PROBABILIDAD. Álgebra de sucesos. Inclusión o igualdad de sucesos. Operaciones con sucesos.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROBABILIDAD. Álgebra de sucesos. Inclusión o igualdad de sucesos. Operaciones con sucesos."

Transcripción

1 ROILIDD Álgebra de sucesos. Un fenómeno o exerenca se dce que es aleatoro cuando al reetrlo en condcones análogas es mosble de redecr el resultado. El conjunto de todos los resultados osbles de un exermento aleatoro se llama esaco muestral (E). Se denomna suceso a todo subconjunto de E(esaco muestral). Como los sucesos son subconjuntos, ueden determnarse or extensón enumerando sus elementos; o ben, dando una roedad que se verfque sólo or los elementos de dcho subconjunto. Se dce que se verfca, o se realza un suceso cuando al realzar el exermento aleatoro se obtene como resultado uno de los untos muestrales que forman el suceso. El conjunto formado or todos los sucesos de esaco E se llama esaco de sucesos. Es decr, el esaco de sucesos es el conjunto formado or todos los subconjuntos de E Los sucesos defndos or los conjuntos Ø y E se llaman suceso mosble y suceso seguro, resectvamente. Los sucesos formados or un solo unto o elemento del esaco muestral se llaman sucesos elementales. Los sucesos no elementales se suelen llamar sucesos comuestos o smlemente sucesos. Inclusón o gualdad de sucesos. Sean y dos sucesos del msmo esaco muestral. Se dce que un suceso está contendo en el suceso, y se escrbe, cuando semre que se resenta el suceso se verfca. Se dce que dos sucesos y del msmo esaco muestral son guales cuando semre que se verfca se verfca, y recírocamente. y son guales sí constan de los msmo untos muestrales. De lo anteror se deduce: Oeracones con sucesos. Unón de sucesos Dados dos suceso y, se llama unón de ellos, y se escrbe U, al suceso que se realza cuando ocurre al menos uno de los sucesos ó. De la defncón se deduce que la unón es una oeracón nterna en (E); es decr:, (E) U (E) Cardnal de la unón de sucesos, es el número de sucesos elementales que forman la unón de dos sucesos y. l sumar el cardnal del suceso con el cardnal del suceso se cuentan dos veces los untos muestrales de la nterseccón ; or tanto, Card(U)Card()+Card()-Card() S los sucesos y son ncomatbles: Card(U)Card(a)+Card() nálogamente, ara tres suceso se verfca: Card(UUC) Card()+Card()+Card(C) Card() Card(C) Card(C)+Card(C)

2 Interseccón de sucesos Se llama suceso nterseccón de los sucesos y, y se escrbe, al suceso que se realza s y solo s y se realzan. Como la unón, la nterseccón es tambén una oeracón nterna de (E); es decr:, (E) (E) Dos sucesos cuya nterseccón es el suceso mosble se llaman sucesos ncomatbles. Sucesos contraros Dado el suceso (E), se llama suceso contraro de, y se reresenta or ó or c, al suceso que se realza cuando no se realza, y recírocamente. certo. De la defncón se deduce que: U E Se observa que los sucesos contraros son semre ncomatbles, ero el recroco no semre es Otras oeracones Dferenca de sucesos. Dados los sucesos y, se llama sucesos dferenca de y, y se escrbe, al suceso ; Se observa que el suceso no están en. está formado or los elementos o untos muestrales de que Dferenca smétrca de sucesos. La unón de los sucesos y se llama dferenca smétrca de los sucesos y, y se escrbe, es decr: ( )U( )

3 Álgebra de oole de sucesos. En el esaco (E) de sucesos se cumle: a), (E) U (E) b), (E) (E) c), (E) (E) demás, las oeracones de unón, nterseccón y comlementacón tenen las roedades: Sean,, C, D, (E) OERCIONES DEFINIDS EN (E) UNION INTERSECCION socatva (U)UC U(UC) ()C (C) Conmutatva U U Idemotente U Smlfcatva Dstrbutva Elementos neutros Comlementacón Unón resecto a nterseccón U() Interseccón resecto a unón (U) Unón resecto a nterseccón U(C)(U)(UC) Interseccón resecto a unón (UC)()U(C) es el elemento neutro de la unón U E es el elemento neutro de la nterseccón E E E demás de las roedades anterores, son muy utlzadas las sguentes, que son conocdas con el nombre de leyes de Morgan: a) b) ara tres conjuntos es fácl comrobar que: a ) C C b ) C C Álgebra de sucesos El conjunto (E) se susttuye, a veces, or un subconjunto S (E). Se llama álgebra de sucesos sobre un esaco muestral E a toda famla S de sucesos tales que: xoma 1.º) E S xoma 2.º), S U S. Es decr la unón es una oeracón nterna de S xoma 3.º) S S Consecuenca de los axomas a) La nterseccón de sucesos es nterna en S b) S c) La dferenca de sucesos es nterna en S Sstema comleto de sucesos

4 Sea E un esaco muestral y { 1, 2,..., n } una artcón de E, es decr: ), ) 1 U 2 U...U n E C) j Se dce entonces que es un sstema comleto de sucesos. Combnatora VRICIONES Es el número de subconjuntos de n elementos que odemos obtener de un conjunto de m elementos, tenendo en cuenta que ara que dos subconjuntos sean dstntos debe de varar o el orden de los elementos o algún elemento o ambos a la vez. or eso se dce que en las varacones nfluye el orden y los elementos. Exsten dos tos: a) Varacones ordnaras o sn reetcón. En un msmo subconjunto no hay elementos reetdos. b) Varacones con reetcón. En un msmo subconjunto uede haber elementos reetdos. Cálculo del nº de varacones. Varacones de m elemento tomadas de n en n V m,n. Varacones con reetcón de m elementos tomados de n en n VR m,n. V m,n m (m-1) (m-2)...(m-n+1) VR m,n m n ERMUTCIONES Se entende or ermutacones de un conjunto de m elementos al nº de ordenacones que se ueden hacer con todos los elementos del conjunto. Se sobreentende que en las ermutacones sólo nfluye el orden. Exsten tres tos de ermutacones: a) ermutacones ordnaras de m elementos m. b) ermutacones con elementos reetdos a,b,.. m, en el conjunto exsten a elementos reetdos de una clase, b elementos reetdos de otra clase, etc... c) ermutacones crculares de m elementos C m. En este caso las ordenacones se hacen alrededor de un elemento cerrado. Cálculo del nº de ermutacones. m m! (m factoral) α, β,... m! m α! β!.. C m m 1 (m-1)! COMINCIONES Es el número de subconjuntos de n elementos que odemos hacer en un conjunto de m elementos con la condcón de que ara que dos subconjuntos sean dstntos deben de tener al menos un elemento dstnto. En este caso se dce que nfluyen los elementos. unque exsten combnacones con o sn reetcón en este curso sólo veremos las combnacones ordnaras. Cálculo del nº de combnacones. n m m! Combnacones ordnaras: Cm Cm, n n n!(m n)! Combnacones con reetcón: CR m,n C m+n 1,n

5 ESTUDIO XIOMTICO DE L ROILIDD Sea E un esaco muestral fnto y S un álgebra de sucesos defnda en E. Se llama robabldad a toda alcacón de S en el conjunto R de los números reales :S R Tales que: I. ara todo suceso : 0 () 1 II. (E) 1 + III. ara todo ar de sucesos ncomatbles y es: robabldad del suceso contraro robabldad del suceso mosble robabldad del suceso unón Sucesos ncomatbles: (Ø) 0 ( ) + Sucesos comatbles: ( C) + ( C) + ( ) + ( ) ( C) + + ( C) ( ) ( C) ( C) + ( C) robabldad de la dferenca de sucesos Defncón axomátca robabldad condconada ( ) Casos favorables () Casos osbles Se llama robabldad condconada del suceso a la hótess y se desgna or (/) a la comaracón del número de casos en los que se cumlen los dos frente a los casos en los que solo se cumle. ( ) ( ) nálogamente, la robabldad condcona de resecto del suceso es: ( ) ( ) De las dos relacones anterores se obtene ( ) ( ) ( ) ( )

6 robabldad comuesta C C Deendenca e ndeendenca de sucesos Hay ocasones en la que la realzacón de un suceso no afecta a la robabldad de otro osteror, en ese caso son ndeendentes. Sean y dos sucesos. Se dce que es ndeendente de cuando (/)() (suuesto () 0). En el caso de que (/) (), se dce que el suceso deende del suceso. TEOREM La condcón necesara y sufcente ara que el suceso sea ndeendente de es que TEOREM DE YES

Para un dado que no está cargado asignamos equiprobabilidad a los valores posibles de la variable aleatoria X:

Para un dado que no está cargado asignamos equiprobabilidad a los valores posibles de la variable aleatoria X: 7. Varables Aleatoras 57 Defnr una varable aleatora en un eermento aleatoro consste en asocar un valor numérco a cada suceso elemental del eermento. Interesa fundamentalmente asgnar robabldades a dchos

Más detalles

Matemáticas Discretas

Matemáticas Discretas Coordnacón de Cencas Computaconales - INAOE Matemátcas Dscretas Cursos Propedéutcos 2010 Cencas Computaconales INAOE Dr. Lus Vllaseñor Pneda vllasen@naoep.mx http://ccc.naoep.mx/~vllasen Algo de nformacón

Más detalles

Dualidad entre procesos termodinámicos y electromecánicos

Dualidad entre procesos termodinámicos y electromecánicos ENERGÍA Y COENERGÍA EN IEMA ELECROMECÁNICO REALE, DEDE PROCEDIMIENO ERMODINÁMICO CLÁICO Alfredo Álvarez García Profesor de Inenería Eléctrca de la Escuela de Inenerías Industrales de adajoz. Resumen La

Más detalles

FACULTAD DE INGENIERÍA U N A M

FACULTAD DE INGENIERÍA U N A M FCULTD DE INGENIERÍ U N M Irene atrca Valdez y lfaro renev@servdor.unam.mx T E M S DEL CURSO 1. nálss Estadístco de datos muestrales. 2. Fundamentos de la Teoría de la probabldad. 3. Varables aleatoras.

Más detalles

TEMA 1: INCERTIDUMBRE Y PROBABILIDAD

TEMA 1: INCERTIDUMBRE Y PROBABILIDAD MÉTODOS ESTDÍSTICOS PR L EMPRES TEM 1: INCERTIDUMBRE Y PROBBILIDD 1.1.- La probabldad. Conceptos y cuantfcacón 1.2.- Defncón axomátca de la probabldad 1.3.- Probabldad condconada e ndependenca 1.4.- Probabldad

Más detalles

La Derivada de un Número No es 0

La Derivada de un Número No es 0 Memoras II Encuentro Internaconal De Meta-Matemátcas: La Dervada de un Número No es 0 Geraldne Marcela Infante Jorge Danel Muñoz Alex Eduardo Poveda Gruo YAGLOM Escuela de Matemátcas Unversdad Sergo Arboleda

Más detalles

PUNTOS, RECTAS Y PLANOS. 2º Bachillerato SISTEMA DE REFERENCIA EN EL ESPACIO APLICACIONES DE LOS VECTORES APLICACIONES DE LOS VECTORES

PUNTOS, RECTAS Y PLANOS. 2º Bachillerato SISTEMA DE REFERENCIA EN EL ESPACIO APLICACIONES DE LOS VECTORES APLICACIONES DE LOS VECTORES UNTS, RECTAS Y LANS EN EL ESACI º Bachllerato SISTEMA DE REFERENCIA EN EL ESACI Sstema de referenca en el esaco. Un sstema de referenca ara el lano consste en el conunto R {, {,, }} formado or: - Un unto

Más detalles

CAPÍTULO V ESTRUCTURAS ALGEBRAICAS

CAPÍTULO V ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS 7 CAPÍTULO V ESTRUCTURAS ALGEBRAICAS Estructura Algebraca es todo conjunto no vacío en el cual se han defndo una o más leyes de composcón nterna, luego de cumplr certas propedades

Más detalles

CAPITULO 7. METODOLOGÍA DEL PLAN DE PENSIONES ALTERNATIVO. Como se explica en el capítulo 4, una anualidad es una serie de pagos que se realizan

CAPITULO 7. METODOLOGÍA DEL PLAN DE PENSIONES ALTERNATIVO. Como se explica en el capítulo 4, una anualidad es una serie de pagos que se realizan CAPITULO 7. METODOLOGÍA DEL PLAN DE PENSIONES ALTERNATIVO 7. Anualdad de Vda Como se elca en el caítulo 4, una anualdad es una sere de agos que se realzan durante un temo determnado, nombrándose a esta

Más detalles

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo EL ÁLGEBRA GEOMÉTRICA DEL ESPACIO Y TIEMPO. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA Defncón del álgebra geométrca del espaco-tempo Defno el álgebra geométrca del espaco y tempo como el álgebra de las matrces

Más detalles

TEORIA DE LOS NUMEROS

TEORIA DE LOS NUMEROS TEORIA DE LOS NUMEROS Introduccón La teoría de los números es, dentro de las matemátcas, la encargada de estudar las roedades de los enteros, es decr, la ardad, adtvdad, rmaldad, multlcdad dvsbldad En

Más detalles

Análisis del caso promedio. Técnicas Avanzadas de Programación - Javier Campos 70

Análisis del caso promedio. Técnicas Avanzadas de Programación - Javier Campos 70 Análss del caso promedo Técncas Avanzadas de Programacón - Javer Campos 70 Análss del caso promedo El plan: Probabldad Análss probablsta Árboles bnaros de búsqueda construdos aleatoramente Tres, árboles

Más detalles

Tema 1: TEORÍA DE LA PROBABILIDAD

Tema 1: TEORÍA DE LA PROBABILIDAD Tema : TEORÍ DE L ROLDD Carlos lberola López Lab. rocesado de magen, ETS Telecomuncacón Despacho D04 caralb@tel.uva.es, jcasasec@tel.uva.es, http://www.lp.tel.uva.es/sar . ara qué estudar esto? Se pretende

Más detalles

16.36: Ingeniería de sistemas de comunicación. Clase 5: Codificación de la fuente

16.36: Ingeniería de sistemas de comunicación. Clase 5: Codificación de la fuente 6.36: Ingenería de sstemas de comuncacón Clase 5: Codfcacón de la fuente Slde Codfcacón de la fuente Alfabeto de fuente {a..a N } Codfcar Alfabeto de canal {c..c N } Símbolos de la fuente Letras del alfabeto,

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

Geometría convexa y politopos, día 1

Geometría convexa y politopos, día 1 Geometría convexa y poltopos, día 1 Alexey Beshenov (cadadr@gmal.com) 8 de agosto de 2016 Los objetos geométrcos que nos nteresan en esta hstora son subconjuntos de R n. Voy a denotar los puntos de R n

Más detalles

Capítulo 4 Probabilidades Estadística Computacional II Semestre 2006

Capítulo 4 Probabilidades Estadística Computacional II Semestre 2006 Unversdad Técnca Federco Santa María Departamento de Informátca ILI-80 Capítulo 4 Probabldades Estadístca Computaconal II Semestre 006 Profesores: Héctor llende (hallende@nf.utfsm.cl) Carlos Valle (cvalle@nf.utfsm.cl)

Más detalles

Distribuciones estadísticas unidimensionales

Distribuciones estadísticas unidimensionales Dstrbucones estadístcas undmensonales ESTADÍSTICA Estuda los métodos ara recoger, organzar y analzar nformacón, con la fnaldad de descrbr un fenómeno que se está estudando y obtener conclusones. TÉRMIOS

Más detalles

PID. Descripción y reglas heurísticas de Sintonización

PID. Descripción y reglas heurísticas de Sintonización Práctca 5 PID. Descrcón y reglas heurístcas de Sntonzacón 1. Introduccón El objetvo de esta ráctca es que el alumno se famlarce y rofundce en el conocmento de la estructura de control PID, rofusamente

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

Dicha tabla adopta la forma del diagrama de árbol del dibujo. En éste, a cada uno de los sucesos A y A c se les ha asociado los sucesos B y B c.

Dicha tabla adopta la forma del diagrama de árbol del dibujo. En éste, a cada uno de los sucesos A y A c se les ha asociado los sucesos B y B c. Estadístca robablístca 6. Tablas de contngenca y dagramas de árbol. En los problemas de probabldad y en especal en los de probabldad condconada, resulta nteresante y práctco organzar la nformacón en una

Más detalles

el blog de mate de aida CS I. Distribuciones de probabilidad. pág. 1

el blog de mate de aida CS I. Distribuciones de probabilidad. pág. 1 el blog de mate de ada CS I. Dstrbucones de robabldad. ág. EXPERIENTOS Y SUCESOS ALEATORIOS Eermento determnsta es aquel en que se uede redecr el resultado semre que se realce en las msmas condcones. (Ejemlo:

Más detalles

Como ya se ha establecido antes, la amplitud de la FMM rotante para la armónica de orden ν es: m, de aquí se obtiene para la amplitud de la onda de

Como ya se ha establecido antes, la amplitud de la FMM rotante para la armónica de orden ν es: m, de aquí se obtiene para la amplitud de la onda de Deartamento de Conversón y Transorte de Energía REACTANCIAS DE FUGA DE LA MAQUINA Hoja Nº II-45 ASINCRONICA Como ya se ha establecdo antes, la amltud de la FMM rotante ara la armónca de orden es: m FMM

Más detalles

3.4 Modelo de valoración de activos de capital: CAPM

3.4 Modelo de valoración de activos de capital: CAPM 3.4 odelo de valoracón de actvos de catal: CAP Del conceto de reo or resgo de ercado, se generan odelos de equlbro que relaconan resgo y retorno eserado. Preras nvestgacones: Share (963, 964, Treynor (96,

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

1.1 Ejercicios Resueltos Tema 1

1.1 Ejercicios Resueltos Tema 1 .. EJERCICIOS RESUELTOS TEMA. Ejerccos Resueltos Tema Ejemplo: Probarque ++3+ + n 3 + 3 +3 3 + + n 3 n (n +) Ã n (n +)! - Para n es certa, tambén lo comprobamos para n, 3,... ( + ) + 3 (+) supuesto certa

Más detalles

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1.

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1. Objetvos y orentacones metodológcas SISTEMA DIÉDRICO I Interseccón de planos y de recta con plano TEMA 8 Como prmer problema del espaco que presenta la geometría descrptva, el alumno obtendrá la nterseccón

Más detalles

A LA SOMBRA DE LOS GRUPOS FINITOS

A LA SOMBRA DE LOS GRUPOS FINITOS A LA SOMBRA DE LOS GRUPOS FINITOS L Teorí de los Gruos Fntos recbe l nfluenc drect tnto del Algebr Lnel, como de l Coomologí y l Teorí de Módulos, roducendo nnumerbles lccones tnto sobre l msm Teorí de

Más detalles

Eficiencia de procesos termodinámicos

Eficiencia de procesos termodinámicos Ecenca de rocesos termodnámcos El conceto anteror es váldo ara cualquer roceso o sstema. Fuente calente, q q c w uonga una máquna que toma calor de una uente calente, y arte de la msma la utlza ara roducr

Más detalles

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior. . EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas

Más detalles

Vectores en el espacio

Vectores en el espacio ectores en el espaco Los puntos y los vectores en el espaco se pueden representar como ternas de números reales (a,b,c) c b a Por el Teorema de Ptagoras, la norma del vector = (a,b,c) es = a 2 +b 2 +c

Más detalles

3.- Programación por metas.

3.- Programación por metas. Programacón Matemátca para Economstas 1 3.- Programacón por metas. Una vez menconados algunos de los nconvenentes de las técncas generadoras, la ncorporacón de nformacón se va a traducr en una accón del

Más detalles

CALCULO DE INTERSECCIONES TOPOGRAFICAS UTILIZANDO EL PROMÉDIO PONDERADO

CALCULO DE INTERSECCIONES TOPOGRAFICAS UTILIZANDO EL PROMÉDIO PONDERADO CALCULO DE INERSECCIONES OOGRAFICAS UILIZANDO EL ROMÉDIO ONDERADO Irneu da Slva Dego de Olvera Martns aulo Cesar Lma Segantne Deartamento de Engenhara de ransortes EESC US - Brasl rneu@sc.us.br degoolmartns@us.br

Más detalles

Tema 1: Jerarquía Digital Síncrona, SDH Disponibilidad de Sistemas

Tema 1: Jerarquía Digital Síncrona, SDH Disponibilidad de Sistemas Tema : Jerarquía Dgtal Síncrona, SDH Dsponbldad de Sstemas Tecnologías de red de transporte de operadora MÁSTER EN INGENIERÍ TELEMÁTIC Profesor: Espín Defncones Fabldad (Relablty): Probabldad de que el

Más detalles

Optimización no lineal

Optimización no lineal Optmzacón no lneal José María Ferrer Caja Unversdad Pontfca Comllas Planteamento general mn f( x) x g ( x) 0 = 1,..., m f, g : n R R La teoría se desarrolla para problemas de mnmzacón, los problemas de

Más detalles

IV. JUEGOS ESTÁTICOS DE INFORMACION INCOMPLETA

IV. JUEGOS ESTÁTICOS DE INFORMACION INCOMPLETA Notas de clase de Teoría de Juegos - Marcela Eslava 35 IV. JUEGOS ESTÁTICOS DE INFORMACION INCOMPLETA Son juegos en los cuales al menos uno de los jugadores tene nformacón ncomleta sobre la funcón objetvo

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

5. DIAGONALIZACIÓN DE MATRICES

5. DIAGONALIZACIÓN DE MATRICES Dagonalzacón Herraentas nforátcas para el ngenero en el estudo del algebra lneal 5. DIAGONALIZACIÓN DE MATRICES 5.1. INTRODUCCIÓN 5.2. VALORES Y VECTORES PROPIOS 5.3. MATRICES DIAGONALIZABLES 5.4. DIAGONALIZACIÓN

Más detalles

CAPITULO 1 CONCEPTOS ELEMENTALES. B, A es un subconjunto propio de B si y solo si S( x) X para toda x C}

CAPITULO 1 CONCEPTOS ELEMENTALES. B, A es un subconjunto propio de B si y solo si S( x) X para toda x C} CONTENIDO conceptos elementales el par ordenado el producto cartesano 3 Relacones 4 Funcones 5 Famlas 6 Funcones defndas en conjuntos potenca 7 Aplcacones de funcones 8 Los números naturales 9 Orden 0

Más detalles

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo

Más detalles

CAPÍTULO 1: VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES

CAPÍTULO 1: VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES CAÍTULO : VARIABLES ALEATORIAS SUS DISTRIBUCIONES En este capítulo el alumno debe abordar el conocmento de un mportante concepto el de VARIABLE ALEATORIA tpos de varables aleatoras cómo se dstrbue la funcón

Más detalles

TEMA 11. Conceptos básicos de la Teoría de Conjuntos. Estructuras algebraicas.

TEMA 11. Conceptos básicos de la Teoría de Conjuntos. Estructuras algebraicas. Tema 11- onceptos báscos Teoría de onjuntos. Estructuras lgebracas TEM 11. onceptos báscos de la Teoría de onjuntos. Estructuras algebracas. 1. Introduccón. La teoría de conjuntos es una rama de las matemátcas

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Números Complejos. Matemática

Números Complejos. Matemática Números Complejos Matemátca 4º Año Cód. 40-6 M r t a R o s t o V e r ó n c a F l o t t J u a n C a r l o s B u e Dpto. de Matemátca Los Números Complejos. Una amplacón más en el campo numérco La necesdad

Más detalles

Números Complejos. Matemática

Números Complejos. Matemática Números Complejos Matemátca 4º Año Cód. 40-5 M r t a R o s t o V e r ó n c a F l o t t J u a n C a r l o s B u e Dpto. de Matemátca Los Números Complejos. Una amplacón más en el campo numérco La necesdad

Más detalles

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador.

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador. . Hallar "a" para que el complejo : a a) sea real puro b) sea magnaro puro Lo prmero de todo es hacer la dvsón en forma bnómca, multplcando numerador y denomnador por el conjugado del denomnador, de esta

Más detalles

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador.

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador. . Hallar "a" para que el complejo : a a) sea real puro b) sea magnaro puro Lo prmero de todo es hacer la dvsón en forma bnómca, multplcando numerador y denomnador por el conjugado del denomnador, de esta

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

Análisis avanzado Bondad de ajuste Simulaciones

Análisis avanzado Bondad de ajuste Simulaciones Ejemlos Ejerccos Msceláneas Evaluacón Análss avanzado Bondad de ajuste Smulacones Bondad de ajuste. Intervalos de confanza. Muestras equeñas. Smulacones: método de Montecarlo. 3.1 Bondad del ajuste Volvendo

Más detalles

CONTROL DE PROCESOS QUÍMICOS

CONTROL DE PROCESOS QUÍMICOS UNIVESIDAD NACIONAL EXPEIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCE VICEECTOADO BAQUISIMETO DEPATAMENTO DE INGENIEÍA QUÍMICA CONTOL DE POCESOS QUÍMICOS Prof: Ing. (MSc). Juan Enrque odríguez C. Octubre, 03

Más detalles

Banco de México Documentos de Investigación. Banco de México Working Papers N

Banco de México Documentos de Investigación. Banco de México Working Papers N Banco de Méxco Documentos de nvestgacón Banco de Méxco Workng Paers N 04-3 Cotas ara la Varanza, Efecto del Dseño y Coefcente de Varacón de Proorcones en el Muestreo or Conglomerados en Dos Etaas con Tamaños

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

4. PROBABILIDAD CONDICIONAL

4. PROBABILIDAD CONDICIONAL . ROBBILIDD CONDICIONL La probabldad de que ocurra un evento B cuando se sabe que ha ocurrdo algún otro evento se denomna robabldad Condconal, Se denota como (B/) y se lee como la probabldad de que ocurra

Más detalles

Tallerine: Energías Renovables. Fundamento teórico

Tallerine: Energías Renovables. Fundamento teórico Tallerne: Energías Renovables Fundamento teórco Tallerne Energías Renovables 2 Índce 1. Introduccón 3 2. Conceptos Báscos 3 2.1. Intensdad de corrente................................. 3 2.2. Voltaje..........................................

Más detalles

4 DISTRIBUCIÓN GRAN CANÓNICA Y OTRAS DISTRIBUCIONES

4 DISTRIBUCIÓN GRAN CANÓNICA Y OTRAS DISTRIBUCIONES 4 GRA CAÓICO Y ORAS DISRIUCIOS 4 DISRIUCIÓ GRA CAÓICA Y ORAS DISRIUCIOS. OJIOS.. DISRIUCIÓ GRA CAÓICA. COJUO GRA CAÓICO. ecesdad de cambar de dstrbucón. Dstrbucón gran canónca y conjunto gran canónco.

Más detalles

Coordenadas Curvilíneas

Coordenadas Curvilíneas Departamento: Físca Aplcada III Mecánca Raconal (Ingenería Industral) Curso 007-08 Coordenadas Curvlíneas 1. Introduccón a. Obetvo: Generalar los tpos de coordenadas conocdos. Cartesanas. Clíndrcas, Esfércas,

Más detalles

BREVE APUNTE SOBRE EL PROBLEMA DE LOS REGRESORES ESTOCÁSTICOS EN EL MODELO BÁSICO DE REGRESIÓN LINEAL. Ramón Mahía Febrero 2008

BREVE APUNTE SOBRE EL PROBLEMA DE LOS REGRESORES ESTOCÁSTICOS EN EL MODELO BÁSICO DE REGRESIÓN LINEAL. Ramón Mahía Febrero 2008 I.- Defncón BREE APUNTE SOBRE EL PROBLEMA DE LOS REGRESORES ESTOCÁSTICOS EN EL MODELO BÁSICO DE REGRESIÓN LINEAL Ramón Mahía Febrero 8 Una de las hótess báscas generalmente formladas en la resentacón del

Más detalles

ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL

ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL ESTADÍSTICA BIDIMESIOAL ÍDICE GEERAL 1.-Varable Estadístca Bdmensonal. Tablas de frecuenca... 1.1.- Concepto de varable estadístca bdmensonal. Eemplos.... 1..-Tablas bdmensonales de frecuencas. Tablas

Más detalles

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas.

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas. MATRICES Las matrces se utlzan en el cálculo numérco, en la resolucón de sstemas de ecuacones lneales, de las ecuacones dferencales y de las dervadas parcales. Además de su utldad para el estudo de sstemas

Más detalles

EXPERIMENTOS ANIDADOS O JERARQUICOS NESTED

EXPERIMENTOS ANIDADOS O JERARQUICOS NESTED EXPERIMENTOS ANIDADOS O JERARQUICOS NESTED Exsten ocasones donde los nveles de un factor B son smlares pero no déntcos para dferentes nveles del factor A. Es decr, dferentes nveles del factor A ven nveles

Más detalles

Teoría de decisión Bayesiana

Teoría de decisión Bayesiana Teoría de decsón Bayesana Reconocmento de atrones 3 Duda Catulo Decsón Bayesana Enfoque estadístco fundamental en clasfcacón de atrones Idea: Estudar robabldades de tomar decsones ncorrectas ara cuantfcar

Más detalles

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)}

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)} Capítulo 4 1 N-cubos 4.1. Representacón de una funcón booleana en el espaco B n. Los n-cubos representan a las funcones booleanas, en espacos n-dmensonales dscretos, como un subconjunto de los vértces

Más detalles

Tema 3: Números índice

Tema 3: Números índice Tema : Números índce Los números ndce son ndcadores ue nos ermen ver la evolucón de una o más magnudes a ravés del emo, esaco, ec. Índce smle Dada una varable o magnud X, se defne el número índce de X

Más detalles

UNIDAD 2: NÚMEROS COMPLEJOS

UNIDAD 2: NÚMEROS COMPLEJOS I.E.S. Ramón Graldo UNIDAD : NÚMEROS COMPLEJOS. CONSTRUCCIÓN A los pares de números reales, consderando las sguentes operacones: x, y x', y' xx', y y' El camno más corto entre dos verdades del Análss Real

Más detalles

Resuelve. Unidad 6. Números complejos. BACHILLERATO Matemáticas I. [x ( )][x (2 3 1)] = Cómo operar con 1? Página 147

Resuelve. Unidad 6. Números complejos. BACHILLERATO Matemáticas I. [x ( )][x (2 3 1)] = Cómo operar con 1? Página 147 Undad. Números complejos Matemátcas I Resuelve Págna 7 Cómo operar con? Vamos a proceder como los antguos algebrstas: cuando nos encontremos con seguremos adelante operando con ella con naturaldad y tenendo

Más detalles

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros

Perturbación de los valores propios simples de matrices de polinomios dependientes diferenciablemente de parámetros Perturbacón de los valores propos smples de matrces de polnomos dependentes dferencablemente de parámetros M Isabel García-Planas 1, Sona Tarragona 2 1 Dpt de Matemàtca Aplcada I, Unverstat Poltècnca de

Más detalles

TEMA 4 Variables aleatorias discretas Esperanza y varianza

TEMA 4 Variables aleatorias discretas Esperanza y varianza Métodos Estadístcos para la Ingenería Curso007/08 Felpe Ramírez Ingenería Técnca Químca Industral TEMA 4 Varables aleatoras dscretas Esperanza y varanza La Probabldad es la verdadera guía de la vda. Ccerón

Más detalles

deterministas, que son aquellos cuyos resultados se pueden predecir de antemano, y

deterministas, que son aquellos cuyos resultados se pueden predecir de antemano, y CÁLCULO DE PROBBILIDDES : Experimento aleatorio. Espacio muestral. Sucesos. Álgebra de sucesos. Frecuencias. Propiedades. Probabilidad. Resumen de Combinatoria. Probabilidad condicionada. Teoremas. PROBBILIDD

Más detalles

TEMA 4. TRABAJO Y ENERGIA.

TEMA 4. TRABAJO Y ENERGIA. TMA 4. TRABAJO Y NRGIA. l problema undamental de la Mecánca es descrbr como se moverán los cuerpos s se conocen las uerzas aplcadas sobre él. La orma de hacerlo es aplcando la segunda Ley de Newton, pero

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

ESTÁTICA DEL SÓLIDO RÍGIDO

ESTÁTICA DEL SÓLIDO RÍGIDO DSR-1 ESTÁTICA DEL SÓLIDO RÍGIDO DSR-2 ESTÁTICA DEL SÓLIDO RÍGIDO La estátca estuda las condcones bajo las cuales los sstemas mecáncos están en equlbro. Nos referremos úncamente a equlbro de tpo mecánco,

Más detalles

ESTADÍSTICA. Definiciones

ESTADÍSTICA. Definiciones ESTADÍSTICA Defncones - La Estadístca es la cenca que se ocupa de recoger, contar, organzar, representar y estudar datos referdos a una muestra para después generalzar y sacar conclusones acerca de una

Más detalles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles 2 Undad I.. Defncón de reaccón de combustón La reaccón de combustón se basa en la reaccón químca exotérmca de una sustanca (o una mezcla de ellas) denomnada combustble, con el oxígeno. Como consecuenca

Más detalles

GEOGRAFÍA Y DINÁMICA DE LA DESIGUALDAD REGIONAL EN LA UNIÓN EUROPEA

GEOGRAFÍA Y DINÁMICA DE LA DESIGUALDAD REGIONAL EN LA UNIÓN EUROPEA GEOGRAFÍA Y DINÁMICA DE LA DESIGUALDAD REGIONAL EN LA UNIÓN EUROPEA Roberto Ezcurra, Carlos Gl, Pedro Pascual y Manuel Raún Unversdad Públca de Navarra Resumen: Son ermanentes o temorales los desequlbros

Más detalles

Nos interesa asignar probabilidades a valores numéricos obtenidos a partir de fenómenos aleatorios, es decir a variables aleatorias.

Nos interesa asignar probabilidades a valores numéricos obtenidos a partir de fenómenos aleatorios, es decir a variables aleatorias. Estadístca (Q) Dana M. Kelmansky 5 Varables Aleatoras Nos nteresa asgnar probabldades a valores numércos obtendos a partr de fenómenos aleatoros, es decr a varables aleatoras. Por ejemplo, calcular la

Más detalles

LAS FÓRMULAS DEL AGREGADO ELEMENTAL DE UN ÍNDICE DE PRECIOS DE CONSUMO DESDE EL ENFOQUE ECONÓMICO. UNA NUEVA PROPUESTA

LAS FÓRMULAS DEL AGREGADO ELEMENTAL DE UN ÍNDICE DE PRECIOS DE CONSUMO DESDE EL ENFOQUE ECONÓMICO. UNA NUEVA PROPUESTA LAS FÓRMULAS DEL AGREGADO ELEMENTAL DE UN ÍNDCE DE PRECOS DE CONSUMO DESDE EL ENFOQUE ECONÓMCO. UNA NUEVA PROPUESTA Santago Rodríguez Fejoó Deartamento de Métodos Cuanttatvos en Economía y Gestón Unversdad

Más detalles

Correlación lineal Significación de Parámetros

Correlación lineal Significación de Parámetros Aéndce C Correlacón lneal Sgnfcacón de Parámetros Objetvos En este aéndce extendemos la dscusón de cuadrados mínmos, ncada en el Ca.7, al caso en que los datos tengan errores. Se analza la sgnfcacón estadístca

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco

Más detalles

7ª SESIÓN: Medidas de concentración

7ª SESIÓN: Medidas de concentración Curso 2006-2007 7ª Sesón: Meddas de concentracón 7ª SESIÓN: Meddas de concentracón. Abrr el rograma Excel. 2. Abrr el lbro utlzado en las ráctcas anterores. 3. Insertar la Hoja7 al fnal del lbro. 4. Escrbr

Más detalles

Cifrado de imágenes usando autómatas celulares con memoria

Cifrado de imágenes usando autómatas celulares con memoria Cfrado de mágenes usando autómatas celulares con memora L. Hernández Encnas 1, A. Hernández Encnas 2, S. Hoya Whte 2, A. Martín del Rey 3, G. Rodríguez Sánchez 4 1 Insttuto de Físca Aplcada, CSIC, C/Serrano

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA TERMODINÁMICA AVANZADA Undad III: Termodnámca del Equlbro Ecuacones para el coefcente de actvdad Funcones de eceso para mezclas multcomponentes 9/7/0 Rafael Gamero Funcones de eceso en mezclas bnaras Epansón

Más detalles

Geometría Axiomática de la Convexidad Parte II: Axiomática de Cápsula convexa

Geometría Axiomática de la Convexidad Parte II: Axiomática de Cápsula convexa Geometría Axomátca de la Convexdad Parte II: Axomátca de Cápsula convexa Juan Carlos Bressan Resumen En la Parte I estudamos una axomátca de segmentos, en la que defnmos los convexos y estudamos sus propedades

Más detalles

60 EJERCICIOS de NÚMEROS COMPLEJOS

60 EJERCICIOS de NÚMEROS COMPLEJOS 60 EJERCICIOS de NÚMEROS COMPLEJOS. Resolver las sguentes ecuacones en el campo de los números complejos a) x -x+=0 (Soluc ) b) x +=0 (Soluc ) c) x -x+=0 (Soluc ) d) x +x+=0 (Soluc ) e) x -6x +x-6=0 (Soluc,

Más detalles

TEMA 17: PROBABILIDAD

TEMA 17: PROBABILIDAD TEMA 17: PROBABILIDAD Probabilidad de un suceso aleatorio es un numero entre 0 y 1 (más cerca del 0, mas difícil que ocurra. Más cerca del 1 más fácil que ocurra). Suceso seguro: Su probabilidad es 1.

Más detalles

PROBABILIDADE 1) EXPERIMENTO ALEATORIO. ESPACIO MOSTRAL ASOCIADO.

PROBABILIDADE 1) EXPERIMENTO ALEATORIO. ESPACIO MOSTRAL ASOCIADO. PROBABILIDADE 1) EXPERIMENTO ALEATORIO. ESPACIO MOSTRAL ASOCIADO. 1.1 Concepto de expermento aleatoro : aqueles expermentos que ó repetlos en análogas condcóns non se pode predecr o resultado en cada nova

Más detalles

Una renta fraccionada se caracteriza porque su frecuencia no coincide con la frecuencia de variación del término de dicha renta.

Una renta fraccionada se caracteriza porque su frecuencia no coincide con la frecuencia de variación del término de dicha renta. Rentas Fnanceras. Renta fracconada 6. RETA FRACCIOADA Una renta fracconada se caracterza porque su frecuenca no concde con la frecuenca de varacón del térmno de dcha renta. Las característcas de la renta

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

Problemas de Optimización. Conceptos básicos de optimización. Indice. Un problema de optimización NLP. Equivalencias. Contornos / Curvas de nivel

Problemas de Optimización. Conceptos básicos de optimización. Indice. Un problema de optimización NLP. Equivalencias. Contornos / Curvas de nivel Conceptos báscos de optmzacón Problemas de Optmzacón Prof. Cesar de Prada Dpt. Ingenería de Sstemas y Automátca UVA prada@autom.uva.es mn J() h() = g() Problema general NPL Para encontrar una solucón al

Más detalles

Operadores por Regiones

Operadores por Regiones Operadores por Regones Fltros por Regones Los fltros por regones ntentan determnar el cambo de valor de un píxel consderando los valores de sus vecnos I[-1,-1] I[-1] I[+1,-1] I[-1, I[ I[+1, I[-1,+1] I[+1]

Más detalles

FÓRMULA PARA EL CÁLCULO DE LOS ÍNDICES DE PRECIOS ELEMENTALES EN LA ELABORACIÓN DE UN IPC

FÓRMULA PARA EL CÁLCULO DE LOS ÍNDICES DE PRECIOS ELEMENTALES EN LA ELABORACIÓN DE UN IPC FÓRMULA PARA EL CÁLCULO DE LOS ÍNDCES DE PRECOS ELEMENTALES EN LA ELABORACÓN DE UN PC RODRÍGUEZ FEJOÓ, Santago Deartamento de Métodos Cuanttatvos en E. y G. Unversdad de Las Palmas de Gran Canara correo-e:

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

Reciprocidad Cuadrática

Reciprocidad Cuadrática Caítulo 4 Recirocidad Cuadrática En este caítulo estudiamos una serie de resultados dirigidos a demostrar la Ley de Rerocidad Cuadrática, la cual fue robada or Gauss en su libro Disquisitiones Arithmeticae

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 1. S A es un suceso de probabldad 0.3, la probabldad de su suceso contraro es: a) 0. b) 1.0 c) 0.7 (Convocatora juno 006. Eamen tpo H) S A es un suceso, la probabldad de su suceso

Más detalles

Facultad de Química. UNAM Alejandro Baeza

Facultad de Química. UNAM Alejandro Baeza Facultad de Químca. UNM lejandro Baeza.006 Químca nalítca Instrumental I nálss de mezclas por espectrofotometría. Documento de apoyo. Dr. lejandro Baeza. Semestre 007-I.0 Selectvdad espectral en espectrofotometría

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles