tornarse engorroso y hasta peligroso, pues a mayor cantidad de lecturas, mayor posibilidad de error, tanto de errores groseros como de errores accidentales. Una vez tomada la lectura se suma este valor a la cota del PF y hemos obtenido la cota del PV. Ya obtenida esta cota se colocará la mira sobre la estaca a la que se quiere dar cota y se tomará una nueva lectura, notemos ahora que a simple vista se hace obvio que esta lectura es la diferencia entre la cota del PV y la cota de la estaca, de manera que restamos la lectura obtenida a la cota del PV y el resultado es la cota de la estaca. Un caso particular del uso de planos de referencia, es cuando necesitamos replantear una cota que aparece en un plano de proyecto de obra y no esta materializada en el terreno. Supongamos volver al caso anterior, pero esta vez la cota a que deberá quedar la estaca es conocida previamente porque aparece en el proyecto que estamos replanteando. En este caso clavamos la estaca apenas en el terreno y dejamos la masa a mano, esta vez ya conocemos la cota del PV que ya había sido calculada y la cota a la que deberá quedar la estaca, nos falta la diferencia entre ambas, que hallaremos restando ambos valores, así que hacemos la resta y el resultado será la lectura que deberemos ver en el retículo, retomamos entonces la masa y alternativamente golpearemos la estaca y haremos lecturas hasta que logramos leer el valor calculado, con el hilo medio. en el caso de la figura 0,281. Página 8 de 16

9 Nivelación geométrica compuesta o lineal: Es el mas usado ya que generalmente los puntos a nivelar se encuentran a mas de la distancia máxima en que se puede colocar la mira, y por lo tanto se deben realizar tantas nivelaciones simples como sean necesarias para unirlos, para realizar una nivelación se debe tener en cuenta una distancia para cada tramo de entre 120 a 180 mts. y luego dividir la longitud total por esta distancia para hallar la cantidad de tramos a realizar; los puntos intermedios entre los dos (o mas) puntos objetos del trabajo, se llamarán puntos de paso o PP. Para el cálculo de una nivelación tenemos dos procedimientos igualmente válidos, que serán utilizados alternativamente según el criterio del operador, el mas sencillo es el de las sumatorias para este caso debemos agrupar todas la lecturas "hacia atrás" (es decir hacia el punto de partida) por un lado y todas las lecturas hacia "adelante" (es decir hacia el punto de llegada) por otro; luego efectuamos el siguiente cálculo: El otro caso es el cálculo del plano visual mas sencillo y rápido, no es más que ir realizando sucesivas nivelaciones simples, las cuales con una calculadora se realizan en el momento y se pueden comprobar y controlar en el lugar sin perdida de tiempo. Para el caso del gráfico anterior sería: 512, ,357-0, ,109-0, ,033 -,0,322 = 515,314 m.s.n.m.m. Métodos de control en nivelación geométrica compuesta Ante la incertidumbre de haber cometido un error y donde se lo ha cometido, conviene tomar ciertos recaudos antes de regresar al gabinete para el trabajo de cálculo. A.- Nivelación de ida y vuelta: es decir salir de un punto y volver al mismo por otro camino, las cotas de partida y de llegada deben ser iguales. B.- Nivelación doble de cada tramo: es decir hacer dos estaciones por cada tramo. C.- Partir de un PF y llegar a otro PF Página 9 de 16

10 .- Hacer los PP en lugares estables o estacas para poder repetir los tramos anteriores en caso de error. Errores en nivelación geométrica lineal Partiendo de la certeza de que siempre que se mide se cometen errores, solo nos resta esmerarnos para que este sea tan pequeño que se pueda despreciar o calcular y anular. El indicador que nos indica cuando un error es lo suficientemente pequeño como para ser despreciado es la TOLERANCIA ALTIMÉTRICA del trabajo, esta puede ser impuesta arbitrariamente por el operador según la importancia técnica del trabajo o su valor económico; puede estar dada por el trabajo en sí (como el caso de los trabajos cartográficos donde debe ser suficientemente pequeño como para no ser notado en el trabajo final por efecto de la escala) o puede estar sujeta a las especificaciones del Reglamento Nacional de Mensuras que son las siguientes: Niv. 1er Orden (Geod. de alta precisión) 1,5 mm por km de doble nivelación. " 2do " ( " " " " ) 3,0 mm " " " " " 3er " ( Topográfica ) 3,0 cm " " " " " 4to " ( Técnica ) 10 cm " " " " Una vez terminado el trabajo y calculado el error (recordar : Siempre existe!!!), se lo compara con la tolerancia, si es menor, lo que ocurre habitualmente se lo distribuye en cada tramo proporcionalmente, procedimiento llamado COMPENSACION ; si por el contrario el error es mayor que la tolerancia se deberá repetir la nivelación totalmente (o algunos tramos si se ha tenido la precaución de estaquear los PP). Ejemplo de Nivelación Geométrica Lineal: Se desea obtener el perfil de la alineación A-4 y verificar la misma realizando nivelación de IA Y VUELTA. Lectura atras Lectura adelante A E1 1 E2 2 E3 3 E4 4 Página 10 de 16

11 Planilla de datos obtenidos de la nivelación geométrica: Pε E1 E2 E3 E4 E5 E6 E7 Pβ LECTURA ATRÁS LECTURA AELANTE ISTANCIA (m) ΔH (cm) COTA (m) OBSERVACIONES Hs Hm Hi Hs Hm Hi A 1,73 1,59 1,455 27,5 15,00 Ochava de Compostela y 36, ,36 1,22 1,085 27,5 15,364 Asturias 1 1,58 1,45 1,315 26,5 15,364 3, ,54 1,41 1,278 26,2 15, ,435 1,312 1, ,398-24,14 3 1,672 1,548 1,42 25,2 15, ,165 1,042 0,92 24,5 15,157 Árbol que indica el fin de -85,82 4 2,015 1,895 1, ,298 la ida y comienzo de la vuelta 4 2,015 1,895 1, ,298 90,96 5 1,112 0,98 0,85 26,2 15, ,78 1,584 1,386 39,4 15,208 22,55 6 1,542 1,35 1, , ,32 1,15 0, ,434 Ochava de Compostela y -43,39 A 1,78 1,575 1, ,00 Asturias Así entonces tenemos: AE1 (1,73 1,455) 100 A E 1 27, 5m E11 (1,36 1,085) E 1 27, 5m 1E 2 (1,58 1,315) E 2 26, 5m E 22 (1,54 1,278) E 2 26, 2m 2E3 (1,435 1,185) E 3 25m E33 (1,672 1,42) E 3 25, 2m 3E 4 (1,165 0,92) E 4 24, 5m E 44 (2,015 1,775) E 4 24m 4E5 (2,015 1,775) E 5 24m E55 (1,112 0,85) E 5 26, 2m 5E6 (1,78 1,386) E 6 39, 4m E66 (1,542 1,152) E 6 39m 6E7 (1,32 0,91) E 7 41m E7 A (1,78 1,37) 100 A E 7 41m Página 11 de 16

12 El ΔH entre dos miras lo podríamos obtener restando la lectura atrás y la de adelante, pero esto solo sería valido si la sumatoria de todas las lecturas ΔH diera como resultado cero, esto es poco probable que ocurra; por lo tanto la lectura ΔH debe ser corregida con un error igual y contrario al producido si H 0 no existe error de lectura H 1 A 1,59 1,22 H1 A 0, 37 m H 2 1 1,45 1, 41 H 2 1 0, 04 m H 3 2 1,312 1, 548 H 3 2 0, 236 m H 1,042 1,895 H 0, 853 m H 1,895 0, 98 H 0, 915 m H 1,584 1, 35 H 0, 234 m 4 3 A 6 1, H 1,575 H A 6 0, 425 m 5 4 H 0,37 0,04 0,236 0,853 0,915 0,234 0,425 m 5 4 H 0, 045 m Como ΔH 0 o bien se reparte el error o se vuelven a realizar nuevas mediciones. Si T se reparte el error; si T se toman nuevas medidas. ε = + 4,5 cm. 6 5 T K L(km.) K es una constante que oscila entre 1 y 5 cm. L es la longitud total de las mediciones, en nuestro caso 417 m. 6 5 T 5 cm 0, 417 km T 3, 23 cm Como T < ε se deberían tomar nuevas medidas, pero a los efectos didácticos de completar el ejemplo, proseguiremos a repartir el error. Como el error es positivo, repartiremos el error con signo cambiado, así entonces ε = - 4,5 cm. La distancia entre dos miras de correspondientes a una misma estación es: E1= 55 m E2= 52,7 m E3= 50,2 m E4= 48,5 m E5= 50,2 m E6= 78,4 m E7= 82 m El porcentaje que representa esa distancia respecto de la total será: E1= 13,2 % E2= 12,6 % E3= 12,0 % E4= 11,6 % E5= 12,0 % E6= 18,8 % E7= 19,7 % Página 12 de 16

13 El error correspondiente a cada diferencia de nivel asociada a cada estación es: ε1= -0,594 cm. ε2= -0,567 cm. ε3= -0,54 cm. ε4= -0,522 cm. ε5= -0,54 cm. ε6= -0,846 cm. ε7= -0,89 cm. Así entonces el desnivel ΔH será la lectura atrás menos la lectura adelante más el error calculado con su signo. H 1 A 37 0,594 H1 A 36, 406 cm H , 567 H 2 1 3, 433 cm H ,6 0, 54 H , 14 cm H 85,3 0,522 H 85, 82 cm H 91,5 0, 54 H 90, 96 cm H 23,4 0, 846 H 22, 55 cm 4 3 A6 42,5 4 3 H 0,89 H A 6 43, 39 cm Si ahora partiendo del punto A de cota conocida (15,00m) sumamos los desniveles con su signo obtenemos las cotas de los puntos en los cuales se colocaron las miras. Cota A = 15,00m. Cota 1 = 15,00 m + 36,406 cm. Cota 1= 15,364 m. Cota 2 = 15,364 m + 3,433 cm. Cota 2= 15,398 m. Cota 3 = 15,398 m - 24,14 cm. Cota 3= 15,157 m. Cota 4 = 15,157 m - 85,82 cm. Cota 4 = 14,298 m. Cota 5 = 14,298 m + 90,96 cm. Cota 5= 15,208 m. Cota 6 = 15,208 m + 22,55cm. Cota 6= 15,434 m. Cota A = 15,434 m - 43,39cm. Cota A= 15,00 m. Página 13 de 16

14 PERFIL LONGITUINAL EFINITIVO PUNTO ISTANCIA COTA A 0 15,00 m 1 55,00 m 15,364 m 6 77,80 m 15,434 m 2 107,70 m 15,398 m 5 157,90 m 15,157 m 3 156,20 m 15,208 m 4 206,40 m 14,298 m PUNTO ISTANCIA COTA E1 27,50 m 15,182 m E7 41,00 m 15,217 m E2 81,15 m 15,381 m E6 116,80 m 15,321 m E3 132,70 m 15,278 m E4 = E5 182,4 m 14,278 m PLANO E COMPARACIÓN P.C = 14,00 M ESCALA HORIZONTAL = 1:1000 ESCALA VERTICAL = 1:20 ebido a que la nivelación de IA y VUELTA, no fue hecha respetando los mismos puntos de estación de puntos de mira, los perfiles deben ser superpuestos. Página 14 de 16

15 2) Nivelación Trigonométrica Es la nivelación que se realiza a partir de la medición de ángulos cenitales, de altura o depresión, y de distancias inclinadas que luego se usarán para la resolución de triángulos rectángulos, donde la incógnita será el cateto opuesto del ángulo a resolver, que en estos casos son el desnivel existente entre el punto estación y un, otro, punto cualquiera. El ejemplo más simple es cuando con una ET medimos el ángulo vertical y la distancia inclinada existente entre la estación y un punto cualquiera, tal como se ve en la figura siguiente, y calculamos luego el desnivel. Aquí hm y hi son respectivamente altura de los prismas y altura del instrumento; para eliminar estos dos términos de la ecuación simplemente medimos la altura del instrumento y elevamos los prismas a esa misma altura con lo que estos se anulan entre sí al resultar hm = hi Cálculo de alturas inaccesibles: La utilización práctica de la nivelación trigonométrica es la determinación de desniveles cuando no es posible acceder al lugar donde colocar los prismas, es decir al lugar cuya altura queremos averiguar, deberemos valernos para ello de un recurso llamado base trigonométrica, a partir de ella mediremos estacionados en sus extremos ciertos ángulos que nos permitirán calcular la altura de cualquier hecho físico circundante. Página 15 de 16

16 En el caso del gráfico a partir de ABP', obtendremos AP' y BP' ya que AB se puede medir, al igual que los ángulos, conociendo estas distancias podemos calcular luego PP' a partir de APP' y de BPP', estos valores no serán iguales (seguramente por errores accidentales en la medición o vicios del cálculo mediante valores naturales), por lo que será necesario hacer un promedio para obtener el mas preciso. Una vez obtenido PP', que es la altura del pararrayos hasta la altura del teodolito, se le debe sumar la altura del instrumento para obtener la altura total, y si lo que se desea obtener es la cota, se le deberá sumar la cota de A o de B a la altura total. esarrollo del cálculo: Supongamos que AB = 10 mst, a= 89 20' 10", g= 88 10' 30", b= 24 05' 15" y e= 24 05' 10". Por lo tanto d= ( a + g ) = 02 29' 20" Si el promedio de estos valores es PP' = 93,954 mts y la altura del teodolito hubiera sido 1,53 mts. entonces P tendría una altura total de 95,484.mts y si la cota de A hubiera sido 293,4528 m.s.n.m.m. la cota de P hubiera sido de 388,9368 m.s.n.m.m. Página 16 de 16

TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS

TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS IES IGNACIO ALDECOA 19 TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS 4.1 Medida de ángulos. Equivalencias. Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas

Más detalles

Si se trata de una superficie paralela al geoide ó también llamado Plano de Comparación local, dicha altura se llama Cota.

Si se trata de una superficie paralela al geoide ó también llamado Plano de Comparación local, dicha altura se llama Cota. NIVELACIÓN TOPOGRÁFICA DEFINICIÓN: Se llama nivelación a toda operación que conduce a la determinación de la diferencia de altura entre dos puntos. La altura de cada punto se mide sobre la vertical que

Más detalles

TRIGONOMETRÍA. CONVERSIÓN DE UN SISTEMA A OTRO Tomando como base la equivalencia de un sistema a otro, podemos establecer la siguiente fórmula:

TRIGONOMETRÍA. CONVERSIÓN DE UN SISTEMA A OTRO Tomando como base la equivalencia de un sistema a otro, podemos establecer la siguiente fórmula: Cursos ALBERT EINSTEIN ONLINE Calle Madrid Esquina c/ Av La Trinidad LAS MERCEDES 9937172 9932305! www. a-einstein.com TRIGONOMETRÍA SISTEMAS DE MEDIDAS DE ÁNGULOS SISTEMA SEXAGESIMAL: Es el que considera

Más detalles

; b) Calcular el resultado de las siguientes operaciones lo más simplificado posible: ; b) 2

; b) Calcular el resultado de las siguientes operaciones lo más simplificado posible: ; b) 2 MATEMÁTICAS - SEPTIEMBRE TAREA DE VERANO 4º E.S.O.-B 4 1. Simplificar potencias: a) 4 ( ) 5 5 81 9 ; b) 4 0 5 9 5 4 ; c) 4 0 15 5 5 4 ; d) 9000 0'000000006 6000000 0'0007. Calcular el resultado de las

Más detalles

RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS Y OBLICUÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS Y OBLICUÁNGULOS RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS Y OBLICUÁNGULOS www.cedicaped.com CENTRO DE ESTUDIOS, DIDÁCTICA Y CAPACITACIÓN RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS 1. DEFINICIÓN Se dice que un triángulo es rectángulo

Más detalles

2.1 Razones trigonométricas del ángulo suma y del ángulo diferencia de otros dos ángulos dados.

2.1 Razones trigonométricas del ángulo suma y del ángulo diferencia de otros dos ángulos dados. Tema : TRIGONOMETRÍA PLANA..1 Razones trigonométricas del ángulo suma y del ángulo diferencia de otros dos ángulos dados.. Razones trigonométricas del ángulo doble y del ángulo mitad..3 Teoremas del coseno

Más detalles

UNIDAD 5 Cálculos. Escuela de Ingeniería Civil-UTPL. TOPOGRAFÍA ELEMENTAL Autora: Nadia Chacón Mejía POLIGONACIÓN: POLIGONAL CERRADA

UNIDAD 5 Cálculos. Escuela de Ingeniería Civil-UTPL. TOPOGRAFÍA ELEMENTAL Autora: Nadia Chacón Mejía POLIGONACIÓN: POLIGONAL CERRADA POLIGONACIÓN: UNIDAD 5 Cálculos POLIGONAL CERRADA Cálculo y ajuste de la poligonal Una vez que se han tomado las medidas de los ángulos y distancias de las líneas de una poligonal cerrada, se deben determinar

Más detalles

TRIGONOMETRÍA. MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico. 1.- Ángulos en la Circunferencia.

TRIGONOMETRÍA. MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico. 1.- Ángulos en la Circunferencia. TRIGONOMETRÍA MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico 1.- Ángulos en la Circunferencia. 2.- Razones Trigonométricas de un Triángulo Rectángulo. 3.- Valores del Seno, Coseno y Tangente

Más detalles

UTILIZAMOS LA TRIGONOMETRÍA.

UTILIZAMOS LA TRIGONOMETRÍA. UTILIZAMOS LA TRIGONOMETRÍA. RAZONAMIENTO Y DEMOSTRACIÓN Determina las demás razones trigonométricas a través de un dato. Aplica las definiciones de razones trigonométricas en la solución de ejercicios

Más detalles

Unidad 3: Razones trigonométricas.

Unidad 3: Razones trigonométricas. Unidad 3: Razones trigonométricas 1 Unidad 3: Razones trigonométricas. 1.- Medida de ángulos: grados y radianes. Las unidades de medida de ángulos más usuales son el grado sexagesimal y el radián. Se define

Más detalles

TOPOGRAFÍA_Solución Ejercitación Nº5

TOPOGRAFÍA_Solución Ejercitación Nº5 TOPOGRAFÍA_Solución Ejercitación Nº5 Aplicaciones de la Nivelación Geométrica a la obra de Arquitectura Problema Nº 1: En una obra de arquitectura se adoptó como cota 0,00 m un punto del cordón de la vereda.

Más detalles

RAZONES TRIGONOMÉTRICAS

RAZONES TRIGONOMÉTRICAS RAZONES TRIGONOMÉTRICAS Las Razones trigonométricas se definen comúnmente como el cociente entre dos lados de un triangulo rectángulo asociado a sus ángulos. SENO, COSENO Y TANGENTE Recordarás que eisten

Más detalles

Funciones Trigonométricas Básicas, Teorema del Seno y del Coseno

Funciones Trigonométricas Básicas, Teorema del Seno y del Coseno Trigonometría Básica Funciones Trigonométricas Básicas, Teorema del Seno y del Coseno Introducción a la Trigonometría Rama de la matemática que estudia las relaciones métricas entre los lados y los ángulos

Más detalles

Razones trigonométricas DE un ángulo agudo de un triángulo

Razones trigonométricas DE un ángulo agudo de un triángulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO RAZONAMIENTO Y DEMOSTRACIÓN Calcula razones trigonométricas en un triángulo rectángulo. Demuestra identidades trigonométricas elementales Demuestra identidades

Más detalles

EJERCICIOS DE RELACIONES TRIGONOMÉTRICAS (TEMA 1)

EJERCICIOS DE RELACIONES TRIGONOMÉTRICAS (TEMA 1) Colegio Diocesano Asunción de Nuestra Señora Ávila Tema EJERCICIOS DE RELACIONES TRIGONOMÉTRICAS (TEMA ).- Dados los ángulos = º y = 7º, calcula: a) + b) c) d).- Dados los ángulos = º 7 y = 7º, calcula:

Más detalles

TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos

TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos TRIGONOMETRÍA 1 Ángulos Hasta ahora se han considerado los ángulos como la porción del plano comprendida entre dos semirrectas con el origen común De esta manera, el ángulo está comprendido entre 0 y 360

Más detalles

TEMAS 4 Y 5 TRIGONOMETRÍA

TEMAS 4 Y 5 TRIGONOMETRÍA Temas 4 y 5 Trigonometría Matemáticas I º Bachillerato TEMAS 4 Y 5 TRIGONOMETRÍA UNIDADES DE MEDIDAS DE ÁNGULOS EJERCICIO a Pasa a radianes los siguientes ángulos: y 7 b) Pasa a grados los ángulos: 7 rad

Más detalles

Medida de ángulos. Para medir ángulos se utilizan las siguientes unidades:

Medida de ángulos. Para medir ángulos se utilizan las siguientes unidades: Medida de ángulos Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. El ángulo es positivo si se desplaza

Más detalles

UNIDAD III TRIGONOMETRIA

UNIDAD III TRIGONOMETRIA UNIDAD III TRIGONOMETRIA 1 UNIDAD III TRIGONOMETRIA TEMARIO. 1. Relación del par ordenado en un plano bidimensional. 1.1. El plano coordenado 1.2. Localización de puntos en los cuatro cuadrantes 2. Ángulos

Más detalles

Razones trigonométricas en triangulo rectángulo EJEMPLO Nº 1 Solución: Se tienen los siguientes datos:

Razones trigonométricas en triangulo rectángulo EJEMPLO Nº 1 Solución: Se tienen los siguientes datos: Razones trigonométricas en triangulo rectángulo La trigonometría, enfocada en sus inicios solo al estudio de los triángulos, se utilizó durante siglos en topografía, navegación y astronomía. Esta rama

Más detalles

MATEMÁTICAS GRADO DÉCIMO

MATEMÁTICAS GRADO DÉCIMO MATEMÁTICAS GRADO DÉCIMO SEGUNDA PARTE TEMA 1: VELOCIDAD ANGULAR Definición Velocidad Angular CONCEPTO: DEFINICIONES BÁSICAS: La velocidad angular es una medida de la velocidad de rotación. Se define como

Más detalles

Medida de ángulos. Es la medida de un ángulo cuyo arco mide un radio. 2 rad = 360. rad = º rad

Medida de ángulos. Es la medida de un ángulo cuyo arco mide un radio. 2 rad = 360. rad = º rad Medida de ángulos Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. El ángulo es positivo si se desplaza

Más detalles

TEMAS 4 Y 5 TRIGONOMETRÍA

TEMAS 4 Y 5 TRIGONOMETRÍA Temas 4 y 5 Trigonometría Matemáticas I º Bachillerato TEMAS 4 Y 5 TRIGONOMETRÍA UNIDADES DE MEDIDAS DE ÁNGULOS EJERCICIO a Pasa a radianes los siguientes ángulos: y 7 b) Pasa a grados los ángulos: 7 rad

Más detalles

Nivelación. Facultad de Ingeniería Agrícola. Apuntes de Clases Angel F. Becerra Pajuelo

Nivelación. Facultad de Ingeniería Agrícola. Apuntes de Clases Angel F. Becerra Pajuelo Nivelación Facultad de Ingeniería Agrícola NIVELACION La nivelación, es el conjunto de métodos u operaciones que tienen por objeto determinar las altitudes de los diversos puntos del terreno referidos

Más detalles

UNIDAD DIDÁCTICA 6: Trigonometría

UNIDAD DIDÁCTICA 6: Trigonometría UNIDAD DIDÁCTICA 6: Trigonometría 1. ÍNDICE 1. Introducción 2. Ángulos 3. Sistemas de medición de ángulos 4. Funciones trigonométricas de un ángulo 5. Teorema de Pitágoras 6. Problemas sobre resolución

Más detalles

APUNTES TRIGONOMETRÍA

APUNTES TRIGONOMETRÍA APUNTES TRIGONOMETRÍA Sara Cotelo Morales Febrero 2017 1. Medida de ángulos Existen dos unidades (más sus múltiplos y submúltiplos) para medir la amplitud de los ángulos. Hasta este momento, seguro que

Más detalles

TRIGONOMETRÍA. π radianes. 1.- ÁNGULOS Y SUS MEDIDAS. 1.1 Los ángulos orientados

TRIGONOMETRÍA. π radianes. 1.- ÁNGULOS Y SUS MEDIDAS. 1.1 Los ángulos orientados TRIGONOMETRÍA.- ÁNGULOS Y SUS MEDIDAS. Los ángulos orientados Son aquellos que además de tener una cierta su amplitud ésta viene acompañada de un signo que nos indica un orden de recorrido (desde la semirrecta

Más detalles

UNIDAD DIDÁCTICA 6: Trigonometría

UNIDAD DIDÁCTICA 6: Trigonometría accés a la universitat dels majors de 25 anys acceso a la universidad de los mayores de 25 años UNIDAD DIDÁCTICA 6: Trigonometría ÍNDICE 1. Introducción 2. Ángulos 3. Sistemas de medición de ángulos 4.

Más detalles

1. a) Qué significa una potencia de exponente negativo?... ; b)

1. a) Qué significa una potencia de exponente negativo?... ; b) MATEMÁTICAS - SEPTIEMBRE TAREA DE VERANO 4º E.S.O.-B 1. a) Qué significa una potencia de eponente negativo?..... b) Simplificar: b 1) : b 4 ) b ) 9 1 b 4) 1 4. Simplificar potencias: a) 4 ( ) d) 9000 0'000000006

Más detalles

Ángulos y razones trigonométricas

Ángulos y razones trigonométricas Departamento Matemáticas TEMAS 3 y 4. Trigonometría Nombre CURSO: 1 BACH CCNN 1 Ángulos y razones trigonométricas 1. Hallar las razones trigonométricas de los ángulos agudos del siguiente triángulo rectángulos.

Más detalles

SOLUCIONES TRIGONOMETRÍA19

SOLUCIONES TRIGONOMETRÍA19 SOLUCIONES EJERCICIOS DE TRIGONOMETRÍA Ejercicio nº 1.- Halla las razones trigonométricas de los ángulos y del triángulo ABC sabiendo que es rectángulo. Sea x la longitud de la hipotenusa; por el teorema

Más detalles

Tema 1: Razones Trigonométricas. Resolución de Triángulos Rectángulos

Tema 1: Razones Trigonométricas. Resolución de Triángulos Rectángulos Tema : Razones Trigonométricas. Resolución de Triángulos Rectángulos Matemáticas º Bachillerato CCNN.- Ángulos..- Angulo en el plano..- Criterio de Orientación de ángulos..- Sistemas de medida de ángulos.-

Más detalles

José Antonio Jiménez Nieto

José Antonio Jiménez Nieto TRIGONOMETRÍA. UNIDADES PARA MEDIR ÁNGULOS Un ángulo es una porción de plano limitada por dos semirrectas que tienen un origen común. Las unidades que más frecuentemente se utilizan para medir ángulos

Más detalles

Ejercicios resueltos de trigonometría

Ejercicios resueltos de trigonometría Ejercicios resueltos de trigonometría 1) Resuelve los siguientes triángulos: a) 3 b) 1º 0º c) 15 0º 2) Desde lo alto de una torre de 0m se observa, cuando se mira hacia delante, un árbol. Cuando se mira

Más detalles

Además de la medida, que estudiaremos a continuación, consideraremos que los ángulos tienen una orientación de acuerdo con el siguiente convenio:

Además de la medida, que estudiaremos a continuación, consideraremos que los ángulos tienen una orientación de acuerdo con el siguiente convenio: Trigonometría La trigonometría trata sobre las relaciones entre los ángulos y los lados de los triángulos. El concepto fundamental sobre el que se trabaja es el de ángulo. Dos semirrectas con un origen

Más detalles

MATEMÁTICAS UNIDAD 3 GRADO 10º. IDENTIDADES trigonométricas

MATEMÁTICAS UNIDAD 3 GRADO 10º. IDENTIDADES trigonométricas Franklin Eduardo Pérez Quintero MATEMÁTICAS UNIDAD GRADO 0º IDENTIDADES trigonométricas Franklin Eduardo Pérez Quintero LOGRO: Utilizar las funciones trigonométricas y las identidades principales para

Más detalles

RESOLUCIÓN DE TRIÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RESOLUCIÓN DE TRIÁNGULOS Resolver un triángulo consiste en determinar la longitud de sus tres lados y la amplitud de sus tres ángulos. Vamos a recordar primero la resolución para triángulos rectángulos

Más detalles

1. Un ciclista tiene que subir una cuesta que tiene una inclinación de 12º. Qué altura habrá subido cuando haya recorrido 200m?

1. Un ciclista tiene que subir una cuesta que tiene una inclinación de 12º. Qué altura habrá subido cuando haya recorrido 200m? º ESO - AMPLIACIÓN DE MATEMÁTICAS EJERCICIOS DE TRIGONOMETRÍA. Un ciclista tiene que subir una cuesta que tiene una inclinación de º. Qué altura habrá subido cuando haya recorrido 00m?. Si α es un ángulo

Más detalles

Los Modelos Trigonométricos

Los Modelos Trigonométricos Los Modelos Trigonométricos Eliseo Martínez, Manuel Barahona 1. Introducción Normalmente, por motivos históricos, y de acuerdo al itinerario seguido por la humanidad en la invención de la trigonometría,

Más detalles

FORMULARIO DE TRIGONOMETRIA PLANA Definicion de las seis razones trigonometricas 02.- Relaciones fundamentales entre las razones trigonometricas

FORMULARIO DE TRIGONOMETRIA PLANA Definicion de las seis razones trigonometricas 02.- Relaciones fundamentales entre las razones trigonometricas FORMULARIO DE TRIGONOMETRIA PLANA 01.- Definicion de las seis razones trigonometricas 02.- Relaciones fundamentales entre las razones trigonometricas 03.- Razones trigonometricas de la suma de dos angulos

Más detalles

Como el ángulo es mayor que 360º lo tratamos del siguiente modo:

Como el ángulo es mayor que 360º lo tratamos del siguiente modo: MATEMÁTICAS 4º ESO EXAMEN DE TRIGONOMETRÍA RESUELTO EXAMEN RESUELTO Halla las razones trigonométricas de los siguientes ángulos: a) 740º Como el ángulo es maor que lo tratamos del siguiente modo: 740 60

Más detalles

Curso RELACIÓN DE PROBLEMAS Y CUESTIONES DE TRIGONOMETRÍA PARA 4º DE ESO OPCIÓN B (CPM) GRADO 1

Curso RELACIÓN DE PROBLEMAS Y CUESTIONES DE TRIGONOMETRÍA PARA 4º DE ESO OPCIÓN B (CPM) GRADO 1 Curso 12-13 RELACIÓN DE PROBLEMAS Y CUESTIONES DE TRIGONOMETRÍA PARA 4º DE ESO OPCIÓN B (CPM) Graduados según su dificultad siendo Grado 1: Muy fácil Grado 5: Muy difícil GRADO 1 1. Prueba que en un triángulo

Más detalles

π = π rad º? 3 α.180

π = π rad º? 3 α.180 1 TEMA 5 RESOLUCIÓN DE TRIÁNGULOS Y FÓRMULAS TRIGONOMÉTRICAS 5.1 DEFINICIÓN DE ÁNGULO Y UNIDADES DE MEDIDA DE LOS ÁNGULOS Ángulo es la parte del plano comprendida entre dos semirrectas que se encuentran

Más detalles

TRIGONOMETRÍA: MEDIDA DE ÁNGULOS

TRIGONOMETRÍA: MEDIDA DE ÁNGULOS el blog de mate de aida: trigonometría º ESO pág. 1 TRIGONOMETRÍA: MEDIDA DE ÁNGULOS Ángulo es la porción del plano limitada por dos semirrectas de origen común. Medidas de ángulos Medidas en grados Un

Más detalles

Capítulo 7. Trigonometría del triángulo rectángulo. Contenido breve. Presentación. Módulo 17 Medición de ángulos. Módulo 18 Ángulos notables

Capítulo 7. Trigonometría del triángulo rectángulo. Contenido breve. Presentación. Módulo 17 Medición de ángulos. Módulo 18 Ángulos notables Capítulo 7 Trigonometría del triángulo rectángulo Contenido breve Módulo 17 Medición de ángulos Módulo 18 Ángulos notables La trigonometría se utiliza para realizar medidas indirectas de posición y distancias.

Más detalles

Reporte de Actividades 30

Reporte de Actividades 30 Reporte de Actividades 30 Profesores: Arturo Ramírez, Alejandro Díaz. Acompañantes: Paulina Salcedo. 1. Sesión del 23 de noviembre de 2011. 1.1 Apuntes de la clase con Arturo Ramírez. 1.1.1. Semejanza

Más detalles

6.- En un puerto de montaña aparece una señal de tráfico que señala una pendiente del 12 %. Cuál sería ese desnivel en grados?

6.- En un puerto de montaña aparece una señal de tráfico que señala una pendiente del 12 %. Cuál sería ese desnivel en grados? TRIGONOMETRÍA 1.- En un triángulo rectángulo, la hipotenusa mide 8 dm y tgα 1' 43, siendo α uno de los ángulos agudos. Halla la medida de los catetos..- Si cos α 0' 46 y 180º α 70º, calcula las restantes

Más detalles

TEMA 3. TRIGONOMETRÍA

TEMA 3. TRIGONOMETRÍA TEMA 3. TRIGONOMETRÍA Definiciones: 0 30 45 60 90 180 270 360 Seno 0 1 0-1 0 Coseno 1 0-1 0 1 Tangente 0 1 0 0 Teorema del seno: Teorema del coseno: Fórmulas elementales: FÓRMULAS TRIGONOMÉTRICAS. Suma

Más detalles

EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos:

EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: Seminario Universitario Matemática EJERCICIOS MÓDULO 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: a) 5 b ) 170 c ) 0 d ) 75 e) 10 f ) 50 g ) 0 h ) 87 i ) 08 j ) 700 k

Más detalles

MÓDULO 7: TRIGONOMETRÍA PLANA

MÓDULO 7: TRIGONOMETRÍA PLANA MÓDULO 7: TRIGONOMETRÍA PLANA Física Los ángulos y sus medidas. Funciones trigonométricas. Cuadrantes. Teorema de Pitágoras. Áreas. Volúmenes. UTN Facultad Regional Trenque Lauquen 29/01/2015 MÓDULO 7:

Más detalles

1ª PARTE: TEST de conocimientos. (1 punto)

1ª PARTE: TEST de conocimientos. (1 punto) Topografía (GIA) Examen de Teoría previo a la 1ª convocatoria (Curso 2014-15) 1ª PARTE: TEST de conocimientos. (1 punto) El alumno debe marcar la respuesta MÁS correcta. Por cada respuesta mal se restará

Más detalles

Trigonometría: Leyes de los Senos, Cosenos

Trigonometría: Leyes de los Senos, Cosenos Trigonometría: Ley de los Senos y Ley de los Cosenos Carlos A. Rivera-Morales Precálculo 2 Tabla de Contenido Contenido Ley de los Senos; Ley de los Cosenos : Contenido Discutiremos: : Contenido Discutiremos:

Más detalles

ÁNGULOS, FUNCIONES TRIGONOMÉTRICAS ORIENTADOR: ESTUDIANTE: FECHA:

ÁNGULOS, FUNCIONES TRIGONOMÉTRICAS ORIENTADOR: ESTUDIANTE:   FECHA: DEPARTAMENTO DE MATEMÁTICAS ÁREA DE MATEMÁTICAS TEMA: PERÍODO: ORIENTADOR: ESTUDIANTE: E-MAIL: FECHA: ÁNGULOS, FUNCIONES TRIGONOMÉTRICAS SEGUNDO EJES TEMÁTICOS La recta numérica Suma de números enteros

Más detalles

Área de Matemáticas B. Curso 2014/2015 EJERCICIOS RESUELTOS DE REFUERZO TEMA 7 Trigonometría

Área de Matemáticas B. Curso 2014/2015 EJERCICIOS RESUELTOS DE REFUERZO TEMA 7 Trigonometría Área de Matemáticas B. Curso 014/015 Calcula las razones trigonométricas de los ángulos agudos de un triángulo en el que uno de sus catetos mide,5 cm y la ipotenusa, 6,5 cm. Llamamos x a la longitud del

Más detalles

Razones trigonométricas

Razones trigonométricas RESUMEN TRIGONOMETRIA Para medir ángulos se utilizan las siguientes unidades: 1Grado sexagesimal ( ): Si se divide la circunferencia en 360 partes iguales, el ángulo central correspondiente a cada una

Más detalles

MATEMÁTICA Trigonometría Guía Nº 5

MATEMÁTICA Trigonometría Guía Nº 5 MATEMÁTICA Trigonometría Guía Nº 5 APELLIDO: Prof. Karina G. Rizzo 2. Consideremos el triángulo abc rectángulo en b. c a) completa: la es ac los s son ab y bc a b b) teniendo en cuenta el ángulo a, tacha

Más detalles

UNIVERSIDAD PONTIFICIA BOLIVARIANA FACULTAD DE INGENIERÍA INGENIERÍA ADMINISTRATIVA

UNIVERSIDAD PONTIFICIA BOLIVARIANA FACULTAD DE INGENIERÍA INGENIERÍA ADMINISTRATIVA UNIVERSIDAD PONTIFICIA BOLIVARIANA FACULTAD DE INGENIERÍA INGENIERÍA ADMINISTRATIVA GUIA DE TRIGONOMETRÍA (Tomado de: wwwsectormatematicacl//nm_trigonometria_doc) Los ángulos se pueden medir en grados

Más detalles

TRIGONOMETRÍA. Es el estudio de los elementos de un triángulo; de sus lados y sus triángulos. Deducimos las razones trigonométricas como:

TRIGONOMETRÍA. Es el estudio de los elementos de un triángulo; de sus lados y sus triángulos. Deducimos las razones trigonométricas como: TRIGONOMETRÍA. Es el estudio de los elementos de un triángulo; de sus lados y sus triángulos. Dado el siguiente triángulo rectángulo: Deducimos las razones trigonométricas como: Seno α = cateto opuesto

Más detalles

T R I G O N O M E T R Í A

T R I G O N O M E T R Í A T R I G O N O M E T R Í A 1. M E D I D A D E Á N G U L O S Existen varios sistemas de medida de ángulos. Los más comunes son el sistema sexagesimal y el radián. Sistema sexagesimal: Cada una de las 360

Más detalles

ASIGNATURA: MATEMÁTICA. Contenido: TRIGONOMETRÍA I TEORÍA

ASIGNATURA: MATEMÁTICA. Contenido: TRIGONOMETRÍA I TEORÍA ASIGNATURA: MATEMÁTICA Contenido: TRIGONOMETRÍA I TEORÍA Docente: Teneppe María Gabriela Medida de ángulos: Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas

Más detalles

Introducción a la trigonometría y a las funciones trigonométricas. Shirley Bromberg Raquel Valdés

Introducción a la trigonometría y a las funciones trigonométricas. Shirley Bromberg Raquel Valdés Introducción a la trigonometría y a las funciones trigonométricas Shirley Bromberg Raquel Valdés Un poquito de historia Trigonometría es una palabra de etimología griega, aunque no es una palabra griega.

Más detalles

Tema 6: Trigonometría.

Tema 6: Trigonometría. Tema 6: Trigonometría. Comenzamos un tema, para mi parecer, muy bonito, en el que estudiaremos algunos aspectos importantes de la geometría, como son los ángulos, las principales razones e identidades

Más detalles

El coseno del ángulo agudo Ĉ es la razón entre la longitud del cateto contiguo y de la. hipotenusa a 1. Razones trigonométricas inversas Secante de Ĉ

El coseno del ángulo agudo Ĉ es la razón entre la longitud del cateto contiguo y de la. hipotenusa a 1. Razones trigonométricas inversas Secante de Ĉ .- MEDIDA DE ÁNGULOS. El grado sexagesimal (º) es cada una de las 60 partes iguales en las que se divide la circunferencia (submúltiplos: el minuto y el segundo). El radián (rad) es la medida del ángulo

Más detalles

4, halla sen x y tg x. 5

4, halla sen x y tg x. 5 TRIGONOMETRÍA 1º.- Sabiendo que 90 º < x < 70 º y que 4, halla sen x y tg x. 5 a) sen x? ; de la fórmula fundamental sen x + cos x 1 se obtiene sen x 1 - cos x. 9 5 de donde sen x 5 3, solución positiva

Más detalles

GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS

GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS Para el estudio de la Trigonometría es importante tomar en cuenta conocimientos básicos sobre: concepto de triángulo, su clasificación, conceptos de ángulos

Más detalles

a1 3 siendo a 1 y a 2 las aristas. 2 a a1

a1 3 siendo a 1 y a 2 las aristas. 2 a a1 Semejanza y Trigonometria. 77 Ejercicios para practicar con soluciones Dos rectángulos tienen sus lados proporcionales. Los lados del primero miden 6 y 8 cm respectivamente. Si el perímetro del segundo

Más detalles

2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos?

2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos? 1. Qué relaciones ligan las razones trigonométricas de (45º-a) y (45º+a) 2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos? 3. Demostrar la fórmula: 4. Expresar

Más detalles

Razones trigonométricas.

Razones trigonométricas. Razones trigonométricas. Matemáticas I 1 Razones trigonométricas. Medidas de ángulos. Medidas en grados (Deg.) El grado es el ángulo plano que teniendo su vértice en el centro de un círculo intercepta

Más detalles

1. Trigonometría 4º ESO-B. Cuaderno de ejercicios. Matemáticas JRM. Nombre y apellidos... INTRODUCCIÓN A LA TRIGONOMETRÍA Página 1

1. Trigonometría 4º ESO-B. Cuaderno de ejercicios. Matemáticas JRM. Nombre y apellidos... INTRODUCCIÓN A LA TRIGONOMETRÍA Página 1 1. Trigonometría 4º ESO-B Cuaderno de ejercicios Matemáticas JRM Nombre y apellidos... INTRODUCCIÓN A LA TRIGONOMETRÍA Página 1 RESUMEN DE OBJETIVOS 1. Razones trigonométricas de un ángulo agudo. OBJETIVO

Más detalles

GUIA DE TRIGONOMETRÍA

GUIA DE TRIGONOMETRÍA GUIA DE TRIGONOMETRÍA Los ángulos se pueden medir en gos sexagesimales y ianes Un ángulo de 1 ián es aquel cuyo arco tiene longitud igual al io - 60º = ianes (una vuelta completa) - Un ángulo recto mide

Más detalles

Matemáticas Física Curso de Temporada Verano Ing. Pablo Marcelo Flores Jara

Matemáticas Física Curso de Temporada Verano Ing. Pablo Marcelo Flores Jara Matemáticas Física Curso de Temporada Verano 2016 Ing. Pablo Marcelo Flores Jara pablofloresjara@gmail.com UNIDAD II: RESOLUCIÓN DE TRIÁNGULO CUALESQUIERA U OBLICUÁNGULOS Ing. Pablo Marcelo Flores Jara

Más detalles

Unidad I Triángulos rectángulos

Unidad I Triángulos rectángulos Unidad I Triángulos rectángulos Última revisión: 07-Enero-2010 Elaboró: Ing. Víctor H. Alcalá-Octaviano Página 1 Tema 1. Teorema de Pitágoras Matemáticas II El Teorema de Pitágoras lleva este nombre porque

Más detalles

ESTATICA. Debajo se encuentran las formulas para calcular las componentes y el ángulo α que determina la dirección de la fuerza.

ESTATICA. Debajo se encuentran las formulas para calcular las componentes y el ángulo α que determina la dirección de la fuerza. ESTATICA Es la parte de la física que estudia las fuerzas en equilibrio. Si sobre un cuerpo no actúan fuerzas o actúan varias fuerzas cuya resultante es cero, decimos que el cuerpo está en equilibrio.

Más detalles

Medidas angulares: grados, radianes. La unidad que aprendimos en el colegio para medir los ángulos es el grado sexagesimal.

Medidas angulares: grados, radianes. La unidad que aprendimos en el colegio para medir los ángulos es el grado sexagesimal. Medidas angulares: grados, radianes La unidad que aprendimos en el colegio para medir los ángulos es el grado sexagesimal. Una forma de definir un grado, es que una vuelta entera son 360 grados, media

Más detalles

1.6.- Errores en la nivelación (Tolerancia.) Ajustes de la nivelación Ajuste por desniveles Ajuste por Cotas 1.8.

1.6.- Errores en la nivelación (Tolerancia.) Ajustes de la nivelación Ajuste por desniveles Ajuste por Cotas 1.8. Agosto 2010 Temas a Desarrollar 1.1.- Nivelación. 1.1.1.- Definiciones. 1.1.2.- Curvatura y Refracción. 1.2.- Instrumentos para la Nivelación Directa. 1.3.- Métodos para la nivelación (Directa, Indirecta,

Más detalles

T3 Trigonometría. Definiciones. Las razones trigonométricas del ángulo agudo,, de un triángulo rectángulo son:

T3 Trigonometría. Definiciones. Las razones trigonométricas del ángulo agudo,, de un triángulo rectángulo son: T Trigonometría Definiciones. Las razones trigonométricas del ángulo agudo,, de un triángulo rectángulo son: sen = cateto opuesto = a hipotenusa c hipotenusa cosec = = c cateto opuesto a cos = cateto adyacente

Más detalles

17. Trigonometría, parte I

17. Trigonometría, parte I Matemáticas II, 2012-II La definición de las funciones trigonométricas Dos triángulos rectángulos que tienen otro ángulo igual tienen los tres lados iguales. Por ello son triángulos semejantes. La siguiente

Más detalles

EJERCICIOS DE TRIGONOMETRÍA. 1) Expresa en radianes las medidas de los siguientes ángulos: 2) Expresa en grados sexagesimales los siguientes ángulos:

EJERCICIOS DE TRIGONOMETRÍA. 1) Expresa en radianes las medidas de los siguientes ángulos: 2) Expresa en grados sexagesimales los siguientes ángulos: Colegio María Inmaculada MATEMÁTICAS ACADÉMICAS 4º ESO EJERCICIOS DE TRIGONOMETRÍA 1) Expresa en radianes las medidas de los siguientes ángulos: 2) Expresa en grados sexagesimales los siguientes ángulos:

Más detalles

Cátedra Fundamentos de Instrumental Instrumental Topográfico: Nivel

Cátedra Fundamentos de Instrumental Instrumental Topográfico: Nivel Cátedra Fundamentos de Instrumental Instrumental Topográfico: Nivel El Nivel es un instrumento topográfico que permite determinar el desnivel entre dos puntos mediante visuales horizontales dirigidas a

Más detalles

CICLO ESCOLAR: FEBRERO JULIO 2016

CICLO ESCOLAR: FEBRERO JULIO 2016 SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCION GENERAL DE EDUCACIÓN TECNOLOGICA INDUSTRIAL CENTRO DE ESTUDIOS TECNOLOGICO INDUSTRIAL Y DE SERVICIOS, No. 5 GERTRUDIS

Más detalles

Topografía 1. II semestre, José Francisco Valverde Calderón Sitio web:

Topografía 1. II semestre, José Francisco Valverde Calderón   Sitio web: II semestre, 2013 alderón Email: geo2fran@gmail.com Sitio web: www.jfvc.wordpress.com Forma de la Tierra 1. PLANO = TOPOGRAFIA 2. ESFERA = CARTOGRAFIA 3. ELIPSOIDE O ESFERIODE = GEODESIA 4. GEOIDE = GEODESIA

Más detalles

Introducción a la trigonometría

Introducción a la trigonometría UNIDAD 9: UTILICEMOS LA TRIGONOMETRIA. Introducción Introducción a la trigonometría La trigonometría es el método analítico para estudiar los triángulos y otras figuras. El estudio de la trigonometría

Más detalles

TEMA 4. TRIGONOMETRÍA.

TEMA 4. TRIGONOMETRÍA. TEMA 4. TRIGONOMETRÍA. 4.1. Semejanza. - Criterios de semejanza de triángulos. - Teorema del cateto. - Teorema de la altura. 4.2. Razones trigonométricas. - Razones trigonométricas de un ángulo agudo.

Más detalles

OPERACIONES GEOMÉTRICAS CON VECTORES

OPERACIONES GEOMÉTRICAS CON VECTORES GUÍA DE APRENDIZAJE Introducción al álgebra vectorial www.fisic.ch Profesor: David Valenzuela Z Magnitudes escalares y vectoriales La gran variedad de cosas medibles (magnitudes) se pueden clasificar en

Más detalles

UNIDAD IV TRIGONOMETRÍA

UNIDAD IV TRIGONOMETRÍA UNIDAD IV TRIGONOMETRÍA http://www.ilustrados.com/publicaciones/epyuvklkkvpfesxwjt.php Objetivos: Al finalizar esta unidad, el alumno deberá ser hábil en: Comprender las definiciones de las relaciones

Más detalles

3. Expresar en radianes (sistema radial o circular) los siguientes ángulos:

3. Expresar en radianes (sistema radial o circular) los siguientes ángulos: 1. Calcular los ángulos complementarios de: a) 23º 53 15,22 b) 72º 33 22,15 2. Calcular los ángulos suplementarios de: a) 23º 53 15,22 b) 72º 33 22,15 3. Expresar en radianes (sistema radial o circular)

Más detalles

TEMA 4: Trigonometría. 1.- Calcula las restantes razones trigonométricas de cada ángulo, si son conocidas:

TEMA 4: Trigonometría. 1.- Calcula las restantes razones trigonométricas de cada ángulo, si son conocidas: Matemáticas Curso 011/1 º E.S.O. TEMA : Trigonometría. 1.- Calcula las restantes razones trigonométricas de cada ángulo, si son conocidas: a) = ¼ está situado en el primer cuadrante b) cotg = - π/ π c)

Más detalles

UNIDAD 1 Estadimetría

UNIDAD 1 Estadimetría UNIDAD 1 Estadimetría La estadimetría es un método que sirve para medir distancias y diferencias de elevación indirectamente, es rápido pero su precisión no es muy alta. Este procedimiento se emplea cuando

Más detalles

Según la figura los rayos OA y OB determinan un ángulo simbolizado AOB

Según la figura los rayos OA y OB determinan un ángulo simbolizado AOB UNIDAD : TRIGONOMETRÍA El termino Trigonometría procede del griego y significa medida de triángulos. Por lo tanto se considera la trigonometría como la rama de la matemática que estudia los elementos de

Más detalles

COMPLEMENTO DOCENTE PRÁCTICO (EJERCICIOS PROPUESTOS)

COMPLEMENTO DOCENTE PRÁCTICO (EJERCICIOS PROPUESTOS) TOPOGRAFÍA Y GEODESIA COMPLEMENTO DOCENTE PRÁCTICO (EJERCICIOS PROPUESTOS) ALUMNO: Fecha: 1 EJERCICIO PRÁCTICO Número 1 A.- Para medir 2.000 m. se utiliza una cinta métrica de 25 m. midiendo tramos de

Más detalles

Ficha Expresa los siguientes ángulos en radianes, dejando el resultado en función de :

Ficha Expresa los siguientes ángulos en radianes, dejando el resultado en función de : Ficha 1 1. Expresa los siguientes ángulos en radianes, dejando el resultado en función de : 2. Expresa los siguientes ángulos en grados sexagesimales y dibuja los ángulos centrales que tienen cada una

Más detalles

Colegio Universitario Boston Trigonometría Trigonometría 262

Colegio Universitario Boston Trigonometría Trigonometría 262 262 Ángulos. Ángulos en posición estándar o posición normal. Son aquellos ángulo cuyo lado inicial esta sobre el semi-eje x positivo. Lado terminal Lado inicial Podemos tener ángulos en posición estándar

Más detalles

Módulo 26: Razones trigonométricas

Módulo 26: Razones trigonométricas INTERNADO MATEMÁTICA 2016 Guía del estudiante Módulo 26: Razones trigonométricas Objetivo: Conocer y utilizar las razones trigonométricas para resolver situaciones problemáticas. Trigonometría Es la rama

Más detalles

5.5 LÍNEAS TRIGONOMÉTRICAS

5.5 LÍNEAS TRIGONOMÉTRICAS 5.5 LÍNES TRIGONOMÉTRIS Sea (O, ) una circunferencia con centro en el origen de coordenadas O(0, 0) radio la unidad. Si se construe un ángulo con vértice en el origen sentido positivo podemos obtener las

Más detalles

Presionand o este botón se borra la

Presionand o este botón se borra la ACTIVIDAD CON EL GRAFICADOR Tema: GRAFICAR FUNCIONES TRIGONOMETRICAS Introducción: En el GRAFICADOR que usarán a continuación, el objetivo es graficar las diferentes funciones trigonométricas. Presionando

Más detalles

U.E CRUZ VITALE Prof.Zuleidi Zambrano Matemática 4to A Y B

U.E CRUZ VITALE Prof.Zuleidi Zambrano Matemática 4to A Y B U.E CRUZ VITALE Prof.Zuleidi Zambrano Matemática 4to A Y B TEORIA PARA LA ELABORACIÓN DEL CUENTO. ( PERSONAS, DEFENSA) TRIGONOMETRÍA ETIMOLÓGICAMENTE: Trigonometría, es la parte de la matemática que estudia

Más detalles

Longitud, áreas y volúmenes. Trigonometría. Circunferencia de radio R Círculo de radio R. 1 Triángulo de base B y altura H A = (BH ) 2

Longitud, áreas y volúmenes. Trigonometría. Circunferencia de radio R Círculo de radio R. 1 Triángulo de base B y altura H A = (BH ) 2 Longitud, áreas y volúmenes Circunferencia de radio R Círculo de radio R A πr L πr Triángulo de base B y altura H A (BH ) Cuadrado de lado L A L Rectángulo de base B y altura H Superficie esférica A 4πR

Más detalles

Tema 11. Enlaces. FUNDAMENTO. El objetivo de este tema es estudiar los distintos métodos de enlaces que se pueden realizar entre estaciones.

Tema 11. Enlaces. FUNDAMENTO. El objetivo de este tema es estudiar los distintos métodos de enlaces que se pueden realizar entre estaciones. Bloque 4. TAQUIMETRÍA. - Tema 10. Fundamento. Método de radiación. - - Tema 12. Método de Itinerario I. - Tema 13. Método de Itinerario II. - Tema 14. Curvas de nivel. Confección de planos. Tema 11. Enlaces.

Más detalles

GUÍA DE APRENDIZAJE Introducción al álgebra vectorial

GUÍA DE APRENDIZAJE Introducción al álgebra vectorial Liceo Juan XXIII V.A Departamento de ciencias Física Prof. David Valenzuela GUÍA DE APRENDIZAJE Introducción al álgebra vectorial www.fisic.jimdo.com Tercero medio diferenciado Magnitudes escalares y vectoriales

Más detalles