ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) NOMBRE DE LA ACTIVIDAD
|
|
- Antonia Saavedra Pinto
- hace 5 años
- Vistas:
Transcripción
1 ACTIVIDAD DE APRENDIZAJE Sila Curso MAT0 Nombr Curso Cálculo I Crédios 0 Hrs. Smsrals Toals 5 Rquisios MAT00 o MAT00 Fcha Acualización Escula o Prorama Transvrsal Prorama d Mamáica Currículum Carrra/s Todas N APRENDIZAJES ESPERADOS Rconoc l concpo d la drivada como razón d cambio nr dos variabls. Rconoc la drivada como la pndin d una rca ann a una unción. Calcula la drivada d uncions aplicando órmulas d drivadas lmnals. Calcula drivadas d ordn suprior. Calcula la drivada d uncions aplicando propidads. Calcula la drivada d uncions compusas. Calcula la pndin d la rca ann a una curva. NOMBRE DE LA ACTIVIDAD Drivada d uncions drivadas lmnals, propidads, rla d la cadna y drivadas d ordn suprior Modalidad Prsncial No Prsncial Duración d la acividad horas: Forma d rabajo: Individual Grupal - Tamaño dl rupo: Luar: Sala d class Laboraorio spciiqu Tallr spciiqu Trrno spciiqu Oros spciiqu Rcursos d inormación: Imprso Tcnolóico Inormáico Marial d apoyo para la acividad: DESCRIPCIÓN DE LA ACTIVIDAD Scuncia didácica - rols d sudians y docns - cririos d valuación
2 I Concpo d la drivada y drivadas lmnals. Dinición d Drivadas La drivada d la unción con rspco a s la unción dada por: lim h0 h h s l como prima d. El procso d calcular la drivada s s drivabl n c si c is; s is cuando c. dnomina drivación, y s dic qu dcir, si l lími qu din Rca Tann La drivada valuada n curva y n c c corrspond a la pndin d la rca ann a la ; s dcir: c Pndin rca an n a qu pasa por c
3 Noación d Drivadas Sa y, noncs la drivada d la unción s pud dnoar por: y dy d Drivadas Elmnals. Consan noncs 0... n noncs n n a noncs a ln a noncs 5. lo noncs a 6. ln noncs ln a. Calcul las drivadas d las siuins uncions lmnals: a b c 5 h d m 5 lo
4 II Aplicando órmulas y albra d drivadas.. Calcular las drivadas d las siuins uncions: a b c h.000 0, d 0 d 9 5ln 8 p p p Q p. Drmin la drivada d las siuins uncions: a b ln c d ln ln. Calcular las drivadas d las siuins uncions, n l puno qu s indican. a n ; b n 8 Albra d Drivadas. Drivada d una suma dirncia. Drivada d un produco. Drivada d una división 0 ;
5 c n ; d n 5. Drmin la pndin d la rca ann a la unción: y n. 6. Drmin la pndin d la rca ann a la parábola d cuación: n. 7. Drmin la pndin d la rca ann a la Hipérbola d cuación: n. III Drivadas d ordn suprior y rla d la cadna. Drivada d ordn Suprior La sunda drivada d una unción s la drivada d su drivada. Si y, la sunda drivada s dnoa por: La drivada n-ésima y d Para cualquir nro posiivo n, la drivada n-ésima d una unción s obin drivando sucsivamn la unción n vcs. Si y y n n, la drivada n-ésima s dnoa por: n n d 8. Sa. Drmin: a b c 5 9. Sa ln. Drmin: a b c 5
6 Rla d la Cadna para Drivar una Función Compusa Si y u, n qu u, s la unción compusa d con, noncs l procdimino para drivarla, sá dada mdian la siuin órmula: d d d du La órmula nos dic: Driv la unción con rspco a la variabl u, driv la unción con rspco a la variabl, y luo mulipliqu ambas drivadas. Así s obin la drivada d con rspco a. du d También s pud usar la noación: Obsrvación: Rcordar qu la drivada d una unción no dpnd dl nombr d las variabls, sino qu d la unción misma. Por jmplo: drivada, y in por drivada a dh 8 d dy 8, y la unción h in la misma d. Las drivadas anriors s pudn inrprar como: dy Rprsna la drivada d la unción y con rspco a la variabl. d dh Rprsna la drivada d la unción h con rspco a la variabl. d Ejmplo: Obnr la drivada d la unción con rspco a la variabl, n los siuins jrcicios..- Solución: u, n dond u d d du u d du d Solución:, por lo ano la drivada pdida srá; u, n dond u 8 5 drivada pdida srá; d d d du u du d, por lo ano la
7 0. Apliqu la rla d la cadna y propidads d las drivadas para calcular la drivada d las siuins uncions. a b ln c ln. Hallar y si: a y 5 b y ln c y d. Calcul la drivada d sundo ordn,, n las siuins uncions. a y b y c y ln IV Aplicando drivadas como razón d cambio.. S spra qu dnro d años, la población d cira comunidad vin dada por 0,75 la unción: P A qué razón cambiará la población, con rspco al impo, dnro d 9 años? 7
8 . En un sudio ralizado a parir dl año 005 s drminó qu l impuso prdial n un ciro país saba dado por la unción: I dólars, dond rprsna los años dspués dl 005. Drmin: a A qué razón aumnó l impuso prdial, con rspco al impo, n l año 0? b A qué razón porcnual aumnó l impuso prdial, con rspco al impo, n l año 0? 5. Un banco implmna un nuvo sisma d cajro auomáico n l cual s drminó qu l númro d prsonas qu uiliza s nuvo sisma, vin dado por la unción: P, dond rprsna las smanas ranscurridas dspués d la implmnación. Drmin: a A qué razón cambiará l númro d prsonas, con rspco al impo, n 0 smanas dspués d su implmnación? b A qué razón porcnual cambió l uso dl sisma dspués d 0 smanas? 6. Una mprsa drminó qu mss dspués d aumnar los valors d sus producos, las vnas d la compañía srían V n mils d psos, la cual sá 0,8 dinida por la unción: rspco al impo, dnro d 5 mss? V 5. A qué razón cambiarán las vnas, con 7. En un criadro d conjos dspués d días la canidad d conjos crc a cira razón. S sab qu la unción d población d conjos dl criadro sá 0,0. A qué razón cambiará la dada por la unción: P población d conjos, con rspco al impo, dnro d 5 días? 8
9 SOLCUIONES. a b 0 c h ln d m 5 5 ln. a 0 56 b c d.000 h 9.600,8 0 d Q p p 5 p p. a b ln ln c d ln ln ln ln ln ln ln 9
10 Vicrrcoría Académica 5. a 6 b c 8 d 6 5. y ; Pndin rca ann = 6. ; Pndin rca ann = 6 7. ; Pndin rca ann = - 8. a 8 b 8 c 9. a 0 b 0 c 0 0. a 5 b c 0
11 . a y 5 b 6 y c y 8 8. a dy d d b dy d d c dy d d. La razón d cambio d la población dnro d 9 años srá aproimadamn d 6 prsonas por año.. a Dspués d 6 años l impuso sará cambiando a una razón d 90 dólars por año. b Dspués d 6 años l impuso sará cambiando aproimadamn n un,8%. 5. a Dspués d 0 smanas l númro d prsonas cambiará a una razón d 850 prsonas por año. b Dspués d 0 smanas l uso dl nuvo sisma sará cambiando aproimadamn n un 5,%. 6. La razón d cambio d las vnas dnro d 5 mss srá aproimadamn d $ por ms. 7. La razón d cambio d la población d conjos dnro d 5 días srá aproimadamn d 9 conjos por día.
DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición.
DERIVADAS Dinición d drivada Ejrcicio nº.- Las gráicas A, B y C son las uncions drivadas d las gráicas, y, pro n otro ordn. Cuál s la drivada d cual? Justiica tus rspustas. Ejrcicio nº.- Calcula la drivada
FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel
FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES Prguntas d dominios curvas d nivl Dtrmina l dominio d las uncions: a) (, ) b) (, sin + + En cada caso indica dos puntos qu no san
2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13
º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y
MATEMÁTICAS FINANCIERAS
MATEMÁTICAS FINANCIERAS TEMA: INTERÉS COMPUESTO CONTINUO. Inrés Compuso Coninuo 2. Mono Compuso a Capialización Coninua 3. Equivalncia nr Tasas d Inrés Compuso Discro y Coninuo 4. Equivalncia nr Tasa d
Definición de derivada
Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()
Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b
Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr
Reacciones Reversibles. Reacciones Paralelas o Competitivas. Reacciones Consecutivas. Reacciones en Cadena Ramificada. Explosiones
Raccions Rrsibls Raccions Parallas o Compiias Raccions Conscuias Raccions n Cadna Ramificada. Explosions Mcanismos d Racción Raccions Rrsibls Para la racción A _ B dond ano la racción dirca como la inrsa
APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS
APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE MEZCLAS 0 Considérs un anqu qu in un volumn inicial V 0 d solución (una mzcla d soluo y solvn). Hay un flujo ano d
Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos
Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la
7.6 SEÑOREAJE E HIPERINFLACIÓN
Ecuacions qu componn l modlo: a) Equilibrio n l mrcado d dinro: M P aπ () = +, dond π π. b) Expcaivas adapaivas: c M P d + + c) Crcimino monario: i + b + b b i i= 0 () π π = ( π π ) π = ( ) π. M (3) +
TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS
TEMA 1 EXPECTATIVAS Y TIPOS DE INTERÉS Cuál s su opinión? Influyn las xpcaivas n sus dcisions conómicas, como por jmplo, a la hora d comprar un coch, coninuar con su ducación, o abrir una cuna d ahorros
1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x)
IES Padr Povda (Guadi) UNIDAD INTEGRAL INDEFINIDA.. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funcions f y F dfinidas n un dominio D, dcimos qu: Ejmplos:
1. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funciones f ( x)
IES Padr Povda (Guadi) UNIDAD : INTEGRAL INDEFINIDA.. PRIMITIVA DE UNA FUNCIÓN E INTEGRAL INDEFINIDA. PROPIEDADES DE LA INTEGRAL INDEFINIDA. Dadas dos funcions f y F dfinidas n un dominio D, dcimos qu:
Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada.
MATEMÁTICAS º BACHILLERATO B 6-3- Análisis OPCIÓN A.- Dada la función + b + c f = Ln( + ) > a) Calcular sus asínoas b) Calcular razonadamn b y c para qu sa drivabl y calcular su función drivada. a) El
2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:
Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada
EJERCICIOS RESUELTOS TEMA 1: PARTE 3
Ejrcicios rsultos Tma part III): Límits d uncions º BCN EJERCICIOS RESUELTOS TEMA : PARTE 3 LÍMITES DE FUNCIONES. CONTINUIDAD Ejrcicios rsultos Tma part III): Límits d uncions º BCN ) Dada la guint unción:
1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a:
EXAMEN DE MATEMÁTICAS II (Eamn Final, Rcupración d Análisis Intgrals) BACHILLERATO EXAMEN FINAL (RMJ5) a) (,5 puntos) Discut l siguint sistma d cuacions n función dl parámtro a: + y + az + ay + z a a +
EJERCICIOS DE INTEGRALES EULERIANAS PROPUESTOS EN EXÁMENES. x y = 1. π 2 3. sen x cos xdx (Septiembre Ex. Or.)
TUTORÍA DE MATEMÁTICAS III (º A.D.E.) -mail: imozas@l.und.s hp://lfonica.n/wb/imm EJERCICIOS DE INTEGRALES EULERIANAS PROPUESTOS EN EXÁMENES.- Razon y obnga qu la ingral ulriana (p) (gamma d p) para p
DOCUMENTO DE INVESTIGACIÓN TEÓRICA EL MODELO DE DESCUENTO DE DIVIDENDOS. Mg. Marco Antonio Plaza Vidaurre. Julio 2005
OCUMNO INSIGACIÓN ÓRICA L MOLO SCUNO IINOS M. Marco Anonio Plaza idaurr Julio 5 l Modlo d scuno d ividndos (Ms M. Marco Anonio Plaza idaurr Rsumn s documno dsarrolla y xplica l modlo d dscuno d dividndos,
TEMA 1 INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN
Cód. 80607 TEMA INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN. INTEGRAL INDEFINIDA Dfinición: S dic qu una función F() s una primiiva d la función f() si y sólo si F () = f() Ejmplo: F () = y F ()= son primiivas
Examen de Selectividad Matemáticas II - SEPTIEMBRE Andalucía OPCIÓN A
Eámns d Mamáicas d Slcividad rsulos hp://qui-mi.com/ Eamn d Slcividad Mamáicas II - SEPTIEMBRE - ndalucía OPIÓN.- Sa la función coninua f : R R dfinida por f si si > a [' punos] alcula l valor d. b ['
Análisis de Señales. Descripción matemática de señales
Análisis d Sñals Dscripción mamáica d sñals Sñals Las sñals son funcions d variabls indpndins, poradoras d información Sñals lécricas:nsions y corrins n un circuio Sñals acúsicas: audio Sñals d vido: variación
Introducción a la integración de funciones compuestas INTREGRACION POR SUSTITUCION
Inroducción a la ingración d funcions compusas INTREGRACION POR SUSTITUCION Cuando s raa d funcions compusas, s aplica un méodo qu s llama ingración por susiución, s méodo srá nndido sin dificulad n la
Departamento de Economía, Facultad de Ciencias Sociales, UDELAR Maestría en Economía Internacional, Macroeconomía, Alvaro Forteza, 25/06/09
Dparamno d Economía, Faculad d incias ocials, UDEL Masría n Economía Inrnacional, Macroconomía, lvaro Forza, 5/06/09 Trcr jugo d jrcicios. onsidr un modlo d gnracions solapadas con inrcambio puro. En la
OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis
MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa
UTILIZACIÓN DE LA CALCULADORA GRÁFICA EN EL AULA COMO APOYO PARA LA COMPRENSIÓN DE LA PRIMITIVA, LAS INTEGRALES DEFINIDAS E INDEFINIDAS DE UNA FUNCIÓN
UTILIZACIÓN DE LA CALCULADORA GRÁFICA EN EL AULA COMO APOYO PARA LA COMPRENSIÓN DE LA PRIMITIVA, LAS INTEGRALES DEFINIDAS E INDEFINIDAS DE UNA FUNCIÓN. Abl Martín. Dpto. Matmáticas IES La Ería d Ovido.
INTEGRALES INDEFINIDAS
Ingrals Indfinidas@JEMP INTEGRALES INDEFINIDAS MÉTODOS DE INTEGRACIÓN. Ingración inmdiaa.- Tnindo n cuna qu l procso d ingración s l invrso d la drivación, podmos scribir fácilmn las ingrals indfinidas
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS
Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES
TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE.
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA TITULACIONES Ingniría Indusrial (GITI/GITI+ADE) Ingniría d Tlcomunicación (GITT/GITT+ADE) CÁLCULO Curso -6 TEMA : CÁLCULO INTEGRAL
MUESTREO Y RECONSTRUCCIÓN DE SEÑALES. Teoría de circuitos y sistemas
MUESREO Y RECONSRUCCIÓN DE SEÑALES oría d circuios y sismas Inroducción Sabmos modlar sismas coninuos Laplac o sismas discros Z. Pro n muchos casos los sismas coninn ano bloqus coninuos como bloqus discros.
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DEIVADA Ecucación d la rcta tangnt Ejrcicio nº.- Halla las rctas tangnts a la circunrncia: y y 6 n Ejrcicio nº.- Dada la unción abscisa., scrib la cuación d su rcta tangnt n l punto
98 EJERCICIOS de DERIVABILIDAD 2º BACH.
98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).
RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD
RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL Una unción ral d variabl ral s una aplicación d un subconjunto D d los númros rals n un subconjunto I d los númros
REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES
Matmáticas II Rgla d L Hôpital REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Obsrvación: La mayoría d los problmas rsultos a continuación s han propusto n los ámns d Slctividad.. Dada la función: 8 f (
GUÍA METODOLÓGICA PARA ARQUITECTURA
Dpartamnto d Cincias Eactas GUÍA METODOLÓGICA DE MATEMÁTICA APLICADA II PARA ARQUITECTURA Marzo0-Julio 0 Campus Matriz Quito: Burgois N-0 y Rumipamba Tléfonos 6 /58/59 Et. 68/66 Quito Ecuador Dpartamnto
TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES.
TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bach. TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. Tasa d variación mdia. Cálculo y signiicado EJERCICIO : Considramos la unción:. Halla la tasa
TEMA 7 APLICACIONES DE LA DERIVADA
Tma Aplicacions d la drivada Matmáticas CCSSII º Bachillrato 1 TEMA APLICACIONES DE LA DERIVADA RECTA TANGENTE 1 Escrib 0 EJERCICIO 1 : la cuación d la rcta tangnt a la curva f n 0. Ordnada dl punto: f
FUNCIONES EXPONENCIAL Y LOGARÍTMICA TRANSFORMACIONES ABACOS Prof : Sergio Weinberger. 2 3x. El número e
NOMBRE P 6º I 8 FUNCIONES EXPONENCIAL Y LOGARÍTMICA TRANSFORMACIONES ABACOS Pro : Srgio Winbrgr MATEMÁTICA A Lico: Nº NOCT. Rsolvr : a 44 b d 8. 4. 5 5 c 6. 6 Rsolvr : a 5 5 4 b 5 > 4 El númro n "El númro
Expectativas, Consumo e Inversión Profesor: Carlos R. Pitta CAPÍTULO 9. Macroeconomía General
Univrsidad Ausral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 9 Expcaivas, Consumo Invrsión Profsor: Carlos R. Pia Macroconomía Gnral, Prof. Carlos R. Pia, Univrsidad Ausral d Chil. Capíulo
f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,
CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo
La ecuación de trasmicion de FRIIS relaciona la potencia recibida a la potencia trasmitida entre dos antenas separadas por una distancia:
.4 ECUACIÓN E TRANSMISIÓN E FRIIS La cuación d rasmicion d FRIIS rlaciona la poncia rcibida a la poncia rasmiida nr dos annas sparadas por una disancia: R dond s la dimnsión más grand d cualquir anna.
Idea La derivada de una función, f(x), en un punto P se interpreta geométricamente con la pendiente de la recta tangente a la curva en ese punto.
http://matmaticas-tic.wikispacs.com Lambrto Cortázar Vinusa 06 DERIVADAS EJERCICIOS WIKI Ida La drivada d una unción, (), n un punto P s intrprta gométricamnt con la pndint d la rcta tangnt a la curva
I, al tener una ecuación. diferencial de segundo orden de la forma (1)
.6. Rducción d ordn d una cuación difrncial linal d ordn dos a una d primr ordn, construcción d una sgunda solución a partir d otra a conocida 9.6. Rducción d ordn d una cuación difrncial linal d ordn
Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar
Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar M. n C. Víctor Manul Silva García, M. n C. Eduardo Vga
La transformada de Laplace
CAPÍTULO 6 La ranformada d Laplac 6.3 Exincia d TL Lo rulado nconrado n la ccion anrior no podrían hacr pnar qu baará cuidar l rango d la variabl para agurar la xincia d la TL d una función; in mbargo,
FUNCIONES REALES DE VARIAS VARIABLES
FUNCIONS RALS D VARIAS VARIABLS Pnado po: Lic SANDRA SALAZAR PALOMINO Lic WILBRT COLQU CANDIA APURÍMAC PRU 9 FUNCIONS RALS D VARIAS VARIABLS Dinición: Una nción al d n aiabl indpndin dnoado po : D R B
91 EJERCICIOS de DERIVABILIDAD 2º BACH.
9 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad:. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).
Mecanismos de Reacción
. Raccions Rvrsibls. Raccions Parallas o Compiivas. Raccions Conscuivas 4. Méodos Aproximados para obnr Ecuacions d Vlocidad 5. Raccions n Cadna 6. Efco d la Tmpraura sobr la consan d vlocidad . Raccions
1.- Qué funciones son primitivas de la función cosx: Tachar lo que no proceda
.- Qué funcions son primitivas d la función cos: Tachar lo qu no procda.- Hallar + sn() si < cos si si > continua d: f() g() f()+g() f() g() -cos si
Tema 2 La oferta, la demanda y el mercado
Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la
ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función
ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,
Rutas críticas para la elaboración del trabajo de titulación en las diferentes modalidades. Planes de estudio 2012
Rutas críticas trabajo d titulación n las difrnts modalidads. Ruta Crítica d la Modalidad: Inform d Prácticas Profsionals smana y mdia smana y mdia 2 Smanas Analizar con dtall los documntos normativos
LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Límite de una función en un punto
LÍMITES, CONTINUIDAD, ASÍNTOTAS. LÍMITE DE UNA FUNCIÓN.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f ) = l S l: El it cuando tind a c d f) s l c Significa: l s l valor al qu s aproima
Tabla de contenido. Página
Tabla d contnido Página Ecuacions actas linals Ecuacions difrncials actas Torma 4 Solución d una cuación difrncial acta Ecuacions linals 1 Solución d una cuación linal 1 Rsumn 19 Bibliografía rcomndada
Tabla de contenido. Página
Tabla d contnido Página Ecuacions d ordn suprior Ecuacions homogénas d sgundo ordn con coficints constants Caso. Raícs rals distintas 6 Caso. Raícs compljas conjugadas 6 Caso. Raícs rals iguals 7 Rsumn
( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx.
Albrto Entro Cond Mait Gonzálz Juarrro Intgral indfinida Cálculo d primitivas Calcula las siguints intgrals Solucions A d A d + + + ln( + + ) A d arctan + A sn sn d A d ln ( ) 6A d cos tan + arctan + ln(
Explicación de operaciones. fraccionarios
Eplicación d opracions d divisions con ponns fraccionarios Mamáicas I Ejrcicio :. Simplifica obén l rsulado d las siuins raícs. ( ) 8 Paso : s muliplica l ponn fura d cada parénsis por l ponn d cada variabl
TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)
TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción
. La tasa de variación media es la pendiente del segmento AB, siendo A(a, f(a) ) y B(b, f(b) ) dos puntos de la gráfica de la función:
º BACHILLERATO D MATEMÁTICAS CC SS TEMA 4.- FUNCIONES. DERIVACIÓN.- CONCEPTO DE DERIVADA Tasa d variación mdia S llama tasa d variación mdia d una función f n l intrvalo [a, b] al cocint. La tasa d variación
(Apuntes en revisión para orientar el aprendizaje) CÁLCULO INTEGRAL FUNCIONES LOGARÍTMICA Y EXPONENCIAL
(Apns n risión para orinar l aprndizaj) CÁLCULO INTEGRAL FUNCIONES LOGARÍTMICA Y EXPONENCIAL Fnción logarimo naral S sa q n+ n d + C ; n n + S comnzará con la dfinición d na ingral indfinida pariclar d
INTEGRAL INDEFINIDA. Derivación. Integración
TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA FUNCIÓN PRIMITIVA. F() s ua primitiva d f() si F ()= f(). Esto s prsa así: f() = F'() = F() La itgració s la opració ivrsa a la drivació, d modo qu: FUNCIONES
a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r.
(Aputs rvisió para oritar l aprdizaj) DESARROLLO DE LAS FUNCIONES LOGARÍTMICA Y EXPONENCIAL EN SERIES DE POTENCIAS Ua Sri d Potcias s dfi como: a a a a a = = + + + la qu s vidt qu covrg si =. Para dtrmiar
Integrales indefinidas. 2Bach.
Intgrals indfinidas. Bach..- FUNCIÓN PRIMITIVA. INTEGRAL INDEFINIDA. La intgración s la opración invrsa d la drivación. Dada una función f(), dirmos qu F() s una primitiva suya si F ()f(). Nota: La primitiva
INTEGRAL INDEFINIDA. Derivación. Integración
TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA. FUNCIÓN PRIMITIVA F() s ua primitiva d f() si F ()= f(). Esto s prsa así: La itgració s la opració ivrsa a la drivació, d modo qu: f() F'() F() FUNCIONES PRIMITIVAS
Tema 9. Modelos de equilibrio de cartera
Tma 9. Modlos d quilibrio d carra Caracrísicas gnrals En la drminación dl ipo d cambio no sólo incid l mrcado monario: ambién l mrcado d bonos y l mrcado d bins No xis susiuibilidad prca nr los acivos
Espacios vectoriales euclídeos.
Univrsidad d Jaén Dpartamnto d Matmáticas (Ara d Álgbra) Curso 4/5 PRÁCTICA Nº 6 Espacios vctorials uclídos. En sta práctica vamos a vr cómo introducir un producto scalar y trabajar con él n Mathmatica
3. [2014] [JUN-A] Calcule el área de la región plana limitada por la gráfica de la función f(x) = cos x, el eje OX y las rectas x = 0 y x = 2.
MasMats.com Colccions d jrcicios Intgrals Slctividad CCNN Extrmadura. [04] [ET-A] Calcul la siguint intgral dfinida d una función racional: + x- x -x+. [04] [ET-B] a) Dibuj l rcinto plano limitado por
PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES
PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica
UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN ELECTRÓNICA Y AUTOMATIZACIÓN
UNIVERSIDD TECNOÓGIC DE JISCO DIVISIÓN EECTRÓNIC Y UTOMTIZCIÓN NO VERSIÓN: FECH: GOSTO TITUO DE PRCTIC: Tranformada invra d aplac SIGNTUR: Mamáica III HOJ: DE: UNIDD TEMTIC: Tranformada d aplac Invra FECH
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x
. Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)
CARACTERÍSTICAS GENERALES DE UN GENERADOR DE BARRIDO
CARACTERÍTICA GENERALE DE UN GENERADOR DE BARRIDO La forma ípica d una nión d barrido la morada n la figura 0 qu v n lla la nión parindo d un valor inicial, aumnando linalmn con l impo haa un valor máximo
Integral indefinida. 1. Primitiva de una función. 1.1 Propiedades de la integral indefinida
ntgral indfinida achillrato ntgral indfinida. Primitiva d una función Dfinición: Sa f() una función dfinida n l intrvalo (a,b), llamarmos primitiva d la función f() a toda función ral d variabl ral, F(),
Idea Calcular la pendiente de una recta es relativamente sencillo, basta con aumenta la y entre lo que
http://matmaticas-tic.wikispacs.com m Lambrto Cortázar Vinusa 07 DERIVADAS. CCSS EJERCICIOS WIKI Ida Calcular la pndint d una rcta s rlativamnt sncillo, basta con dividir lo qu aumnta la ntr lo qu aumnta
Límites finitos cuando x: ˆ
. Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador
Práctica 4: Hoja de problemas sobre Tipos de cambio
Prácica 4: Hoja d problmas sobr Tipos d cambio Fcha d nrga y corrcción (Acividads complmnarias): Miércols 2 d abril d 2014 Todos alumnos dbn qudars una copia d la prácica nrgada Prácica a ralizar n grupos
Décimas Jornadas de Economía Monetaria e Internacional La Plata, 12 y 13 de mayo de 2005
Univrsidad Nacional d La Plaa Décimas Jornadas d Economía Monaria Inrnacional La Plaa, y 3 d mayo d 5 Una Rconsidración Mamáica dl Modlo d "Ovrshooing" dl Tipo d Cambio Aljo Macaya (Univrsidad d Bunos
TRABAJO MECÁNICO (FUERZA VARIABLE. RESORTES)
TRABAJO MECÁNICO (FUERZA VARIABLE. RESORTES) En sicions rls l frz no s consn, sino q vri cndo l ojo s mv sor n lín rc. w = fd Δ w = f )( Δ w f )( Si l frz s mid n l. y l disnci n pis noncs Si l frz s mid
PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.
Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f
ACTIVIDAD DE APRENDIZAJE
ACTIVIDAD DE APRENDIZAJE Sigla Curso MAT33 Nombre Curso Cálculo I Créditos 1 Hrs. Semestrales Totales 5 Requisitos MAT o MAT1 Fecha Actualización Escuela o Programa Transversal Programa de Matemática Currículum
APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL
APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta
REPRESENTACION GRAFICA.
REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:
TEMA 4. APLICACIONES DE LA DERIVADA.
7 Unidad 4. Funcions. Aplicacions d la drivada TEMA 4. APICACIONES DE A DERIVADA.. Monotonía. Crciminto y dcrciminto d una función. Etrmos rlativos 3. Optimización 4. Curvatura 5. Punto d Inflión 6. Propidads
1.1 Introducción 1.2 Ecuaciones Lineales 1.3 Ecuaciones de Bernoulli 1.4 Ecuaciones separables 1.5 Ecuaciones Homogéneas 1.6 Ecuaciones exactas
ap. Ecuacions Difrncials d Primr ordn. Introducción. Ecuacions Linals. Ecuacions d Brnoulli. Ecuacions sparabls.5 Ecuacions Homogénas.6 Ecuacions actas.7 Factor Intgrant.8 Estabilidad dinámica dl quilibrio.9
LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN
LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.
CASO PRACTICO Nº 127
CASO PRACTICO Nº 127 CONSULTA Consula sobr l cálculo d la asa d acualización a uilizar n l caso d valoración d una pquña y mdiana mprsa (PYME). Sgún lo xprsado por AECA n l Documno nº 5 d Principios d
Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin
Aproimació d ucios drabls mdiat poliomios: Fórmulas d Taylor y Mac-Lauri. Eprsa l poliomio P - - potcias d - Hay qu dtrmiar los coicits a, b, c, d y qu cumpla: P - -a- b- c- d- Drado vcs la iualdad atrior,
PROBLEMAS DEL TEOREMA FUNDAMENTAL DE LAS INTEGRALES DE LÍNEA
ROBLEMAS DEL TEOREMA UNDAMENTAL DE LAS INTEGRALES DE LÍNEA. Indpndncia dl camino n una ingal d lína. alcula l abajo llvado a cabo po l campo d ua al llva un objo dsd A hasa B siguindo a un camino compuso
MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL
El méodo dirco d la rigidz. Méodo maricial MÉTODO DIRECTO DE LA RIGIDEZ. MÉTODO MATRICIAL 1. SISTEMAS DE REERENCIA La sismaización dl méodo cuyos fundamnos s han prsnado anriormn rquir dl paso d unas caracrísicas
UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN ELECTRÓNICA Y AUTOMATIZACIÓN
AGOSTO 6 TITULO DE LA PRACTICA: Solución d la tranformada d la laplac por mdio dl torma fundamntal ASIGNATURA: Matmática III HOJA: DE: UNIDAD TEMATICA: Tranformada d Laplac FECHA DE REALIZACIÓN: d Agoto
= 1n. + c. x dy. x x. + 2r. y y. Rojas Huachin Miryan. Homogéneas y Reducibles a Homogéneas
Ecacions difrncials Ejrcicios d Ecacions Difrncials Homogénas Rdcibls a Homogénas. arsolvr: ' r b Drminar para q valors d r in solcions d la forma la cación ''' '' ' 0 Solción a Hacmos l cambio: ' ' Rmplaando
Se trata de encontrar el área limitada por una curva de ecuación y = f (x) continua y positiva, el eje de abscisas y dos ordenadas x=a, y x=b.
Mamáicas º Bachillrao. Profsora: María José ánchz Qvdo Ára dfinida bajo na crva LA INTEGRAL DEFINIDA. APLICACIONE Mlid d problmas q s planan n la vida ral s rslvn calclando l ára bajo la crva d na fnción.
CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS
CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los
TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS
TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8. LÍMITE DE UNA FUNCIÓN 8.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f () = l S l: El it cuando tind a c d f() s l c Significa:
Variables aleatorias continuas
Probabilidads y Estadística Comutación Facultad d Cincias Eactas y Naturals. Univrsidad d Bunos Airs Ana M. Bianco y Elna J. Martín 4 Variabls alatorias continuas Distribución Uniorm: Rcordmos qu tin distribución
CÁLCULO DE LÍNEAS ELÉCTRICAS
El cálculo d línas consis n drminar la scción mínima normalizada qu saisfac las siguins condicions: a) Capacidad érmica: Innsidad máxima admisibl. Vin drminada n ablas dl Rglamno Elcroécnico para Baja
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
Ing. Mario R. Modesti
UNIVERSIDAD ECNOLOGICA NACIONAL FACULAD REGIONAL CORDOBA DEPARAMENO ELECRONICA Carrra Asignaura : Ingniría Elcrónica : Análisis d Sñals y Sismas.P.N : Sris y ransformada d Fourir, ransformada invrsa d
5.1 La función logaritmo natural: derivación
CAPÍTULO Funcions logarímica, ponncial oras funcions rascnns. La función logarimo naural: rivación Dsarrollar usar propias la función logarimo naural. Comprnr la finición l númro. Drivar funcions qu involucran
Serie 4. Dinámica de Procesos
Sri 4 Dinámica d Proco unción d ranfrncia S dfin como G Y / X prna un modlo normalizado d un proco, dond Y la variabl d alida y X una d la nrada. Y and X án xprada como variabl dviación. La forma d la