Grupo 23 Semestre Segundo examen parcial
|
|
- Julia Moreno Saavedra
- hace 5 años
- Vistas:
Transcripción
1 Probabilidad Grupo 23 Semestre Segundo examen parcial La tabla siguiente presenta 20 postulados, algunos de los cuales son verdaderos y otros son falsos. Analiza detenidamente cada postulado y elige tu respuesta circulando la V (verdadero) o la F (falso) 1. Se el coeficiente de curtosis es mayor que 4, la distribución tiene forma aplastada En una variable aleatoria estandarizada, el momento de orden r respecto a la media es igual al 2. momento de orden r respecto al origen Si fuera posible determinar con exactitud y precisión todos y cada uno de los momentos de una 3. distribución de probabilidad, sería factible reconstruirla totalmente 4. La aleatoriedad de una variable reside en el espacio probabilístico de llegada(, B,P X ) y no en el espacio probabilístico de partida ( Ω, A,P) 5. El momento de orden cero con respecto a cualquier punto de referencia es uno Cuando la variable es discreta, el valor esperado generalmente no coincide con ninguno de los 6. posibles valores de la variable 7. P ( X = 10) = La distribución de probabilidad puede ser presentada en forma tabular,como colección de valores de la variable aleatoria y sus probabilidades La variable aleatoria hace corresponder un número real a cada elemento de un espacio probabilístico, que también es un elemento concreto del espacio muestral 10. E ( 2 X + 7 ) = 2E ( X ) 11. Var ( 2 X + 7 ) = 4Var ( X ) 12. La probabilidad de que la variable aleatoria Y tome el valor 10 se expresa: P[y = 10] 13. No siempre resulta factible convertir los resultados de un experimento en valores cuantitativos 14. La gráfica de la función de distribución acumulada de una variable aleatoria siempre es escalonada 15. El parámetro de dispersión más importante es la varianza σ 2 = E ( x) E ( x 2 ) Cuando no se conoce la distribución de probabilidad de la variable aleatoria, los parámetros de la 17. distribución permiten tener una idea aproximada de su forma. 18. Si el coeficiente de asimetría resulta negativo se dice que la distribución está sesgada a la derecha 19. El momento de orden uno con respecto a la media es cero 20. Si no existe dispersión alrededor de la media, entonces el coeficiente de variación vale uno 21.Considere la variable aleatoria continua X cuya función de densidad de probabilidad es: 2 k ( 2x x ), 0 x 2 fx ( x) = 0, en cualquier otro caso a) Determine el valor de la constante kpara que la función dada sea una función de densidad de probabilidad b) Obtenga la función de distribución acumulada de X. c) Calcule la probabilidad de que X sea menor que 1 d) Calcule el coeficiente de variación de la variable aleatoria X.
2
3 22. Considere la variable aleatoria discreta X cuya función de masa de probabilidad es: k px ( x i ) =, x x i = 1,2,3,... i 4 a) Determine el valor de la constante kpara que la función dada sea una función de masa de probabilidad b) Obtenga la función de distribución acumulada de X c) Calcule la probabilidad de que X sea menor que 1 e) Calcule el coeficiente de variación de la variable aleatoria X.
4
5 Relaciona correctamente las 15definiciones dadas en la columna derecha con los 15nombres de la columna izquierda, anotando las literales correspondientes en los paréntesis. Correspondencia uno a uno. A - Coeficiente de variación B - Desviación estándar C - Distribución de probabilidad D - Espacio probabilístico E - Función de densidad de probabilidad F - Función de distribución acumulada G - Función de masa de probabilidad H - Media I - Mediana J - Moda K - Momentos L - Rango M - Valor esperado N - Variable aleatoria O Varianza 23. Función que mide la probabilidad de que la variable aleatoria X tome valores menores o iguales a un valor específico x (F) 24. Valor más probable de la variable aleatoria X (H) 25. Segundo momento con respecto a la media (O) 26. Conjunto de valores numéricos de la variable aleatoria que tienen asociada una medida de probabilidad ( C ) 27. Terna constituida por un conjunto, una σ-álgebra definida sobre el conjunto y una medida de probabilidad definida en la σ-álgebra (D) 28. Distancia entre los valores máximo y mínimo que toma la variable aleatoria ( L ) 29. Valor de la variable aleatoria que divide a la distribución de probabilidad en dos partes igualmente probables ( I ) 30. Función que mide la probabilidad puntual P( X = xi ) de que la variable aleatoria discreta X tome el valor x i (G) 31. Familia de promedios ponderados, en los que la esperanza se interpreta como una ponderación de la función por su masa de probabilidad asociada 32. Medida adimensional de dispersión que indica el número de veces que la desviación estándar contiene a la media 33. Función que asigna un número real a cada uno de los resultados del experimento 34. Valor típico indicativo del orden de magnitud de todos losvalores que toma la variable aleatoria 35. Función que mide la densidad de probabilidad cuando la variable aleatoria continua X toma el valor el valor específico x 36. Explica la dispersión promedio de los posibles valores de la variable aleatoria X con respecto a su media 37. Ganancia promedio esperada por un jugador, cuando realiza un gran número de apuestas matemática de una función E g ( X ) (K ) (A ) ( N ) ( J ) (E) ( B ) (M )
6 Relaciona correctamente las 8 variables aleatorias descritas en la columna de la izquierda con los 8 nombres de modelos probabilísticos de la columna derecha, anotando las literales correspondientes en los paréntesis. Correspondencia uno a uno. Variable aleatoria 38. O = número de faltas de ortografía en una cuartilla, si se tiene una intensidad de 1.9 faltas/renglón 39.H = tirante de agua en un recipiente cilíndrico de 2 m de altura, que se llena y se vacía en forma aleatoria 40.T = tiempo entre terremotos de gran intensidad, si la tasa media de ocurrencias es de 2.3 terremotos cada 100 años 41.X = número de bolas rojas obtenidas al extraer, con remplazo, 14 bolas de una urna, si el 70% de las bolas contenidas en ella no son rojas 42.S = tiempo que le lleva a un médico atender a 4 pacientes en su consultorio, si es capaz de atender, en promedio 2.4 pacientes/hora 43.Y = número de automóviles que arriban a un crucero, para que llegue uno que de vuelta a la izquierda, si la probabilidad de virar a la izquierda es de N = número que aparece en el pentágono que queda hacia arriba, al lanzar un dodecaedro equilibrado 45. Z = número de niños expuestos a una enfermedad contagiosa para que 3 de ellos se contagien, si la probabilidad de que un niño expuesto se contagie es de 1/5 Modelo Probabilístico (T) Exponencial (Z) Binomial negativa (X) Binomial (O) Poisson (S) Gamma o Erlang (N) Uniforme discreta (X) Geométrica (H) Uniforme continua
Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas
Part I unidimensionales de s de s Definición Dado un experimento aleatorio, con espacio muestral asociado Ω, una es cualquier función, X, X : Ω R que asocia a cada suceso elemental un número real, verificando
DISTRIBUCIONES DE PROBABILIDAD
DISTRIBUCIONES DE PROBABILIDAD VARIABLE ALEATORIA Una variable x valuada numéricamente varía o cambia, dependiendo del resultado particular del experimento que se mida. Por ejemplo, suponga que se tira
Experimento de lanzar 3 monedas al aire. Denominando por (C) a Cara y (X) a Cruz, el espacio muestral será: Ω={CCC,CCX,CXC,XCC,CXX,XCX,XXC,XXX}
1 Tema 3 : Variable Aleatoria Unidimensional 3.1. Concepto de variable aleatoria Se llama variable aleatoria (v.a.) a toda aplicación que asocia a cada elemento del espacio muestral (Ω) de un experimento,
Tema 5. Variables Aleatorias
Tema 5. Variables Aleatorias Presentación y Objetivos. En este tema se estudia el concepto básico de Variable Aleatoria así como diversas funciones fundamentales en su desarrollo. Es un concepto clave,
Técnicas Cuantitativas para el Management y los Negocios I
Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:
CM0244. Suficientable
IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE
Sumario Prólogo Unidad didáctica 1. Introducción a la estadística. Conceptos preliminares Objetivos de la Unidad...
ÍNDICE SISTEMÁTICO PÁGINA Sumario... 5 Prólogo... 7 Unidad didáctica 1. Introducción a la estadística. Conceptos preliminares... 9 Objetivos de la Unidad... 11 1. Población y muestra... 12 2. Parámetro
Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables
Pág. N. 1 Índice general Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN 1.1 Diseño 1.2 Descriptiva 1.3 Inferencia Diseño Población Muestra Individuo (Observación, Caso, Sujeto) Variables Ejercicios de Población
Cálculo de Probabilidades II Preguntas Tema 1
Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga
VARIABLES ALEATORIAS INTRODUCCIÓN
DOCENTE: SERGIO ANDRÉS NIETO DUARTE CURSO: ESTADÍSTICA DE LA PROBABILIDAD VARIABLES ALEATORIAS INTRODUCCIÓN Normalmente, los resultados posibles (espacio muestral E) de un experimento aleatorio no son
4.1. Definición de variable aleatoria. Clasificación.
Capítulo 4 Variable aleatoria Una variable aleatoria es un valor numérico que corresponde a un resultado de un experimento aleatorio. Algunos ejemplos son: número de caras obtenidas al lanzar seis veces
6.3. Distribuciones continuas
144 Bioestadística: Métodos y Aplicaciones Solución: Si consideramos la v.a. X que contabiliza el número de personas que padecen la enfermedad, es claro que sigue un modelo binomial, pero que puede ser
Título: ESTADISTICA I DESDE UN ENFOQUE POR COMPETENCIAS Primera edición. de esta edición. Fondo Editorial. Universidad San Ignacio de Loyola
Título: ESTADISTICA I DESDE UN ENFOQUE POR COMPETENCIAS 2014. Primera edición de esta edición Fondo Editorial Universidad San Ignacio de Loyola Av. La Fontana 750, La Molina Teléfono: 317-1000 anexo 3705
El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X
Momentos El momento k-ésimo para una variable aleatoria discreta respecto del origen, es E(x) n = i = 1 k i ( ) x.p x El primer momento centrado en el origen (k=1) es la esperanza matemática de X También
Tema 4: Variables Aleatorias
Tema 4: Variables Aleatorias Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Variables Aleatorias Curso 2009-2010 1 / 10 Índice 1 Concepto
ANALISIS DE FRECUENCIA EN HIDROLOGIA
ANALISIS DE FRECUENCIA EN HIDROLOGIA Luis F. Carvajal Julián D. Rojo Universidad Nacional de Colombia Facultad de Minas Escuela de Geociencias y Medio Ambiente Introducción 1. Los eventos hidrológicos
PROBABILIDAD Y ESTADISTICAS. Propósito del curso : Ingeniería Ingeniería en Sistemas. Hardware. Clave de la materia: 503
UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA Clave: 08MSU007H Clave: 08USU4053W FACULTAD DE INGENIERÍA PROGRAMA DEL CURSO: PROBABILIDAD Y ESTADISTICAS DES: Ingeniería Ingeniería en Sistemas Programa(s) Educativo(s):
Sesión 2: Teoría de Probabilidad
Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 2: Teoría de Probabilidad las reglas mátemáticas de la probabilidad no son simplemente reglas para calcular frecuencias de variables aleatorias;
PROGRAMA DE ESTUDIO. - Nombre de la asignatura : ESTADISTICA I. - Pre requisitos : Matemática III
PROGRAMA DE ESTUDIO A. Antecedentes Generales - Nombre de la asignatura : ESTADISTICA I - Código : EME 221 - Carácter de la asignatura (obligatoria / electiva) : Obligatoria - Pre requisitos : Matemática
Variables Aleatorias. Introducción
Variables Aleatorias Introducción Concepto de variable aleatoria Es conveniente que los resultados de un experimento aleatorio estén expresados numéricamente. Se prueban tres componentes electrónicos,
PROGRAMA DE ESTADÍSTICA DESCRIPTIVA
PROGRAMA DE ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS DE ESTADÍSTICA Definición de Estadística Origen del concepto. Evolución histórica de la Estadística Estadística Descriptiva y Estadística Inferencial
Tema 4: Modelos probabilísticos
Tema 4: Modelos probabilísticos 1. Variables aleatorias: a) Concepto. b) Variables discretas y continuas. c) Función de probabilidad (densidad) y función de distribución. d) Media y varianza de una variable
Variables aleatorias
Variables aleatorias Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 Una variable aleatoria es un valor numérico que se corresponde con
Nombre de la materia. Departamento. Academia
Probabilidad Ciencias Aplicadas de la Información Ciencias Básicas Nombre de la materia Departamento Academia Clave Horas-teoría Horas-práctica Horas-AI Total-horas Créditos I4862 60 20-80 9 Nivel Carrera
Variables aleatorias continuas, TCL y Esperanza Condicional
Variables aleatorias continuas, TCL y Esperanza Condicional FaMAF 17 de marzo, 2011 1 / 37 Poisson P(λ) Número de éxitos en una cantidad grande de ensayos independientes Rango: {0, 1, 2,... } = {0} N Función
PROBABILIDAD Y ESTADÍSTICA
PROBABILIDAD Y ESTADÍSTICA 4 horas a la semana 8 créditos Semestre variable según la carrera Objetivo del curso: Analizar y resolver problemas de naturaleza aleatoria en la ingeniería, aplicando conceptos
478 Índice alfabético
Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión
UNIVERSIDAD MILITAR NUEVA GRANADA
CONTENIDO PROGRAMÁTICO Fecha Emisión: 2011/09/15 Revisión No. 1 AC-DO-F-8 Página 1 de 10 ESTADÍSTICA I CÓDIGO 14241 PROGRAMA INGENIERÍA INDUSTRIAL ÁREA DE FORMACIÓN CIENCIAS BÁSICAS SEMESTRE TERCERO PRERREQUISITOS
Tema 6: Modelos de probabilidad.
Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos
Técnicas Cuantitativas para el Management y los Negocios I
Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:
Prof. Eliana Guzmán U. Semestre A-2015
Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos
viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos
Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................
UNIVERSIDAD MILITAR NUEVA GRANADA
CONTENIDO PROGRAMÁTICO Fecha Emisión: 2011/09/15 AC-DO-F-8 Revisión No. 1 Página 1 de 8 ESTADÍSTICA I CÓDIGO 14241 PROGRAMA INGENIERÍA INDUSTRIAL ÁREA DE FORMACIÓN CIENCIAS BÁSICAS SEMESTRE TERCERO PRERREQUISITOS
Centro Universitario de Tonalá
Presentación Este curso de estadística y evaluación de datos se encuentra diseñado para los estudiantes del Doctorado en Agua y Energía del Centro Universitario de Tonalá. Competencias genéricas de la
VARIABLES ALEATORIAS CONTINUAS
VARIABLES ALEATORIAS CONTINUAS El zoo binomial: las probabilidades en la distribución binomial. Tutorial 5, sección 2 X = número de éxitos al repetir n veces un experimento con probabilidaf de éxito p
Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico
Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más
Unidad 1: Espacio de Probabilidad
Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar
Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s).
VARIABLE ALEATORIA Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). X : S S s s X () s X(s) Rx Rx es el recorrido
Cálculo de probabilidad. Tema 3: Variables aleatorias continuas
Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice
Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri
Estadística 010 Clase Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri Clase 1. La distribución de Bernoulli. La distribución binomial 3. La distribución de
Programa de Asignatura ESTADISTICA I
Programa de Asignatura ESTADISTICA I A. Antecedentes Generales 1. Unidad Académica FACULTAD DE ECONOMÍA Y NEGOCIOS 2. Carrera INGENIERÍA COMERCIAL 3. Código EME221 4. Número de clases por 2 Módulos semana
Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua.
Unidad IV Distribuciones de Probabilidad Continuas 4.1. Definición de variable aleatoria continúa. Una variable aleatoria X es continua si su función de distribución es una función continua. En la práctica,
Estadística Grupo V. Tema 10: Modelos de Probabilidad
Estadística Grupo V Tema 10: Modelos de Probabilidad Algunos modelos de distribuciones de v.a. Hay variables aleatorias que aparecen con frecuencia en las Ciencias Sociales y Económicas. Experimentos dicotómicos
Dispone de 1 hora para resolver las siguientes cuestiones planteadas.
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE ECONOMÍA Y NEGOCIOS EXAMEN TEÓRICO DE ESTADÍSTICA COMPUTARIZADA NOMBRE: PARALELO: Dispone de 1 hora para resolver las siguientes cuestiones planteadas.
Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10
Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,
PROBABILIDAD Y ESTADÍSTICA TEMARIO
PROBABILIDAD Y ESTADÍSTICA TEMARIO 0. INTRODUCCIÓN AL CURSO 0.1 El curso en contexto Qué es probabilidad? Qué estudia la probabilidad? Qué es estadística? Qué estudia la estadística? Qué es ingeniería?
FORMULARIO DE DISTRIBUCIONES DE PROBABILIDAD
FORMULARIO DE DISTRIBUCIONES DE PROBABILIDAD Jorge M. Galbiati pág. DISTRIBUCION BINOMIAL 2 DISTRIBUCION POISSON 4 DISTRIBUCION HIPERGEOMETRICA 5 DISTRIBUCION GEOMETRICA 7 DISTRIBUCION NORMAL 8 DISTRIBUCION
Variables aleatorias
Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando
Esperanza Condicional
Esperanza Condicional Podemos obtener la esperanza de una distribución condicional de la misma manera que para el caso unidimensional: 129 Caso 2 v.a. discretas X e Y: Caso 2 v.a. continuas X e Y: Percentiles
matemáticas como herramientas para solución de problemas en ingeniería. PS Probabilidad y Estadística Clave de la materia: Cuatrimestre: 4
PS0401 - Probabilidad y Estadística DES: Ingeniería Programa(s) Educativo(s): Ingeniería de Software Tipo de materia: Obligatoria Clave de la materia: PS0401 Cuatrimestre: 4 UNIVERSIDAD AUTÓNOMA DE Área
1. La Distribución Normal
1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando
PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2
PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 Preg. 1. Para comparar la variabilidad relativa de la tensión arterial diastólica y el nivel de colesterol en sangre de una serie de individuos, utilizamos
Tema 3: VARIABLES ALEATORIAS
Tema 3: VARIABLES ALEATORIAS Introducción En el tema anterior hemos modelizado el comportamiento de los experimentos aleatorios. Los resultados de un experimento aleatorio pueden ser de cualquier naturaleza,
Tema 6: Modelos probabilísticos
Tema 6: Modelos probabilísticos 1. Variables aleatorias: a) Concepto. b) Variables discretas y continuas. c) Función de probabilidad (densidad) y función de distribución. d) Media y varianza de una variable
Distribuciones de probabilidad
Distribuciones de probabilidad 1. Variable aleatoria Una variable aleatoria X es una función que asocia a cada elemento del espacio muestral E un número real: X: E Ejemplo: Consideremos el experimento
Asimetría Coeficiente de Asimetría de Fisher
Asimetría Si los valores de la serie de datos presenta la misma forma a izquierda y derecha de un valor central (media aritmética) se dice que es simétrica de lo contrario será asimétrica. Para medir el
ESTADÍSTICA I. A continuación se presentan los Modelos Probabilísticos Continuos más importantes.
1 ESTADÍSTICA I Capítulo 6: MODELOS PROBABILÍSTICOS CONTINUOS. Contenido: Distribución Uniforme Continua. Distribución Triangular. Distribución Normal. Distribuciones Gamma, Exponencial, Erlang y Chi Cuadrado.
Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev
PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación
Definición de probabilidad
Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total
VARIABLES ALEATORIAS CONTINUAS 1º Bto. CC.SS.
VARIABLE ALEATORIA CONTINUA VARIABLES ALEATORIAS CONTINUAS º Bto. CC.SS. Una variable aleatoria es continua si puede tomar, al menos teóricamente, todos los valores comprendidos en un cierto intervalo
Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.
Página 1 de 7 DISTRIBUCIÓN NORMAL o campana de Gauss-Laplace Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada
ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua
ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:
UNIVERSIDAD MARÍA AUXILIADORA UMA
CARRERA PROFESIONAL DE ENFERMERIA SÍLABO DE BIOESTADÍSTICA I. DATOS GENERALES: 1.1. Carreras profesionales : Enfermería 1.2. Semestre académico : 2015 - I 1.3. Ciclo : III 1.4. Pre-requisito : Matemática
Sesión 2: Teoría de Probabilidad
Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 2: Teoría de Probabilidad Considero que la probabilidad representa el estado de la mente con respecto a una afirmación, evento u otra cosa para
MODELOS DE PROBABILIDAD
MODELOS DE PROBABILIDAD Jorge Galbiati Riesco EXPERIMENTOS ALEATORIOS Considere las siguientes situaciones: 1. Se cuenta el número de naves que arriban a un puerto, por día. 2. Se le pregunta a un consumidor
Programa Regular. Probabilidad y Estadística.
Programa Regular Probabilidad y Estadística. Modalidad de la asignatura: teórico-práctica. Carga horaria: 5hs. Objetivos: Con relación a los conocimientos a impartir en el desarrollo de la materia, es
ANÁLISIS DE FRECUENCIAS
ANÁLISIS DE FRECUENCIAS EXPRESIONES PARA EL CÁLCULO DE LOS EVENTOS PARA EL PERÍODO DE RETORNO T Y DE LOS RESPECTIVOS ERRORES ESTÁNDAR DE ESTIMACIÓN REQUERIDOS PARA LA DETERMINACIÓN DE LOS INTERVALOS DE
CAPÍTULO 6: VARIABLES ALEATORIAS
Página 1 de 11 CAPÍTULO 6: VARIABLES ALEATORIAS En el capítulo 4, de estadística descriptiva, se estudiaron las distribuciones de frecuencias de conjuntos de datos y en el capítulo 5 se trataron los fundamentos
Variables Aleatorias y Distribución de Probabilidades
Variables Aleatorias y Distribución de Probabilidades Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 27 de mayo de 2011 Tabla de Contenidos Variables
Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Estadística. Programa de Estadística
Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Estadística Profesor: MSc. Julio Rito Vargas Avilés. Programa de Estadística Estudiantes: FAREM-Carazo Quien tiene un libro y no lo lee,
Variables aleatorias. Tema Introducción Variable aleatoria. Contenido
Tema 4 Variables aleatorias En este tema se introduce el concepto de variable aleatoria y se estudian los distintos tipos de variables aleatorias a un nivel muy general, lo que nos permitirá manejar los
Probabilidad y Estadística
Probabilidad y Estadística Grado en Ingeniería Informática Tema 5 Esperanza y momentos Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST.
Tema 13: Distribuciones de probabilidad. Estadística
Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número
OPCIÓN A. A1. Se ha realizado un test de habilidad espacial a un grupo de niños y se han obtenido los resultados reflejados en la siguiente tabla:
Bloque III Solucionario Actividades de síntesis: Estadística y probabilidad OPCIÓN A A1. Se ha realizado un test de habilidad espacial a un grupo de niños y se han obtenido los resultados reflejados en
Tema 6 - Introducción. Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo.
Tema 6 - Introducción 1 Tema 5. Probabilidad Conceptos básicos. Interpretación y propiedades básicas Probabilidad condicional y reglas de cálculo. Generalización Tema 6. Variables aleatorias unidimensionales
Variables Aleatorias Discretas
Profesor Alberto Alvaradejo Ojeda 9 de septiembre de 2015 Índice 1. Variable aleatoria 3 1.1. Discretas...................................... 3 1.2. Continuas..................................... 3 1.3.
Asignatura: Carrera/s: Ciclo Lectivo: Docente: Carga horaria semanal: Tipo de Asignatura: Fundamentación y Objetivos: Contenidos mínimos:
Asignatura: Estadística Aplicada a los Datos Socio-laborales Carrera/s: Licenciatura en Relaciones del Trabajo Ciclo Lectivo: 2015 Docente: Licenciado Bruno Daniel Pose Carga horaria semanal: 4 Horas Semanales
CURSO: ANALISIS ESTADISTICO DE RIESGOS
MANAGEMENT CONSULTORES CURSO: ANALISIS ESTADISTICO DE RIESGOS Cnel. R.L. Falcón 1435 C1406GNC 35 Buenos Aires, Argentina Tel.: 054-11-15-5468-3369 Fax: 054-11-4433-4202 Mail: acaminos@mgmconsultores.com.ar
VARIABLES ALEATORIAS CONTINUAS
VARIABLES ALEATORIAS CONTINUAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Definición de una V.A.C. Definición de una V.A.C.
UNIVERSIDAD MILITAR NUEVA GRANADA FACULTAD DE CIENCIAS BASICAS Y APLICADAS DEPARTAMENTO DE MATEMÁTICAS
CONTENIDO PROGRAMÁTICO Fecha Emisión: 2011/09/15 AC-DO-F-8 Revisión No. 1 Página 1 de 6 ESTADÍSTICA I CÓDIGO 14241 PROGRAMA ADMINISTRACIÓN DE EMPRESAS, CONTADURIA PUBLICA Y TECNOLOLGIA EN CONTADURÍA ÁREA
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
Distribuciones Continuas
Capítulo 5 Distribuciones Continuas Las distribuciones continuas mas comunes son: 1. Distribución Uniforme 2. Distribución Normal 3. Distribución Eponencial 4. Distribución Gamma 5. Distribución Beta 6.
A isgn g atu n r atu a r :
Asignatura: Estadística Aplicada a los Datos Socio-laborales Carrera: Licenciatura en Relaciones del Trabajo. Ciclo Lectivo: 2017 Docente/s: Bruno Daniel Pose, Facundo Barrera Insúa; Coordinador: Esteban
03 Variables aleatorias y distribuciones de probabilidad
03 Variables aleatorias y distribuciones de probabilidad Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Contenido Variables aleatorias discretas: función
Prueba Integral Lapso /6
Prueba Integral Lapso 2 009-2 76 - /6 Universidad Nacional Abierta Probabilidad y Estadística I (76) Vicerrectorado Académico Cód. Carrera: 06-20 - 508 Fecha: 2-2 - 2 009 MODELO DE RESPUESTAS Objetivos,
INDICE Prefacio Como usar este libro Capitulo 1. Introducción Capitulo 2. Análisis exploratorio de los datos
INDICE Prefacio Como usar este libro Capitulo 1. Introducción 1 El comienzo de todo: determinación lo que se debe saber 2 Evaluación numérica de las unidades de observación con la ayuda de las escalas
DOCUMENTO 2: DISTRIBUCIÓN DE PROBABILIDAD DISCRETA: LA DISTRIBUCIÓN BINOMIAL
DOCUMENTO 2: DISTRIBUCIÓN DE PROBABILIDAD DISCRETA: LA DISTRIBUCIÓN BINOMIAL Como recordarás una variable aleatoria discreta es aquella que sólo puede tomar valores enteros. Ejemplos: puntuación obtenida
Distribuciones de probabilidad
Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir
03 Variables aleatorias y distribuciones de probabilidad. Contenido. Variable aleatoria
03 Variables aleatorias y distribuciones de probabilidad Contenido Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Variable aleatoria Sea Ω un espacio muestral.
HOJA DE TRABAJO UNIDAD 3
HOJA DE TRABAJO UNIDAD 3 1. Defina que es probabilidad Es el estudio de experimentos aleatorios o libres de determinación, el resultado es al azar. Se refiere al estudio de la aleatoriedad y a la incertidumbre.
03 Variables aleatorias y distribuciones de probabilidad
03 Variables aleatorias y distribuciones de probabilidad Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Contenido Variables aleatorias discretas: función
Algunas Distribuciones Estadísticas Teóricas. c) Relación entre la Distribuciones de Poisson y Exponencial.
Algunas Distribuciones Estadísticas Teóricas Distribución Continuas: a) Distribución Uniforme b) Distribución de Exponencial c) Relación entre la Distribuciones de Poisson y Exponencial. d) Distribución
Unidad Académica de Ingeniería Eléctrica. Programa del curso: Probabilidad y estadística Clave:
Universidad Autónoma de Zacatecas Unidad Académica de Ingeniería Eléctrica Programa del curso: Probabilidad y estadística Clave: Carácter Semestre recomendado Obligatoria 3º Carreras: IE, ICE, IC Sesiones
Variables Aleatorias Discretas
Unicatólica 15 de agosto de 2016 Variables aleatorias Se dice que hemos definido una variable aleatoria para un experimento aleatorio cuando hemos asociado un valor numérico a cada resultado del experimento.
Tema 2 Modelos de probabilidad
Tema 2 Modelos de probabilidad José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Estructura de este tema Conceptos básicos de probabilidad. Modelos discretos: la distribución
PROBABILIDAD. Unidad I Ordenamiento de la Información
1 PROBABILIDAD Unidad I Ordenamiento de la Información 2 Captura de datos muestrales Conceptos básicos de la estadística 3 Población (o universo): Totalidad de elementos o cosas bajo consideración Muestra:
Modelado de la aleatoriedad: Distribuciones
Modelado de la aleatoriedad: Distribuciones Begoña Vitoriano Villanueva Bvitoriano@mat.ucm.es Facultad de CC. Matemáticas Universidad Complutense de Madrid I. Distribuciones Discretas Bernoulli (p) Aplicaciones:
Ms. C. Marco Vinicio Rodríguez
Ms. C. Marco Vinicio Rodríguez mvrodriguezl@yahoo.com http://mvrurural.wordpress.com/ Uno de los objetivos de la estadística es saber acerca del comportamiento de parámetros poblacionales tales como:
LA ESTADÍSTICA APLICADA AL ANÁLISIS ECONÓMICO. Introducción 1
LA ESTADÍSTICA APLICADA AL ANÁLISIS ECONÓMICO ÍNDICE CONCEPTO Página Introducción 1 I Generalidades... 3 I.1 Definiciones de Estadística... 4 I.2 Diferentes clases de Estadística... 8 II La Estadística