Cálculo II. Volúmenes de Sólidos. M. en C. Ricardo Romero. Grupo CTG87 Trimestre 11-P. Departamento de Ciencias Básicas, UAM-A

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Cálculo II. Volúmenes de Sólidos. M. en C. Ricardo Romero. Grupo CTG87 Trimestre 11-P. Departamento de Ciencias Básicas, UAM-A"

Transcripción

1 Cálculo II Volúmenes de Sólidos M. en C. Ricardo Romero Departamento de Ciencias Básicas, UAM-A Grupo CTG87 Trimestre 11-P Grupo CTG87 Trimestre 11-P 1 /

2 Programa 1 Cálculo de volúmenes a partir de secciones transversales Secciones transversales elementales 2 Volúmenes de sólidos de revolución Método de los discos Método de las rondanas 3 Volúmenes por medio de cascarones cilíndricos Grupo CTG87 Trimestre 11-P 2 /

3 Cálculo de volúmenes a partir de secciones transversales Secciones transversales elementales Rebanar mediante planos paralelos Grupo CTG87 Trimestre 11-P 3 /

4 Cálculo de volúmenes a partir de secciones transversales Secciones transversales elementales Volumen de la k-ésima rebanada A(x k ) x k V n k=1 V = lim x A(x k ) x k n k=1 b A(x k ) x k = a A(x)dx Grupo CTG87 Trimestre 11-P 4 /

5 Cálculo de volúmenes a partir de secciones transversales Secciones transversales elementales Volumen de la k-ésima rebanada A(x k ) x k V n k=1 V = lim x A(x k ) x k n k=1 b A(x k ) x k = a A(x)dx Grupo CTG87 Trimestre 11-P 4 /

6 Cálculo de volúmenes a partir de secciones transversales Secciones transversales elementales Volumen de la k-ésima rebanada A(x k ) x k V n k=1 V = lim x A(x k ) x k n k=1 b A(x k ) x k = a A(x)dx Grupo CTG87 Trimestre 11-P 4 /

7 Cálculo de volúmenes a partir de secciones transversales Secciones transversales elementales Volumen de la k-ésima rebanada A(x k ) x k V n k=1 V = lim x A(x k ) x k n k=1 b A(x k ) x k = a A(x)dx Grupo CTG87 Trimestre 11-P 4 /

8 Cálculo de volúmenes a partir de secciones transversales Secciones transversales elementales El volumen de un sólido con área de sección transversal integrable A(x), desde x = a hasta x = b está dado por la integral b V = A(x) dx a Hacer un esquema del sólido y una sección transversal representativa. Determinar una fórmula para A(x). Determinar los límites de integración. Integrar A(x) para encontrar el volumen. Grupo CTG87 Trimestre 11-P 5 /

9 Cálculo de volúmenes a partir de secciones transversales Secciones transversales elementales El volumen de un sólido con área de sección transversal integrable A(x), desde x = a hasta x = b está dado por la integral b V = A(x) dx a Hacer un esquema del sólido y una sección transversal representativa. Determinar una fórmula para A(x). Determinar los límites de integración. Integrar A(x) para encontrar el volumen. Grupo CTG87 Trimestre 11-P 5 /

10 Cálculo de volúmenes a partir de secciones transversales Secciones transversales elementales Por triángulos semejantes x h = s/2 L/2 = s Lx, entonces s = L h y A(x) = s 2 = L2 h 2 x 2. Por lo tanto h V = A(x)dx = 0 h 0 L 2 h 2 x 2 dx = L2 x 3 h 2 3 h 0 = L2 h 3 h 2 3 = L2 h 3 Grupo CTG87 Trimestre 11-P 6 /

11 Cálculo de volúmenes a partir de secciones transversales Secciones transversales elementales Se obtiene una cuña cortando un cilindro circular recto de radio 4 por medio de dos planos. Un plano es perpendicular al eje del cilindro y el otro intersecta al primero a un ángulo de 30 a lo largo del diámetro del cilindro. Encontrar el volumen de la cuña. Grupo CTG87 Trimestre 11-P 7 /

12 Cálculo de volúmenes a partir de secciones transversales Secciones transversales elementales La base de la cuña es un semicírculo con ecuación y = 16 x 2 La sección transversal es un triángulo recto con área y BC 2 De la sección transversal tan30 = BC, entonces y BC = y tan30 = y, por lo que A(x) = y = 16 x 2 2 y el 3 volumen es 4 V = A(x)dx = x dx = 1 4 ( 16 x 2 ) dx = 1 [16x x = ] 4 0 Grupo CTG87 Trimestre 11-P 8 /

13 Método de los discos Sólidos de revolución El sólido generado al hacer girar una región plana alrededor de un eje se denomina sólido de revolución Grupo CTG87 Trimestre 11-P 9 /

14 Método de los discos Grupo CTG87 Trimestre 11-P 10 /

15 Método de los discos Grupo CTG87 Trimestre 11-P 11 /

16 Método de los discos Volumen por medio de discos al girar alrededor del eje x b b V = A(x)dx = π [R(x)] 2 dx a a b 4 V = π [R(x)] 2 dx = π [ x ] 2 dx a 0 4 = π x dx = π x = 8π 0 0 Grupo CTG87 Trimestre 11-P 12 /

17 Método de los discos Grupo CTG87 Trimestre 11-P 13 /

18 Método de los discos Grupo CTG87 Trimestre 11-P 14 /

19 Método de los discos A(x) = πy 2 = ( a 2 x 2) a V = a a a A(x)dx = a ( a 2 x 2) dx = 2π 0 = 2π [a 2 x x 3 ] a 3 ) 0 = 2π (a 3 a3 = πa3 π ( a 2 x 2) dx Grupo CTG87 Trimestre 11-P 15 /

20 Método de los discos Determinar el volumen del sólido generado al hacer girar alrededor de la recta y = 1 la región acotada por y = x y las rectas y = 1, x = 4. Grupo CTG87 Trimestre 11-P 16 /

21 Método de los discos Grupo CTG87 Trimestre 11-P 17 /

22 Método de los discos 4 V = π R 2 (x)dx = π ( x 1 ) 2 dx = π 4 1 ( x 2 x + 1 ) dx [ x 2 = π 2 4 ] 4 3 x 3/2 + x 1 [ = π ( ) ] ( 21 = π 2 28 ) = π = 7π Grupo CTG87 Trimestre 11-P 18 /

23 Método de los discos Volumen por medio de discos al girar alrededor del eje y d d V = A(y)dy = π [R(y)] 2 dy c c Determinar el volumen generado al hacer girar con respecto al eje y la región comprendida entre la curva x = 2, 1 y 4 y el eje y y Grupo CTG87 Trimestre 11-P 19 /

24 Método de los discos Grupo CTG87 Trimestre 11-P 20 /

25 Método de los discos Grupo CTG87 Trimestre 11-P 21 /

26 Método de los discos 4 V = π [R(y)] 2 dy 1 = π 4 1 = 4π ( ) dy = 4π y 2 dy y 1 [ ] 1 4 ( ) 1 = 4π y = 3π Grupo CTG87 Trimestre 11-P 22 /

27 Método de los discos Determinar el volumen del sólido generado al hacer girar con respecto a la recta x = 3 la región comprendida entre la parábola x = y y la recta x = 3 Grupo CTG87 Trimestre 11-P 23 /

28 Método de los discos 2 V = π [R(y)] 2 dy 2 2 ( = π 2 y 2 ) 2 dy 2 2 ( = π 4 4y 2 + y 4) dy 2 = π [4y 43 y 3 + y 5 5 = 64π 2 15 ] 2 2 Grupo CTG87 Trimestre 11-P 24 /

29 Método de las rondanas Si la región que se hace girar para generar un sólido no cruza o no colinda con el eje de revolución, el sólido resultante tendrá un agujero. Las secciones perpendiculares al eje de revolución son rondanas en lugar de discos como antes Grupo CTG87 Trimestre 11-P 25 /

30 Método de las rondanas Grupo CTG87 Trimestre 11-P 26 /

31 Método de las rondanas Radio exterior:r(x) Radio interior:r(x) Área de la rondana: A(x) = π [R(x)] 2 π [r(x)] 2 = π ([R(x)] 2 [r(x)] 2) Grupo CTG87 Trimestre 11-P 27 /

32 Método de las rondanas Volumen por medio de rondanas al girar alrededor del eje x b b ( V = A(x)dx = π [R(x)] 2 [r(x)] 2) dx a a Determinar el volumen del sólido que se obtiene al girar alrededor del eje x la región acotada por la curva y = x y la recta y = x + 3 Grupo CTG87 Trimestre 11-P 28 /

33 Método de las rondanas Grupo CTG87 Trimestre 11-P 29 /

34 Método de las rondanas 1 Dibujar la región y un segmento de recta que la cruce y sea perpendicular al eje de revolución 2 Determinar los radios exterior e interior de la rondana que se generan al hacer girar el segmento de recta 3 Obtener los límites de integración determinando los puntos de intersección de las curvas 4 Evaluar la integral de volumen Grupo CTG87 Trimestre 11-P 30 /

35 Método de las rondanas Radio exterior:r(x) = x + 3 Radio interior:r(x) = x Límites de integración: x = x + 3 x 2 + x 2 = 0 (x + 2)(x 1) = 0 x = 2, x = 1 Grupo CTG87 Trimestre 11-P 31 /

36 Método de las rondanas Determinar el volumen del sólido generado al rotar alrededor del eje y la región acotada por la curva y = x 2 y la recta y = 2x en el primer cuadrante Grupo CTG87 Trimestre 11-P 32 /

37 Método de las rondanas Grupo CTG87 Trimestre 11-P 33 /

38 Método de las rondanas Grupo CTG87 Trimestre 11-P 34 /

39 Método de las rondanas R(y) = y, r(y) = y 2 y = y/2 y = y 2 /4 y 2 4y = 0 y(y 4) = 0 y = 0 y y = 4 d ( V = π [R(y)] 2 [r(y)] 2) dy c 4 [ ( ) ( 2 y ) ] 2 = π y dy = π (y y 2 ) [ y 2 dy = π y 3 ] ( = π 8 32 ) = π Grupo CTG87 Trimestre 11-P 35 /

40 Volúmenes por medio de cascarones cilíndricos Grupo CTG87 Trimestre 11-P 36 /

41 Volúmenes por medio de cascarones cilíndricos Sea S el sólido obtenido al hacer girar alrededor del eje y la región limitada por y = f (x) (con f (x) 0), el eje x y las rectas x = a y x = b (0 a b) Grupo CTG87 Trimestre 11-P 37 /

42 Volúmenes por medio de cascarones cilíndricos Grupo CTG87 Trimestre 11-P 38 /

43 Volúmenes por medio de cascarones cilíndricos Grupo CTG87 Trimestre 11-P 39 /

44 Volúmenes por medio de cascarones cilíndricos b V = 2π r(x)h(x)dx a b = 2π x f (x)dx a d V = 2π r(y)h(y)dy c d = 2π y f (y)dy c Grupo CTG87 Trimestre 11-P 40 /

45 Volúmenes por medio de cascarones cilíndricos Dibujar la región y un segmento de recta que la cruce en forma paralela al eje de revolución. Indicar la altura o longitud del segmento (altura del cascarón) y la distancia al eje de revolución (radio del cascarón). Determinar los límites de integración para x ó y (variable de grosor). Integrar el producto 2π(radio del cascarón)(altura del cascarón) con respecto a x ó y para obtener el volumen. Grupo CTG87 Trimestre 11-P 41 /

46 Volúmenes por medio de cascarones cilíndricos Determinar el volumen del sólido que se obtiene al hacer girar alrededor del eje y la región acotada por y = 2x 2 x 3 en el primer cuadrante Grupo CTG87 Trimestre 11-P 42 /

47 Volúmenes por medio de cascarones cilíndricos Grupo CTG87 Trimestre 11-P 43 /

48 Volúmenes por medio de cascarones cilíndricos Grupo CTG87 Trimestre 11-P 44 /

49 Volúmenes por medio de cascarones cilíndricos Calcular el volumen del sólido obtenido al rotar alrededor del eje y la región entre las curvas y = x y y = x 2 Grupo CTG87 Trimestre 11-P 45 /

50 Volúmenes por medio de cascarones cilíndricos Obtener el volumen del sólido que se obtiene al hacer girar alrededor del eje x la región acotada por la curva y = x con 0 x 1 Grupo CTG87 Trimestre 11-P 46 /

51 Volúmenes por medio de cascarones cilíndricos Encontrar el volumen del sólido formado al girar alrededor de la recta x = 2 la región acotada por las curvas y = x 3 + x + 1, y = 1 y x = 1 Grupo CTG87 Trimestre 11-P /

Cálculo II. Volúmenes de Sólidos. M. en C. Ricardo Romero. Grupo CTG87 Trimestre 11-P. Departamento de Ciencias Básicas, UAM-A

Cálculo II. Volúmenes de Sólidos. M. en C. Ricardo Romero. Grupo CTG87 Trimestre 11-P. Departamento de Ciencias Básicas, UAM-A Cálculo II Volúmenes de Sólidos M. en C. Ricrdo Romero Deprtmento de Ciencis Básics, UAM-A Grupo CTG87 Trimestre 11-P Grupo CTG87 Trimestre 11-P 1 / Progrm 1 Cálculo de volúmenes prtir de secciones trnsversles

Más detalles

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0. . Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x

Más detalles

Volumen de Revolución Ejemplo. Se obtiene al hacer girar una región limitada alrededor de un eje. Por ejemplo, si la función: f(x) x el eje 0x:

Volumen de Revolución Ejemplo. Se obtiene al hacer girar una región limitada alrededor de un eje. Por ejemplo, si la función: f(x) x el eje 0x: Volumen de Revolución Ejemplo Se obtiene al hacer girar una región limitada alrededor de un eje. Por ejemplo, si la función: f(x) x 2 1 gira sobre el eje 0x: Sólidos de Revolución conocidos ALGUNAS APLICACIONES

Más detalles

Práctica

Práctica UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE MATEMATICA HPV/ Práctica. 5141. Problema 1. Determinar el área de la región comprendida entre los gráficos de las ecuaciones

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

1. Determinar el volumen del solido que se genera al rotar la región acotada por las parabolas x = y 2 3 y x = y y 2,alrededor de la recta x = 4.

1. Determinar el volumen del solido que se genera al rotar la región acotada por las parabolas x = y 2 3 y x = y y 2,alrededor de la recta x = 4. Practica. Determinar el volumen del solido que se genera al rotar la región acotada or las arabolas x = y y x = y y,alrededor de la recta x = 4. Encontremos los untos de interceccion de ambas curvas: y

Más detalles

UNIDAD IX: APLICACIONES DE LAS INTEGRALES DEFINIDAS.

UNIDAD IX: APLICACIONES DE LAS INTEGRALES DEFINIDAS. UNIDAD IX: APLICACIONES DE LAS INTEGRALES DEFINIDAS. Área de un sector en coordenadas polares. Área de una superficie de revolución. Volumen de un sólido de revolución. Objetivos Instructivos. Con esta

Más detalles

Cálculo Integral Área de una superficie de revolución. Universidad Nacional de Colombia

Cálculo Integral Área de una superficie de revolución. Universidad Nacional de Colombia Cálculo Integral Área de una superficie de revolución Jeanneth Galeano Peñaloza - Claudio Rodríguez Beltrán Universidad Nacional de Colombia Segundo semestre de 2015 Área de una superficie de revolución

Más detalles

Escuela Politécnica Superior de Málaga. CÁLCULO

Escuela Politécnica Superior de Málaga. CÁLCULO Escuela Politécnica Superior de Málaga. CÁLCULO. Cálculo en una variable.. Prueba que y 3 no son números racionales. En los números que se describen a continuación, Cuáles son racionales y cuales no? Encontrar

Más detalles

CUERPOS DE REVOLUCIÓN

CUERPOS DE REVOLUCIÓN PROPÓSITOS: Identificar los cuerpos redondos o de revolución. Resolver problemas, donde se aplique el volumen y área de cuerpos de revolución. CUERPOS DE REVOLUCIÓN Existen cuerpos geométricos que no tienen

Más detalles

MÉTODOS MATEMÁTICOS II

MÉTODOS MATEMÁTICOS II MÉTODOS MATEMÁTICOS II (Licenciatura de Física. Curso 2007-2008) Boletín de problemas a evaluar correspondientes a los Temas I y II Fecha de entrega: Viernes, 23 de Noviembre de 2007 1. Calcula los siguientes

Más detalles

FIGURAS DEL ESPACIO. ÁREAS Y VOLÚMENES

FIGURAS DEL ESPACIO. ÁREAS Y VOLÚMENES POLIEDROS : Cuerpo sólido limitado por polígonos, llamados caras; en la que algunas de las caras confluyen en líneas rectas, llamadas aristas; y algunas de las aristas confluyen en puntos,llamados vértices.

Más detalles

VOLUMENES DE SÓLIDOS DE REVOLUCION

VOLUMENES DE SÓLIDOS DE REVOLUCION OLUMENES DE SÓLIDOS DE REOLUCION Los sólidos de revolución son sólidos que se generan al girar una región plana alrededor de un eje. Por ejemplo: el cono es un sólido que resulta al girar un triángulo

Más detalles

INTEGRALES EN REGIONES POLARES 1 INTEGRALES DOBLES EN COORDENADAS POLARES

INTEGRALES EN REGIONES POLARES 1 INTEGRALES DOBLES EN COORDENADAS POLARES INTEGRALES EN REGIONES POLARES 1 INTEGRALES DOBLES EN COORDENADAS POLARES Hasta el momento hemos tratado integrales dobles en las cuales la región de integración es una región rectangular de la forma *(

Más detalles

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2.

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. 1 1 4, 0 1 a.- (, ) = 2 1 4, 1 2 2 1 < 3, 0 < 1 b.- (, ) = 1 1 < 3, 1 2 3 3 4,

Más detalles

GEOMETRIA DEL ESPACIO. Geometría del espacio, rama de la geometría que se ocupa de las. propiedades y medidas de figuras geométricas en el espacio

GEOMETRIA DEL ESPACIO. Geometría del espacio, rama de la geometría que se ocupa de las. propiedades y medidas de figuras geométricas en el espacio GEOMETRIA DEL ESPACIO Geometría del espacio, rama de la geometría que se ocupa de las propiedades y medidas de figuras geométricas en el espacio tridimensional. Entre estas figuras, también llamadas sólidos,

Más detalles

APLICACIONES DE LA INTEGRAL DEFINIDA

APLICACIONES DE LA INTEGRAL DEFINIDA CAPÍTULO XI. APLICACIONES DE LA INTEGRAL DEFINIDA SECCIONES A. Áreas de figuras planas. B. Cálculo de volúmenes. C. Longitud de curvas planas. D. Ejercicios propuestos. 37 A. ÁREAS DE FIGURAS PLANAS. En

Más detalles

Integración múltiple: integrales dobles

Integración múltiple: integrales dobles Problemas propuestos con solución Integración múltiple: integrales dobles ISABEL MAEO epartamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice. Integrales iteradas 2. Teorema

Más detalles

ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS REGULARES ESFERA

ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS REGULARES ESFERA ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS POLIEDROS REGULARES Tetraedro ( 4 triángulos equiláteros) Hexaedro o cubo( 6 cuadrados) Octaedro( 8 triángulos equiláteros) Dodecaedro ( 12

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

V = volumen del cilindro exterior menos volumen del hueco

V = volumen del cilindro exterior menos volumen del hueco 1 (Apuntes en revisión para orientar el aprendizaje) CÁLCULO DE VOLÚMENES MEDIANTE CORTEZAS CILÍNDRICAS Este método se asa en utilizar anillos cilíndricos de poco grosor llamados cortezas que se ilustra

Más detalles

CUERPOS GEOMÉTRICOS. 2º E.S.O. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS

CUERPOS GEOMÉTRICOS. 2º E.S.O. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS CUERPOS GEOMÉTRICOS. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO 2º E.S.O. DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS Determinación de puntos: DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS Determinación de una recta:

Más detalles

CUERPOS. Poliedros: Aquellos cuerpos geométricos totalmente limitados por polígonos, como por ejemplo, el prisma, la pirámide; etc.

CUERPOS. Poliedros: Aquellos cuerpos geométricos totalmente limitados por polígonos, como por ejemplo, el prisma, la pirámide; etc. CUERPOS Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede calcular el volumen del mismo

Más detalles

APLICACIONES DE LA INTEGRAL DEFINIDA

APLICACIONES DE LA INTEGRAL DEFINIDA APLICACIONES DE LA INTEGRAL DEFINIDA Objetivo: El alumno analizará y comprenderá el uso y la aplicación de la integral definida en la resolución de problemas REGIONES PLANAS LIMITADAS POR DOS CURVAS Sean

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.

Más detalles

LA RECTA Y SUS ECUACIONES

LA RECTA Y SUS ECUACIONES UNIDAD LA RECTA Y SUS ECUACIONES EJERCICIOS RESUELTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivo. Recordarás

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El

Más detalles

Formulario de Geometría Analítica

Formulario de Geometría Analítica 1. El Punto 1.1. Distancia entre dos puntos Sean A(x 1, y 1 ) y B(x, y ) dos puntos en el plano. La distancia d entre ambos está dada por la ecuación: d(a, B) = (x x 1 ) + (y y 1 ) 1.. Punto medio: Sean

Más detalles

1. INTEGRALES MÚLTIPLES

1. INTEGRALES MÚLTIPLES 1. INTEGALES MÚLTIPLES 1. Calcular las siguientes integrales iteradas: 1. x x 7 y dy dx dx 1. x x y y dx dy 1 1 7. (1 + xy) dx dy 1 1 π/. x sen y dy dx 5. (x + y) dx dy 6/ 1 6. (x + y) 8 dx dy 616 5 1

Más detalles

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares Punto El punto es un objeto geométrico que no tiene dimensión y que sirve para indicar una posición. A Recta Es una sucesión continua e indefinida de puntos en una sola dimensión. Semirrecta Es una línea

Más detalles

Rectas y Cónicas. Sistema de Coordenadas Cartesianas. Guía de Ejercicios # Encuentre las coordenadas de los puntos mostrados en la figura.

Rectas y Cónicas. Sistema de Coordenadas Cartesianas. Guía de Ejercicios # Encuentre las coordenadas de los puntos mostrados en la figura. Universidad de Los Andes Facultad de Ciencias Forestales y Ambientales Escuela de ingeniería Forestal Departamento de Botánica y Ciencias Básicas Matemáticas I I 2014 Prof. K. Chang. Rectas y Cónicas Guía

Más detalles

TEMA 5. Geometría. Teoría. Matemáticas

TEMA 5. Geometría. Teoría. Matemáticas 1 La Geometría trata sobre las formas y sus propiedades. A su vez, se puede dividir en: Geometría plana: trata de las figuras en el plano, (dos dimensiones) Geometría tridimensional: trata de figuras en

Más detalles

INTEGRACION EN VARIAS VARIABLES: Integrales dobles. 1. e x+y dy dx. 3. Evaluar las siguientes integrales en los recintos que se indican:

INTEGRACION EN VARIAS VARIABLES: Integrales dobles. 1. e x+y dy dx. 3. Evaluar las siguientes integrales en los recintos que se indican: INTEGACION EN VAIAS VAIABLES: Integrales dobles.. Evaluar las siguientes integrales iteradas: (x y + y )dy dx xye x+y dy dx ( x ln y)dy dx ln [((x + )(y + )] dx dy. 3 ; ; ; ln. 5. Sea I = [, ] [, 3]. Calcular

Más detalles

Uso no comercial 12.4 CUERPOS REDONDOS

Uso no comercial 12.4 CUERPOS REDONDOS 1.4 CUERPOS REDONDOS Designamos en general como cuerpos redondos el conjunto de puntos del espacio obtenido cuando una figura gira alrededor de una recta, de tal forma que cada punto de la figura conserva,

Más detalles

Análisis Matemático I (Ing. de Telecomunicación), Examen final, 26 de enero de 2010 RESPUESTAS A AMBOS MODELOS

Análisis Matemático I (Ing. de Telecomunicación), Examen final, 26 de enero de 2010 RESPUESTAS A AMBOS MODELOS Análisis Matemático I (Ing. de Telecomunicación), 29-1 Examen final, 26 de enero de 21 RESPUESTAS A AMBOS MODELOS Primera Parte Las preguntas 1 14 son de tipo test. Se pide elegir una única respuesta en

Más detalles

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p ilindro y tronco de cilindro 1. En el gráfico se muestra un cilindro recto de base circular, además, T es punto de contacto de la recta PT en la superficie cilíndrica. Si PT=15 y P=8, calcule la distancia

Más detalles

INTEGRAL DEFINIDA. senx. sen PROBLEMAS. 1º-Calcular las siguientes integrales definidas: E[x]dx

INTEGRAL DEFINIDA. senx. sen PROBLEMAS. 1º-Calcular las siguientes integrales definidas: E[x]dx INTEGRAL DEFINIDA. PROBLEMAS. º-Calcular las siguientes integrales definidas: π sen. ln(+ )d. d. + sen - cos -π +. d.5 -) - ( - d.6 E[]d -.7 E[] d.8 cos d - º-Calcular el área limitada por las gráficas

Más detalles

Cálculo Diferencial e Integral - Volumen de un sólido. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Volumen de un sólido. Prof. Farith J. Briceño N. Cálculo Diferencial e Integral - Volumen de un sólido. Prof. Farith J. Briceño N. Objetivos a cubrir Volumen de un sólido : Secciones transversales. Volumen de un sólido de revolución : Método del disco.

Más detalles

TEMA 4. Geometría. Teoría. Matemáticas

TEMA 4. Geometría. Teoría. Matemáticas 1 1.- Rectas y ángulos La geometría se basa en tres conceptos fundamentales que forman parte del espacio geométrico, es decir, el conjunto formado por todos los puntos: El punto La recta El plano Partiendo

Más detalles

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x.

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. Área entre curvas Ejercicios resueltos 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. En primer lugar hallamos los puntos de corte de las dos funciones para conocer los límites

Más detalles

UNIDAD 5.C :INTEGRALES Y SUPERFICIES DE REVOLUCIÓN

UNIDAD 5.C :INTEGRALES Y SUPERFICIES DE REVOLUCIÓN UNIDAD 5.C :INTEGRALES Y SUPERFICIES DE REVOLUCIÓN 5.C.1 Concepto de integral Primitiva de una función: Sea f una función definida en el intervalo (a,b). Llamamos primitiva, antiderivada o integral indefinida

Más detalles

CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS)

CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede

Más detalles

Cuerpos geométricos. Cuerpos redondos Cuerpos de revolución. Poliedros (más importantes)

Cuerpos geométricos. Cuerpos redondos Cuerpos de revolución. Poliedros (más importantes) Cuerpos geométricos Cuerpos redondos Cuerpos de revolución Poliedros (más importantes) Cuerpo geométrico limitado por caras que son polígonos Cuerpo geométrico que se obtiene a partir de una figura plana

Más detalles

0.Mínimo de alumnos 12, Máximo Saberes teóricos

0.Mínimo de alumnos 12, Máximo Saberes teóricos 0.Mínimo de alumnos 12, Máximo 30 1.Saberes teóricos 1. Conceptos de función, límite de funciones, y continuidad. 2. Reglas de diferenciación. 3. Aplicaciones del cálculo de derivadas: Problemas de valores

Más detalles

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas CÁLCULO ELEMENTAL PROBLEMAS Valor absoluto - Resolver las ecuaciones siguientes: (i) 2x 6 = x (ii) x + 8 = 3x 4 2- Resolver la inecuación 2x 3 4 Funciones y sus gráficas 3- Dada f(x) = 2x 2 x, hallar f(

Más detalles

Cálculo Integral Enero 2016

Cálculo Integral Enero 2016 Cálculo Integral Enero 6 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) ( + + ) ) ( + ) ( ) ) ( w + ) (w ) dw ) ( + ) 5) (y ) dy 6) ( +)( 5) 6 7) + 8) ( +) 5 y+ dy ) (y+5

Más detalles

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6. ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión

Más detalles

Unidad III. Si f es una funcion que asume valores tanto positivos como negativos sobre [a,b], entonces la integral definida :

Unidad III. Si f es una funcion que asume valores tanto positivos como negativos sobre [a,b], entonces la integral definida : Unidad III Aplicaciones de la integral. 3.1 Áreas. 3.1.1 Área bajo la gráfica de una función. Si f es una funcion que asume valores tanto positivos como negativos sobre [a,b], entonces la integral definida

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

Problemas de Análisis Vectorial y Estadístico

Problemas de Análisis Vectorial y Estadístico Relación 1. Funciones Γ y β 1. Función Gamma Definimos la función gamma Γ(p) como: Demostrar que: Γ(p) = t (p 1) e t dt para p> a) Γ(1) = 1 b) Integrando por partes, ver que Γ(p) = (p 1)Γ(p 1) para p>1

Más detalles

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas.

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS CUERPOS GEOMÉTRICOS.- Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. Clasificamos, en el siguiente esquema, los cuerpos geométricos: POLIEDROS.-

Más detalles

MATEMÁTICAS II - EXAMEN SEGUNDO PARCIAL - 17/01/2013

MATEMÁTICAS II - EXAMEN SEGUNDO PARCIAL - 17/01/2013 MATEMÁTICAS II - EXAMEN SEGUNDO PARCIAL - 7// Código: Grado: Ing. Electrónica Rob. y Mec. Ing. Energía Ing. Organización Ind. Nombre y Apellidos: Ejercicio. Considera la región R del primer cuadrante que

Más detalles

Lic. Saúl Villamizar Valencia 53 SÓLIDOS DE REVOLUCIÓN Y ESFERA

Lic. Saúl Villamizar Valencia 53 SÓLIDOS DE REVOLUCIÓN Y ESFERA Lic. Saúl Villamizar Valencia 53 SÓLIDOS DE REVOLUCIÓN Y ESFERA 54 Actualización Permanente en el Área Matemática 1. Cilindro Definiciones Se llama superficie cilíndrica la engendrada por una recta que

Más detalles

+ ax 2 + bx) x. ( 2 sen(x) 0 (a + b sen(x) sen(2x))2 dx sea mínima.

+ ax 2 + bx) x. ( 2 sen(x) 0 (a + b sen(x) sen(2x))2 dx sea mínima. Facultad de Ingeniería - IMERL Cálculo - Curso. Práctico 8. Integrales paramétricas e integrales iteradas dobles y triples. Integrales múltiples. Cambio de variables, áreas, volúmenes, sumas de Riemann

Más detalles

COLEGIO NUESTRA SEÑORA DEL BUEN CONSEJO. Melilla LUGARES GEOMÉTRICOS Y CÓNICAS

COLEGIO NUESTRA SEÑORA DEL BUEN CONSEJO. Melilla LUGARES GEOMÉTRICOS Y CÓNICAS LUGARES GEOMÉTRICOS Y CÓNICAS 01. Halla la ecuación de la circunferencia de centro ( 5, 12) y radio 13. Comprueba que pasa por el punto (0, 0). 02. Halla las ecuaciones de los siguientes lugares geométricos:

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

Cálculo Integral Enero 2015

Cálculo Integral Enero 2015 Cálculo Integral Enero 015 Laboratorio # 1 Antiderivadas I.- Halle las siguientes integrales indefinidas. 10) ) 6) 1 1 1 1 16) 1 8) 9) 18) II.- Calcule 1.. 1 Cálculo Integral Enero 015 Laboratorio # Aplicaciones

Más detalles

MYP (MIDDLE YEARS PROGRAMME)

MYP (MIDDLE YEARS PROGRAMME) MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa

Más detalles

1 + r, y = y 1 + ry Si P es el punto medio del segmento P 1 P 2, entonces x = x 1 + x 2 2

1 + r, y = y 1 + ry Si P es el punto medio del segmento P 1 P 2, entonces x = x 1 + x 2 2 CAPÍTULO 5 Geometría analítica En el tema de Geometría Analítica se asume cierta familiaridad con el plano cartesiano. Se entregan básicamente los conceptos más básicos y los principales resultados (fórmulas)

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1 GUÍ DE EJERCITCIÓN VNZD Cuerpos geométricos Programa Entrenamiento Desafío GUICEN02MT22-16V1 Matemática Una semiesfera tiene un área total de 4π cm 2. Si se corta por la mitad, de manera de formar dos

Más detalles

UNPSJB - Facultad Ciencias Naturales - Asignatura: Matemática 1 Ciclo Lectivo: 2014 CONICAS

UNPSJB - Facultad Ciencias Naturales - Asignatura: Matemática 1 Ciclo Lectivo: 2014 CONICAS Asignatura: Matemática 1 Ciclo Lectivo: 014 CONICAS La superficie que se muestra en la figura se llama doble cono circular recto, o simplemente cono. Es la superficie tridimensional generada por una recta

Más detalles

RECTAS, PLANOS EN EL ESPACIO.

RECTAS, PLANOS EN EL ESPACIO. COMUNICACIÓN MATEMÁTICA: Grafica rectas, planos y sólidos geométricos en el espacio RESOLUCIÓN DE PROBLEMAS Resuelve problemas geométricos que involucran rectas y planos en el espacio. Resuelve problemas

Más detalles

APLICACIONES GEOMÉTRICAS DE LA INTEGRAL DEFINIDA

APLICACIONES GEOMÉTRICAS DE LA INTEGRAL DEFINIDA APLICACIONES GEOMÉTRICAS DE LA INTEGRAL DEFINIDA APLICACIONES GEOMÉTRICAS DE LA INTEGRAL DEFINIDA [8.] Calcular el área del dominio plano definido en el primer cuadrante por: Determinemos los puntos de

Más detalles

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto

Más detalles

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen Universidad Técnica Federico anta aría Coordinación de atemática IV Guía-Apunte de Preparación del CAR 2 do emestre 2011 Información Contenidos del Certamen Teorema de Green, Teorema de Green para Regiones

Más detalles

Tema 8: Cuerpos geométricos. Matemáticas Específicas para Maestros 1º Grado en Educación Primaria

Tema 8: Cuerpos geométricos. Matemáticas Específicas para Maestros 1º Grado en Educación Primaria Tema 8: Cuerpos geométricos Matemáticas Específicas para Maestros 1º Grado en Educación Primaria Definiciones Cuerpos geométricos Poliedros. Elementos. Clasificaciones: o Poliedros cóncavos y convexos.

Más detalles

LA RECTA Y SUS ECUACIONES

LA RECTA Y SUS ECUACIONES UNIDAD 1 LA RECTA Y SUS ECUACIONES PROBLEMAS PROPUESTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivos

Más detalles

Integrales Dobles. Hermes Pantoja Carhuavilca. Matematica II. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos

Integrales Dobles. Hermes Pantoja Carhuavilca. Matematica II. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Integrales Dobles Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 76 CONTENIDO Integrales Dobles Introducción

Más detalles

LA INTEGRAL DEFINIDA. APLICACIONES

LA INTEGRAL DEFINIDA. APLICACIONES 13 LA INTEGRAL DEFINIDA. APLICACIONES REFLEXIONA Y RESUELVE Dos trenes Un Talgo y un tren de mercancías salen de la misma estación, por la misma vía y en idéntica dirección, uno tras otro, casi simultáneamente.

Más detalles

= λ + 1 y el punto A(0, 7, 5)

= λ + 1 y el punto A(0, 7, 5) 94 GEOMETRÍA ANALÍTICA DEL ESPACIO en las PAU de Asturias Dados los puntos A(1, 0, 1), B(l, 1, 1) y C(l, 6, a), se pide: a) hallar para qué valores del parámetro a están alineados b) hallar si existen

Más detalles

Geometría. Cuerpos Geométricos. Trabajo

Geometría. Cuerpos Geométricos. Trabajo Geometría Cuerpos Geométricos Trabajo CUERPOS GEOMÉTRICOS 1. Clasifique los cuerpos geométricos. Dos grupos de sólidos geométricos del espacio presentan especial interés: 1.1. Poliedros: Aquellos cuerpos

Más detalles

Cálculo II (0252) TEMA 4 APLICACIONES DE LA INTEGRAL DEFINIDA. Semestre 1-2011

Cálculo II (0252) TEMA 4 APLICACIONES DE LA INTEGRAL DEFINIDA. Semestre 1-2011 Cálculo II (5) Semestre - TEMA 4 APLICACIONES DE LA INTEGRAL DEFINIDA Semestre - Junio Departamento de Matemática Aplicada U.C.V. F.I.U.C.V. CÁLCULO II (5) Las notas presentadas a continuación tienen como

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 8 GUÍA TEÓRICO PRÁCTICA Nº 5 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

Integración sobre superficies

Integración sobre superficies Problemas propuestos con solución Integración sobre superficies IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Parametrizaciones 1 2. Área de una superficie

Más detalles

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE PLANO TANGENTE Y VECTOR NORMAL. AREA DE UNA SUPERFICIE 1) En cada uno de los siguientes ejercicios se presenta una S dada en forma paramétrica,

Más detalles

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras.

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras. CLASIFICASION DE CUERPOS GEOMETRICOS 1 2 Cuerpos Geométrico s Ángulo diedro: es el ángulo formado por dos caras del poliedro. El ángulo formado por tres o más caras que concurren en un vértice, se denomina

Más detalles

La circunferencia es una curva plana y cerrada, cuyos puntos equidistan de otro punto interior llamado centro.

La circunferencia es una curva plana y cerrada, cuyos puntos equidistan de otro punto interior llamado centro. Geometría y Trigonometría Circunferencia 6. CIRCUNFERENCIA 6.1 Definición y notación de una circunferencia La circunferencia es una curva plana y cerrada, cuyos puntos equidistan de otro punto interior

Más detalles

7. [2013] [JUN-A] a) Pueden existir vectores u y v tales que u = 2, v = 3 y u v = 8? Justifique la respuesta.

7. [2013] [JUN-A] a) Pueden existir vectores u y v tales que u = 2, v = 3 y u v = 8? Justifique la respuesta. 1. [014] [EXT-A] a) Determine el valor o valores de m, si existen, para que la recta r: mx+y = x+ mz = : x-y-z+6 = 0. b) Determine la distancia del punto P= (,1,1) a la recta r cuando m =. sea paralela

Más detalles

Áreas entre curvas. Ejercicios resueltos

Áreas entre curvas. Ejercicios resueltos Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress. FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVAVILIDAD 1- Sea : definida por a) Halla a, b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1/2 y que la recta tangente en el punto de

Más detalles

Ámbito científico tecnológico

Ámbito científico tecnológico Dirección Xeral de Educación, Formación Profesional e Innovación Educativa Educación secundaria para personas adultas Ámbito científico tecnológico Educación a distancia semipresencial Módulo Unidad didáctica

Más detalles

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 3 EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS.

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 3 EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS. INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES Tema EL PLANO Y LAS GRÁFICAS EL PLANO CARTESIANO. COORDENADAS Y DISTANCIA ENTRE PUNTOS. C.- Qué es cómo se representa un sistema de coordenadas cartesianas rectangulares

Más detalles

Figuras de tres dimensiones

Figuras de tres dimensiones Figuras de tres dimensiones Poliedros: cuerpos geométricos limitados por 4 o más superficies planas que son polígonos. Poliedros regulares: todas las caras de igual forma y tamaño. Solo existen 5. Prismas

Más detalles

MATEMÁTICAS 2º DE ESO LOE

MATEMÁTICAS 2º DE ESO LOE MATEMÁTICAS º DE ESO LOE TEMA XII: POLIEDROS Y CUERPOS REDONDOS Poliedros: o Elementos. o Tipos. Poliedros regulares. Cubos. Prismas: elementos, clases. Pirámides: elementos, clases. Áreas laterales y

Más detalles

Trabajo de Investigación Cuerpos Geométricos

Trabajo de Investigación Cuerpos Geométricos Saint George s College Área de Matemáticas y sus Aplicaciones Tercera Unidad Trabajo de Investigación Cuerpos Geométricos Integrantes: -Stefan Jercic -Ignacio Larrain -Cristian Majluf Curso: 10 E Profesora:

Más detalles

TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES

TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES TEMA : CÁLCULO DE FUNCIONES DE AIAS AIABLES. Hallar f,. f, f,. 4 4. Hallar el valor de la función f, en los puntos de la circunferencia.. Calcular los guientes límites: cos lim,, sen lim,, c, lim con,

Más detalles

UNIDAD 8 Geometría analítica

UNIDAD 8 Geometría analítica Pág. 1 de 5 I. Sabes hallar puntos medios de segmentos, puntos simétricos de otros y ver si varios puntos están alineados? 1 Los puntos A( 1, 3), B(2, 6), C (7, 2) y D( 5, 3) son vértices de un cuadrilátero.

Más detalles

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES 1.- En cada uno de los siguientes casos calcular la integral de línea dada a) + +, donde C es el segmento de recta que une el punto O(0,0)

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco

Más detalles

Aplicaciones físicas

Aplicaciones físicas Problemas propuestos con solución Aplicaciones físicas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ulles Índice 1 Integral doble: valor medio 1 2 Integral doble:

Más detalles

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 19 Explorando la esfera-2. Fecha: Profesor: Fernando Viso

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 19 Explorando la esfera-2. Fecha: Profesor: Fernando Viso GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 19 Explorando la esfera-2. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual. Sin libros, ni cuadernos,

Más detalles

CIRCUNFERENCIA INTRODUCCION

CIRCUNFERENCIA INTRODUCCION CIRCUNFERENCIA INTRODUCCION Definición Sea O punto del plano ( P ) y r un real positivo, entonces se denomina circunferencia de centro O y radio r ( C ( O, r ) ), al conjunto formado por y sólo por los

Más detalles

Circunferencia y Círculo

Circunferencia y Círculo Circunferencia y Círculo APRENDIZAJES ESPERADOS Identificar los elementos primarios de Círculo y Circunferencia. Calcular área y perímetro del sector y segmento circular. Contenidos 1. Definición 1.1 Circunferencia

Más detalles

SERIE # 4 CÁLCULO VECTORIAL

SERIE # 4 CÁLCULO VECTORIAL SERIE # 4 CÁLCULO VECTORIAL Página 1 1) Calcular 1 x y dy dx. 0 0 1 ) Evaluar la integral doble circunferencia x y 9. x 9 x da R, donde R es la región circular limitada por la 648 15 x y ) Calcular el

Más detalles

TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales

TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales TEMA 7 Las formas y las medidas que nos rodean 1. Introducción 1.1. Qué es la geometría? Es una rama de la matemática que se ocupa del estudio de las propiedades de las figuras geométricas en el plano

Más detalles

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: GEOMETRÍA ANALITICA GUÍA DE ESTUDIO PARA LA ÚLTIMA OPORTUNIDAD DE ACREDITAR LA MATERÍA

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: GEOMETRÍA ANALITICA GUÍA DE ESTUDIO PARA LA ÚLTIMA OPORTUNIDAD DE ACREDITAR LA MATERÍA Geometría analítica 1.- Ecuación de la recta 2.- Cónicas 3.-Ecuación de la parábola UNIDAD II: CONICAS (CIRCUNFERENCIA Y PARABOLAS) Una superficie cónica de revolución está engendrada por la rotación de

Más detalles

Universidad Diego Portales

Universidad Diego Portales Universidad Diego Portales Facultad de Ingeniería. Instituto de Ciencias Básicas Asignatura: Cálculo II LABORATORIO Nº 0 Longitud de arco y Volumen de sólido de revolución Contenido: Longitud de arco en

Más detalles