1. Encontrar la pendiente de la recta tangente a la curva de intersección de la superficie: z = y con el plano y=2, en el punto (2,1, 6 )

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Encontrar la pendiente de la recta tangente a la curva de intersección de la superficie: z = y con el plano y=2, en el punto (2,1, 6 )"

Transcripción

1 PROBLEMAS RESUELTOS 1. Encontrar la pendiente de la recta tangente a la cra de intersección de la sperficie: z = 1 con el plano =, en el pnto (,1, 6 Solción La pendiente bscada es: z 1 (,1 1 z (,1 6 (,1. La ecación: (- z = -z-5, define a z como na fnción implícita de e. z z Determine i ii Solción i ( z (z5, esto implica qe: (-z ( z = z5 (-z ( z = 0 z5 - (-z z = z 5 z 5 z1 ii ( z (z5 esto implica qe: (-z ( z = z5 (-z ( z = 0 z5 z (-z (1 = 0 z 50 z ( z z1 [ ( z](z1 [ z1](( z ( ( z 1 = (z1 [ z](z1 [ z 1](( z (z1 [ z](z1 [ z](( z ( 1 ( = [ z z z] (z1 (z1 z = z ( z = =

2 5 66z1 [ ] z1 (z1 6 6z1 10 ( z 1 = =. Dado =f( -,-- na fnción contina con deriadas parciales de segndo orden continas. Hallar i ii Solción Se obsera qe es na fnción de dos ariables. = f(,w, donde = - ; w= -- i Para calclar, aplicaremos la regla de la cadena: = + w w = f 1 + f w = f 1 (- + f (-1 = - f 1 - f, en donde f 1 f son las deriadas de parciales de f respecto w, respectiamente. ii : = + w w = f 1 + f w = f 1 ( + f (1 = f 1 + f = ( ( f 1 + f = f 1 + f =[ f 1 + w f 1 w ] + [ f + w f w ] =[f 11 (- + f 1 (-1] + [f 1 (-+ f (-1] =- f 11 - f 1 f 1 f Como f tiene deriadas parciales de segndo orden continas, entonces, f 1 = f 1.

3 Lego, = =- f 11 (+ f 1 f. Dado el sistema de ecaciones, qe define a, con fnciones de e. Determinar,,, Solción Como:,entonces,. Esto implica (por la deriada del prodcto qe:...(. 1 Por otro lado,. Lego, (. Esto implica qe:...( Resoliendo el sistema de ecaciones (1 (, tenemos:, Como:,entonces,. Esto implica qe:...(. También,. Lego, (. Esto implica qe:...( 0 Resoliendo el sistema de ecaciones ( (, tenemos:,

4 5. La distribción de la temperatra en na placa metálica, iene dada por la fnción: 70 T (,, donde T está medida en grados centígrados,,z en metros. 1 z En qé dirección amenta más rápido la temperatra respecto al pnto(1,,? Cál es la máima tasa de incremento? Solción Se sabe qe la gradiente de T es la dirección en la cal amenta más rápido la temperatra. más rápido El gradiente de T es: f(,,z = < f (,,z, f (,,z, f z (,,z > = <,, ( 1 z ( 1 z ( 1 z > f(1,, =< ,, > La tasa máima de crecimiento es la longitd del ector gradiente f(1,, = Resoler la ecación: 5 e + d d = 0 Solción 5 e + d d = 0 d d = - 5 e d = - 5 e 1 d 5 d = - e d ( se logrado separar la ariables 1 Integrando cada término: d = - 5 e 1 e d = - + c

5 7. Resoler la ecación: ( + d + d = 0 Solción Veamos si la EDO es homogénea: P(, = + P(t, t = (t + (t =t ( + = t P(, Q(, = Q(t, t = (t (t = t ( = t Q(, P es homogénea de grado Q es homogénea de grado Lego, la EDO es homogénea. Hacemos el cambio de ariable: z = = z d = dz + z d ( + d + d = 0 ( + (z d + (z ( dz + z d = 0 (1+z d + z ( dz + z d = 0 Diidiendo por : (1+z d + z dz + z d = 0 (1+z d + z dz = 0 z dz d Separando ariables: 1 z 1 ln(1 z = - ln( +cte 1 ln(1 z + ln( = cte 1 z ln( 1 = cte (1+z 1/ = cte (1+ z = cte Sstitendo z = : (1+ = cte + = c

6 8 Resoler la ecación: ( d + + ( - = 0. d Solción Veamos si la Ecación Diferencial Ordinaria (E.D.O es eacta: ( + Recordar: La ecación diferencial: P d + Q d = 0, es eacta si solo si P Q. d + ( - = 0 ( 6 d + ( + d = 0 d (* P(, d + Q(, d = 0 P(, = P 6 = Q(, = Q + = P Q De esto, la E.D.O es eacta. Por lo tanto, s solción es: F(,=c, de modo qe : F = P(, = 6 (1 F = Q(,= + ( F De la ecación (1 : = 6 F(, = ( - 6 d F(, = + ( ( F F Lego, = ( - + ( = + ( ( Reemplazando ( en (: + = + ( ( = '( d d ( = (5 Reemplazando (5 en (: F(, = +. Finalmente, + = c, es la solción de la ecación ordinaria.

7 9 Resoler la ecación: d = 0. d Solción Veamos si la Ecación Diferencial Ordinaria (E.D.O es eacta: d = 0 ( d + d = 0 (* d P(, d + Q(, d = 0 P(, = P = 5 Q(, = Q = De esto, la E.D.O no es eacta. P Q Determinación de factores integrantes: Recordar: P Q d Si (P Q / Q es na fnción eclsia de, entonces ( = e Q es el factor integrante. Q P d Si (Q P / P es na fnción eclsia de, entonces (= e P es el factor integrante. Si (P Q / Q = (5 - / = / es na fnción eclsia de P Q d Lego, ( = e Q d ( = e ( = e ln ( = Ahora mltiplicamos por el factor integrante (=, a ambos miembros de la ecación (*, obtenemos: ( d + d = 0 ( d + 5 d = 0 P(, d + Q(, d = 0 P(, = P = 5 P Q

8 Q(, = 5 Q = 5 De esto, la E.D.O es eacta. Lego, eiste s solción es F(, = c, de modo qe : F = P(, = (1 F = Q(,= 5 ( F De la ecación (1 : = F(, = (5 8 d F 5 Lego, = ( + ( F(, = + ( F = 5 + ( ( Reemplazando ( en (: 5 = 5 + ( (= 0 ( = 0 ( '( d 0d Reemplazando ( en (: F(, = Finalmente, Resoler: sec Solción sec = c, es la solción de la ecación ordinaria. d d d d + = sen; (=1 + = sen d + (cos =cos sen, d P( Q( esta ecación diferencial es lineal de primer orden s solción esta dada por: P( d e = e P( d Q(d C cos( d e = e cos( d sen(cos( d C Lego: d e sen sen = e sen(cos( C e sen = e sen (-1+sen +C (1 sen 0 sen 0 Como: (=1 (=0; =1: 1e = e (-1+sen +C C= ( Reemplazando ( en (1, obtenemos la solción: e sen = e sen (-1+sen +.

9 d 11. Analizar si: f ( +f( P( = Q(, pede ser transformada a na E.D.O d lineal de primer orden. Solción Sea el cambio: z = f ( d z df( df( d d Lego, f '( (1 d d d d d d z Ahora de la E.D. original de la ec.(1, obtenemos: d es lineal. +P( z = Q(, esta E.D. 1 Resoler: e d d + e = d z de d Solción Haciendo: z = e e d d d 1 d z d z Lego: + z = + ( z = 6,esta ecación diferencial es lineal de d d primer orden s solción esta dada por: d z e d = e 6 d C z e = e (6 d C z e e = e +C e = e +C Tomando logaritmos natrales obtenemos: + =Ln( e 1.Determinar n factor integrante de: d (+ d=0, si el factor integrante de es de la forma: = m n. Solción d (+ d=0 ( m n ( d (+ d =( m n ( m n+1 d - ( m+1 n + m+1 n+ d= 0 P Q Para qe sea eacta debe cmplirse: P(, = m n+1 Q(, =- ( m+1 n + m+1 n+ P = (n+1 m m +c Q = -(m+1( m m + m m+

10 Igalando obtenemos: (n+1 m m =-(m+1( m m + m m+ (n+1 m m =-(m+1( m m -(m+1 m m+ De esto, ( n 1 ( m 1 ( m 1 0 n 1 m 1 Por lo tanto, el factor integrante bscado es: = Sea f: si (, (0, definida por: f(,. 0 si (, (0, a. Analizar si f tiene deriada direccional en el origen en calqier dirección b. Analizar si f es diferenciable en (0, Solción a. D f ( 0 h a, 0 h b f ( 0, f ( 0, lim, donde =(a,b, con a + b = 1 h 0 h Caso 1 b0: h0 h D f ( 0, lim h b Caso b=0: a b a ( b b a ( hb h a h 0 h a ( hb lim h0 h h( b h a a b lim h0 ( b h a D f ( 0 h a, 0 h b f ( 0, f ( 0 h a, 0 h f ( 0, lim lim h0 h h0 h ( h a ( 0 f ( h a, f ( 0, lim lim 0 h a lim 0 0 h0 h h0 h h0 f ( 0, En calqier caso, a si b 0 Df (0, b 0 si b 0 Conclsión: En calqier dirección eiste la deriada direccional en (0,.

11 b. La fnción f es no es diferenciable en (0,, a qe NO es contina en (0,, pesto qe no eiste el lim f (,, dado qe: (, 0 S1={(,/ =0}: lim f (, lim f (, lim 0 0 S={(,/ = }: ( 0, (, S1 lim ( 0, (, S 0 f (, lim f (, 0 0 ( lim 0 ( lim Un tanqe está lleno con 10 galones de aga salada en el cal estan diseltas 5 lb de sal. Aga salada conteniendo lb de sal por galón ingresa al tanqe a galones por minto, la mezcla bien agitada sale a la misma tasa. a Determine la cantida de sal presente despés de 10 min b Cánta sal está presente despés de n tiempo largo? Solción Sea A(t la cantidad de sal, en libras, en el tanqe despés de t mintos. Lego, da es la tasa de cambio de la cantidad de sal en el tiempo t, esta dada por: dt da tasa de ingreso - tasa de salida dt (1 Como ingresan gal/min, conteniendo lib/gal de sal, tenemos qe la cantidad de sal gal lib lib qe entra por minto por: 6 ( min gal min Dado qe siempre ha 10 gal en el tanqe debido qe ha A llibras de sal en en el tiempo t, entonces, las concentración de sal en el tiempo t es A libras por 10 galones. La A lib gal A lib cantidad de sal qe sale por minto es: ( 10 gal min 5 min De (1, ( ( tenemos: da A 6 -, A( = 5 (Pesto qe inicialmente ha 5 lib de sal, tenemos A=5 en t = dt 5 da 0 A da dt Por separación de ariable: dt 5 0 A 5 da dt ln(0 A t C 0 A 5 5 Como A=5 en t=0, tenemos c=-ln5. Así, t 5 t ln(0 A ln 5 ln A 0 5e 5 0 A 5 10/5 i Al cabo de 10 mintos se tendrá, A(1 0 5e 6,6 lib ii Despés de n largo tiempo, scede canto t, se tiene qe A0libras t /5

12 EJERCICIOS PROPUESTOS 1. Un eqipo de oceanógrafo está elaborando n mapa del fondo del mar para intentar recperar n antigo barco hndido. Por medio de n sonar, desarrollan n modelo: D = sen, 0, 0, donde, denotan las distancias en kilométros D la profndidad en metros. Hallar la dirección de máimo cambio de profndidad en el pnto de posición del barco. d. Resoler. Además, determine la(s solcion(es singlares si eisten d 1 ce Rpta., solcion singlar = - 1 ce d. Resoler d 8 Rpta. (+ 5 e =c(+ 5 e, propesto Zill,pg57(prop19. Determine n solción contina qe d f(, donde d (=0 ( 1e /, 0 1 Rpta. ( e e /, 1 5. Resoler 6 d+(+9 d=0, (=1, Rpta + =1 ; 0 1 f(, 0; 1 6. Resoler (+ e / d- e / d =0, (1=0, Rpta ln ln / e 1 7. Resoler d d, (1=0, Rpta ln / ln e 1 d 8. Resoler ( 1. Ec. Bernolli d 9. Resoler a. = e -, con (=0 b. (- d + (1 - d = 0 c. (e + d - d = 0, (=0 10. Un eqipo de oceanógrafo está elaborando n mapa del fondo del mar para intentar recperar n antigo barco hndido. Por medio de n sonar, desarrollan n modelo: D = sen, 0, 0, donde, denotan las distancias en kilométros D la profndidad en metros. Halle la dirección de máimo cambio de profndidad en el pnto de posición del barco.

13 d 11. Resela. Además, determine la(s solcion(es singlares si eisten d 1 ce Rpta., solcion singlar = - 1 ce d 1 Resela d 8 Rpta. (+ 5 e =c(+ 5 e, propesto Zill,pg57(prop19 1. Determine n solción contina qe d f(, donde d (=0 ( 1e /, 0 1 Rpta. ( e e /, 1 1. Resela 6 d+(+9 d=0, (=1, Rpta + =1 ; 0 1 f(, 0; Resela (+ e / d- e / d =0, (1=0, Rpta ln ln / e Resela d d, (1=0, Rpta ln / ln e 1 d 17. Resela ( 1. Ec. Bernolli d 18. Resela a. = e -, con (=0 b. (- d + (1 - d = 0 c. (e + d - d = 0, (=0 19. Una lata de metal en forma de cilindro circlar recto a a tener na altra interior de 8 plgadas, con radio interior de plgadas n espesor de 0, plg. Si el costo del metal qe a a ser sado es de 0soles por plg, determine el costo del metal, por diferenciales en la manfactra de la lata. Rpta. 6soles 0. Un tanqe contiene 00 de aga salada en la cal se han diselto 0g de sal. Aga salada con 1 g por litro entra al tanqe a litro por minto; la mezcla bien agitada sale a la misma tasa. Calcle la cantidad de sal cando t =10, Rpta Un tanqe contiene 00 litros de aga donde se han diselto 0g de sal le entran aga pra a L/min; bien mezclado, de él sale líqido con la misma rapidez. Calcle la cantidad de sal cando t =10. Un tanqe tiene 500 galones de aga pra de aga donde se han diselto 0g de sal le entran L/min de solción con 1g de sal por litro; bien mezclado, de él sale líqido con la misma rapidez. Calcle la cantidad de sal cando t =10, Rpta

14 . El qímico A es transformado en el qímico B. La taza a la cal B se forma aría directamente con la cantidad de A presente en calqier instante. Si 10 lb de A están presentes inicialmente si lb se transforman en B en na hora, en cánto tiempo se transforma el 75% del qímico A?. Un tanqe tiene 0 gal de aga pra. Una solción de aga salada con 1 lb de sal por galón entra a gal/min, la mezcla bien agitada sale a la misma tasa. Cándo el aga qe sale tendrá 0,5 lb de sal por galón? 5. Un tanqe tiene 60 gal de aga salada con lb de sal por galón. Una solción con lb de sal por galón entra a gal/min, la mezcla sale a la misma tasa. Cándo el habrá 150 lb de sal en el tanqe?

LÍMITES, CONTINUIDAD Y DERIVADAS

LÍMITES, CONTINUIDAD Y DERIVADAS LÍMITES, CONTINUIDAD Y DERIVADAS ÍNDICE. Concepto de límite. Propiedades de los límites 3. Definición de continidad 4. Tipos de continidad 5. Concepto de derivada 6. Tabla de derivadas 7. Crecimiento y

Más detalles

6 La semejanza en el plano

6 La semejanza en el plano TIVIS MPLIIÓN 6 La semejanza en el plano 1. alcla las medidas de los segmentos,, z, t en la sigiente figra, sabiendo qe las medidas de los segmentos conocidos están epresadas en metros. 4 G z t. ibja n

Más detalles

GEOMETRÍA ANALÍTICA AB CD CD AB CD

GEOMETRÍA ANALÍTICA AB CD CD AB CD GEOMETRÍA ANALÍTICA.- Vectores..- Vectores fijos en el plano Llamaremos ector fijo a todo par ordenado de pntos del plano. Si los pntos son A y B conendremos en representar por AB el ector fijo qe determinan;

Más detalles

CALCULO DIFERENCIAL Escuela Colombiana de Ingeniería 5.1. DERIVADA DE LA FUNCIÓN EXPONENCIAL ( ) f ( x) = a Enunciado. x h x. x h.

CALCULO DIFERENCIAL Escuela Colombiana de Ingeniería 5.1. DERIVADA DE LA FUNCIÓN EXPONENCIAL ( ) f ( x) = a Enunciado. x h x. x h. Escela Colombiana e Ingeniería.. DERIVADA DE LA FUNCIÓN EXPONENCIAL Aplicano la efinición e la erivaa se tiene: f a Ennciao. + f + f a a f ' Lim Lim Aplicano la efinición e la erivaa. 0 0 a a a a ( a f

Más detalles

1.2 TÉCNICAS DE LA DERIVACIÓN.

1.2 TÉCNICAS DE LA DERIVACIÓN. . TÉCNICAS DE LA DERIVACIÓN... DERIVACIÓN DE FUNCIONES ALGEBRAICAS Generalmente la derivación se lleva acabo aplicando fórmlas obtenidas mediante la regla general de la derivación y qe calclaremos a continación,

Más detalles

Ecuaciones diferenciales ordinarias de primer orden: problemas resueltos

Ecuaciones diferenciales ordinarias de primer orden: problemas resueltos Ecuaciones diferenciales ordinarias de primer orden: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M.

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

Tercera Parte: Producto Vectorial y Producto Mixto entre vectores

Tercera Parte: Producto Vectorial y Producto Mixto entre vectores Tercera Parte: Prodcto Vectorial Prodcto Mito entre ectores Introdcción Retomemos el caso los dos pintores: Carlos Jan. Finaliada la tarea de moer el escritorio, el arqitecto qe coordina la obra, indica

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecaciones Diferenciales Ordinarias Cristian j. P. Castillo U. ÍNDICE GENERAL PRESENTACIÓN CAPÍTULO. INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES 4. Definición de ecación diferencial 5. Clasificación de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Lección 3. Cálculo vectorial. 4. Integrales de superficie.

Lección 3. Cálculo vectorial. 4. Integrales de superficie. GRAO E INGENIERÍA AEROEPACIAL CURO 0 MATEMÁTICA II PTO E MATEMÁTICA APLICAA II 4 Integrales de sperficie Nestro último paso en la etensión del concepto de integral es el estdio de las integrales de sperficie,

Más detalles

VECTORES EN EL PLANO

VECTORES EN EL PLANO VECTORES EN EL PLANO.- PRIMERO DE BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 VECTORES EN EL PLANO Vector fijo. Es n segmento orientado. Lo representamos por AB o por. El pnto A es el origen y el pnto B

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El

Más detalles

UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas.

UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas. UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas. PROBLEMAS DE CÁLCULO INFORMÁTICA DE SISTEMAS . Cálculo diferencial. Probar que a si y sólo si a a, siendo a >. Utilizar estas desigualdades

Más detalles

NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa

NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa NOMBRE: VECTORES EN EL PLANO Ángel de la Llave Canosa 1 VECTORES EN EL PLANO VECTOR FIJO Un vector fijo AB es n segmento orientado, qe está definido por dos pntos: Un pnto origen y n pnto extremo. Los

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS 5 TRAYECTORIAS DE UN HAZ DE CURVAS: Se dice que una familia de curvas T(,, k) 0 (k una constante arbitraria)

Más detalles

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a

Más detalles

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales.

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0.. Ecuaciones diferenciales de primer orden. Traectorias ortogonales. Muchas aplicaciones problemas de la ciencia, la ingeniería la economía se formulan en términos

Más detalles

UNIDAD 12. ECUACIONES DE RECTA Y PLANO

UNIDAD 12. ECUACIONES DE RECTA Y PLANO Unidad. Ecaciones de la recta el plano UNIDD. EUIONES DE RET Y PLNO. Introdcción. Espacio fín... Vector en el espacio. Vector libre fijo... Operaciones con ectores.. Dependencia e independencia de ectores.

Más detalles

Áreas entre curvas. Ejercicios resueltos

Áreas entre curvas. Ejercicios resueltos Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

4.3 Problemas de aplicación 349

4.3 Problemas de aplicación 349 4. Problemas de aplicación 49 4. Problemas de aplicación Ejemplo 4.. Circuito Eléctrico. En la figura 4.., se muestra un circuito Eléctrico de mallas en el cual se manejan corrientes, una en cada malla.

Más detalles

CÁLCULO DIFERENCIAL. Máximos y Mínimos. Equipo 2

CÁLCULO DIFERENCIAL. Máximos y Mínimos. Equipo 2 CÁLCULO DIFERENCIAL Equipo 2 Máximos y Mínimos Estos son los ejercicios que deberá el equipo explicar dentro de la clase, este equipo tendrá un máximo de 5 integrantes, y deberá valerse de materiales o

Más detalles

Universidad de San Carlos de Guatemala

Universidad de San Carlos de Guatemala Clave: 03-2-M-2-00-203 Universidad de San Carlos de Guatemala Facultad de Ingeniería Departamento de matemática Curso: Matemática Básica 2 Código del curso: 03 Semestre: Segundo semestre 203 Tipo de eamen:

Más detalles

INTEGRALES DE SUPERFICIE.

INTEGRALES DE SUPERFICIE. INTEGALE DE UPEFICIE. 31. Encontrar el área de la sperficie definida como intersección del plano x + y + z 1 con el sólido x + y 1. olción La sperficie dada se pede parametrizar por x cos v : y (/ ) sen

Más detalles

x = t 3 (x t) 2 + x t. (1)

x = t 3 (x t) 2 + x t. (1) Problema 1 - Considera la siguiente ecuación de primer orden: x = t 3 (x t + x t (1 (a Comprueba que x(t = t es solución de la ecuación (b Demuestra que si x = x(t es la solución que pasa por el punto

Más detalles

Magnitudes escalares, son aquellas que quedan definidas por una sola cantidad que denominaremos valor del escalar.

Magnitudes escalares, son aquellas que quedan definidas por una sola cantidad que denominaremos valor del escalar. +34 9 76 056 - Fa: +34 9 78 477 Vectores: Vamos a distingir dos tipos de magnitdes: Magnitdes escalares, son aqellas qe qedan definidas por na sola cantidad qe denominaremos valor del escalar. Ej: Si decimos

Más detalles

Departamento de Matematicas UNIANDES Cálculo Diferencial. Parcial 2

Departamento de Matematicas UNIANDES Cálculo Diferencial. Parcial 2 Departamento de Matematicas UNIANDES Cálculo Diferencial Parcial Estudiante: Fecha: Sea g() = ( + 3). Entonces f (7) = 00. Verificarlo a partir de la derivada como limite. (La derivada obviamente es pero

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Tema 9. Funciones de varias variables.

Tema 9. Funciones de varias variables. Tema 9. Funciones de varias variables. 9.1 Introducción 9.2 Límite continuidad. 9.3 Derivadas parciales. Derivadas de orden superior. Teorema Schwart. 9.4 Diferencial. 9.5 Regla de la cadena. Derivación

Más detalles

OBJETIVOS: Definir Límites. Realizar demostraciones formales de límites. Describir gráficamente los límites. Calcular límites.

OBJETIVOS: Definir Límites. Realizar demostraciones formales de límites. Describir gráficamente los límites. Calcular límites. Cap. Límites de Fnciones. LÍMITE EN UN PUNTO. LÍMITES LATERALES. TEOREMAS SOBRE LÍMITES.4 CÁLCULO DE LÍMITES.5 LÍMITES AL INFINITO.6 LÍMITES INFINITOS.7 OTROS LÍMITES OBJETIVOS: Definir Límites. Realizar

Más detalles

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3 Definición LA CIRCUNFERENCIA Se llama circunferencia a la sección cónica generada al cortar un cono recto con un plano perpendicular al eje del cono. La circunferencia es el lugar geométrico de todos los

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 9: Campos Direccionales, Curvas Integrales. Eistencia y Unicidad Elaborado por los profesores Edgar Cabello y Marcos González La ecuación y = f(, y) determina el coeficiente angular de la tangente

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión

Más detalles

EXAMEN DE MATEMÁTICAS I Licenciatura en Ciencias Económicas 24 de Enero de 2009

EXAMEN DE MATEMÁTICAS I Licenciatura en Ciencias Económicas 24 de Enero de 2009 EXAMEN DE MATEMÁTICAS I Licenciatura en Ciencias Económicas 4 de Enero de 9 NOMBRE: APELLIDOS: D.N.I.: GRUPO: INSTRUCCIONES: Para la realización de este eamen se entregarán dos cuadernillos. Cuadernillo

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

4. Espacios Vectoriales

4. Espacios Vectoriales 4. Espacios Vectoriales 4.. Definición de espacio, sbespacio ectorial y ss propiedades n ector es na magnitd qe consta de módlo, dirección y sentido. Algnos sin embargo; más teóricos, explicarían qe n

Más detalles

EJERCICIOS RESUELTOS

EJERCICIOS RESUELTOS FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Ingeriería Técnica Industrial. Especialidad en Mecánica. Boletin 6. Funciones de Varias Variables EJERCICIOS RESUELTOS Curso 003-004 1. En cada apartado, calcular

Más detalles

2. Determinar el dominio de las siguientes funciones de variable real. a) f ( x ) = 4 2x b) f ( x ) =x 2 4x + 3

2. Determinar el dominio de las siguientes funciones de variable real. a) f ( x ) = 4 2x b) f ( x ) =x 2 4x + 3 Ejercicios para practicar. Dado los conjntos A = {, 4, 6, 8,0,,4} B = {,, 5, 7, 9,,,5}; Constra la sigiente relación de A en B R = {(, ) / = + }. Adicionalmente determine el dominio el rango de cada na

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAPÍTULO 3 Aplicaciones de primer orden 3.3 Crecimiento de poblaciones En esta sección veremos dos modelos de ED que sirven para representar la forma en que evoluciona el número P.t/ de habitantes de una

Más detalles

FUNCIONES DE VARIAS VARIABLES

FUNCIONES DE VARIAS VARIABLES FUNCIONES DE VARIAS VARIABLES FUNCIONES DE VARIAS VARIABLES [5.] Hallar representar gráficamente las curvas de nivel de la función f (, ). Solución Por definición Cm, / m. Por tanto: C 0 0, / 0, / 0 m

Más detalles

2 Unidad II: Ecuaciones Diferenciales de Orden Superior

2 Unidad II: Ecuaciones Diferenciales de Orden Superior ITESM, Campus Monterrey Departamento de Matemáticas MA-41: Ecuaciones Diferenciales Lectura # Profesor: Victor Segura Flores Unidad II: Ecuaciones Diferenciales de Orden Superior.1 Ecuaciones Diferenciales

Más detalles

FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

FUNCIONES EXPONENCIALES Y LOGARÍTMICAS CAPÍTULO 7 FUNCIONES EXPONENCIALES Y LOGARÍTMICAS 7. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS Una fnción eponencial es aqella en la qe la variable está en el eponente. Ejemplos e fnciones eponenciales son

Más detalles

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto.

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. DERIVADAS Tema: La derivada como pendiente de una curva Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. La pendiente de la curva en el punto

Más detalles

TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES

TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES TEMA : CÁLCULO DE FUNCIONES DE AIAS AIABLES. Hallar f,. f, f,. 4 4. Hallar el valor de la función f, en los puntos de la circunferencia.. Calcular los guientes límites: cos lim,, sen lim,, c, lim con,

Más detalles

EJERCICIOS DE ECUACIONES DIFERENCIALES PROPUESTOS EN EXÁMENES

EJERCICIOS DE ECUACIONES DIFERENCIALES PROPUESTOS EN EXÁMENES TUTORÍA DE MATEMÁTICAS III (º A.D.E.) e-mail: imozas@el.uned.es EJERCICIOS DE ECUACIONES DIFERENCIALES PROPUESTOS EN EXÁMENES. Sea el precio unitario de venta de un producto, e la oferta de dicho producto.

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

Análisis Matemático I (Lic. en Cs. Biológicas) Práctica 4: Derivadas. Primer cuatrimestre de 2009

Análisis Matemático I (Lic. en Cs. Biológicas) Práctica 4: Derivadas. Primer cuatrimestre de 2009 Análisis Matemático I (Lic. en Cs. Biológicas) Primer cuatrimestre de 2009 Práctica 4: Derivadas Notaciones: Dada una función f : R R, un punto a R y un número R que llamaremos incremento en, se define

Más detalles

Derivada. 1. Pendiente de la recta tangente a una curva

Derivada. 1. Pendiente de la recta tangente a una curva Nivelación de Matemática MTHA UNLP Derivada Pendiente de la recta tangente a una curva Definiciones básicas Dada una curva que es la gráfica de una función y = f() y sea P un punto sobre la curva La pendiente

Más detalles

UNIDAD IV DISTANCIA ENTRE DOS PUNTOS

UNIDAD IV DISTANCIA ENTRE DOS PUNTOS UNIDAD IV DISTANCIA ENTRE DOS PUNTOS Dados los puntos: P(x1, y1) y Q(x2, y2), del plano, hallemos la distancia entre P y Q. Sin pérdida de generalidad, tomemos los puntos P y Q, en el primer cuadrante

Más detalles

5.5 LÍNEAS TRIGONOMÉTRICAS

5.5 LÍNEAS TRIGONOMÉTRICAS 5.5 LÍNES TRIGONOMÉTRIS Sea (O, ) una circunferencia con centro en el origen de coordenadas O(0, 0) radio la unidad. Si se construe un ángulo con vértice en el origen sentido positivo podemos obtener las

Más detalles

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE Por cálculo integral sabemos que cuando vamos a determinar una integral impropia de la forma,su desarrollo se obtiene realizando un cambio de variable en el límite superior de

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO (,4,3) MATEMÁTICAS II º Bachillerato Alfonso Gonále IES Fernando de Mena Dpto. de Matemáticas I. DEFINICIONES 1 Módlo: Indica la intensidad, iene dado por la longitd de la flecha

Más detalles

1. Derivadas parciales

1. Derivadas parciales Análisis Matemático II. Curso 2009/2010. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 3. ABLES DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARI- 1. Derivadas parciales Para

Más detalles

12.2 Vectores Algunos de los factores que medimos están determinados simplemente por sus magnitudes. Por

12.2 Vectores Algunos de los factores que medimos están determinados simplemente por sus magnitudes. Por . Vectores 665. Vectores Algnos de los factores qe medimos están determinados simplemente por ss magnitdes. Por ejemplo, para registrar la masa, la longitd o el tiempo sólo necesitamos escribir n número

Más detalles

1 Ecuaciones diferenciales

1 Ecuaciones diferenciales 1 Ecuaciones diferenciales La solución a una ecuación algebraica es un número, o un conjunto de números que satisfacen la ecuación. Por ejemplo las soluciónes de x 2 4x + 3 = 0 son x 0 = 1 y x 1 = 3. Las

Más detalles

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2)

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2) Tema 0 Aplicaciones de la derivada Matemáticas II º Bachillerato TEMA 0 APLICACIONES DE LA DERIVADA RECTA TANGENTE Escribe e 0 EJERCICIO : la ecuación de la recta tangente a la curva f en 0. Ordenada del

Más detalles

2 Métodos de solución de ED de primer orden

2 Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de ED de primer orden.9 Ecuaciones diferenciales reducibles a primer orden.9.1 Introducción En el siguiente ejemplo aparece una ecuación diferencial de orden mayor que uno.

Más detalles

MAT-207 ECUACIONES DIFERENCIALES Ing. Magalí Cascales CONTENIDO UNIDAD #2 ECUACIONES DIFERENCIALES DE PRIMER ORDEN

MAT-207 ECUACIONES DIFERENCIALES Ing. Magalí Cascales CONTENIDO UNIDAD #2 ECUACIONES DIFERENCIALES DE PRIMER ORDEN MAT-07 ECUACIONES DIFERENCIALES Ing. Magalí Cascales CONTENIDO UNIDAD #1 ECUACIONES DIFERENCIALES 1. Definición. Solución de una Ecuación Diferencial. Clasificación UNIDAD # ECUACIONES DIFERENCIALES DE

Más detalles

EJERCICIOS TEMA 4 FUNCIONES DE VARIAS VARIABLES

EJERCICIOS TEMA 4 FUNCIONES DE VARIAS VARIABLES EJERCICIOS TEMA 4 FUNCIONES DE VARIAS VARIABLES EJERCICIOS TEMA 4 EJERCICIOS TEMA 4 3 TOPOLOGÍA Ejercicio 1 Sea el conjunto A = 0; 1) [ fg. Hallar A, A, A 0 fra). Solución: A = 0; 1); A = [0; 1] [ fg;

Más detalles

Ecuaciones diferenciales lineales: definición y método general de solución. Modelos de un compartimento.

Ecuaciones diferenciales lineales: definición y método general de solución. Modelos de un compartimento. : definición y método general de solución. Modelos de un compartimento. 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Contenidos 1 Introducción 2 3 4 Índice 1 Introducción 2 3 4 Introducción

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Cap. 1 Funciones de Varias variables. Moisés Villena Muñoz

Cap. 1 Funciones de Varias variables. Moisés Villena Muñoz Cap. Funciones de Varias variables. Definición de Funciones de dos variables. Dominio. Grafica..4 Curvas de nivel. Derivadas Parciales.6 Funciones Homogéneas.7 Funciones Nomotéticas.8 Diferencial Total.9

Más detalles

Cálculo Diferencial e Integral - Recta tangente y velocidad. Farith J. Briceño N.

Cálculo Diferencial e Integral - Recta tangente y velocidad. Farith J. Briceño N. Cálculo Diferencial e Integral - Recta tangente y velocidad. Farit J. Briceño N. Objetivos a cubrir Código : MAT-CDI.7 Problema: Recta tangente a una curva en un punto 0. Problema: Velocidad promedio y

Más detalles

FLUJOS EXTERNOS. José Agüera Soriano

FLUJOS EXTERNOS. José Agüera Soriano FLUJOS EXTERNOS José Agüera Soriano 011 1 José Agüera Soriano 011 FLUJOS EXTERNOS CAPA LÍMITE RESISTENCIA DE SUPERFICIE RESISTENCIA DE FORMA RESISTENCIA TOTAL VELOCIDADES SUPERSÓNICAS José Agüera Soriano

Más detalles

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y),

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y), Problema. Calcula las derivadas parciales de las siguientes funciones: (a) f(x, y) = x + y cos(xy), (b) f(x, y) = x x + y, (c) f(x, y) = log x + y x y, (d) f(x, y) = arctan x + y x y, (e) f(x, y) = cos(3x)

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES UNIDAD 6 DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES Página 5 Problema y f () 5 5 9 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(). f'() 0; f'(9) ; f'() Di otros tres puntos en

Más detalles

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN 1 PROBLEMAS DE OPTIMIZACIÓN Planteamiento y resolución de los problemas de optimización Se quiere construir una caja, sin tapa, partiendo de una lámina rectangular de cm de larga por de ancha. Para ello

Más detalles

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo

Más detalles

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2 1. Usando la definición correspondiente demostrar que la función es diferenciable en todo R 2. z = f(x, y = 3x xy 2 Se debe verificar que para todo (a, b en R 2, existen funciones, de = x y k = y, ɛ 1

Más detalles

Academia de Matemáticas T.M Geometría Analítica Página 1

Academia de Matemáticas T.M Geometría Analítica Página 1 INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción

Más detalles

Ecuaciones diferenciales de primer orden

Ecuaciones diferenciales de primer orden Tema 8 Ecuaciones diferenciales de primer orden Las ecuaciones diferenciales tuvieron un origen de carácter puramente matemático, pues nacieron con el cálculo infinitesimal. El destino inmediato de esta

Más detalles

ACTIVIDADES INICIALES. b) ( 1, 6) d) (0, 3) (0, 1) (0, 2) f) ( 8, 4) (24, 6) (16, 2) h) ( 5, 3) (2, 2) ( 3, 1) EJERCICIOS PROPUESTOS

ACTIVIDADES INICIALES. b) ( 1, 6) d) (0, 3) (0, 1) (0, 2) f) ( 8, 4) (24, 6) (16, 2) h) ( 5, 3) (2, 2) ( 3, 1) EJERCICIOS PROPUESTOS Solcionario 4 Vectores TIVIDDES INIILES 4.I. Efectúa las sigientes operaciones: a) (5, 3) (, 4) c) 5(3, ) (, 4) e) (7, 4) (, ) g) (3, 6) 3 (, ) b) (6, 4) (7, ) d) 3(0, ) (0, 3) f) 4(, ) 6(4, ) h) (5, 3)

Más detalles

Métodos de solución de ED de primer orden

Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de E de primer orden. Ecuaciones diferenciales de variables separables El primer tipo de E que presentamos es el de variables separables, porque con frecuencia se intenta separar

Más detalles

Ejercicios de Integrales resueltos

Ejercicios de Integrales resueltos Ejercicios de Integrales resueltos. Resuelve la integral: Ln Ln Llamemos I Ln u du Aplicamos partes: dv v I Ln t t 4 t t t 4 t t 4 t 4 4 4t 4 t t t A t B t A( t) B( t) A ; B 4 t t Ln t Ln t t C Deshaciendo

Más detalles

3.2 EL PRODUCTO ESCALAR Y LAS PROYECCIONES EN R 2

3.2 EL PRODUCTO ESCALAR Y LAS PROYECCIONES EN R 2 34 CAPÍTULO 3 Vectores en R R 3 ais sqare a=ais; ais([min(a([1,3])),ma(a([,4])),min(a([1,3])),ma(a([,4]))]) % hold off Una ez qe se haa escrito la fnción en n archio con nombre lincomb.m, dé el comando

Más detalles

CALCULO DIFERENCIAL E INTEGRAL II. dy 2

CALCULO DIFERENCIAL E INTEGRAL II. dy 2 CALCULO DIFERENCIAL E INTEGRAL II TEMA Nº 10 (Última modificación 8-7-015) ECUACIONES DIFERENCIALES En muchos problemas físicos, geométricos o puramente matemáticos, se trata de hallar una función = F()

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Tema Derivadas. Aplicaciones Matemáticas I º Bacillerato TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN EN UN INTERVALO EJERCICIO : Halla la tasa de variación

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Elementos de Cálculo en Varias Variables

Elementos de Cálculo en Varias Variables Elementos de Cálculo en Varias Variables Departamento de Matemáticas, CSI/ITESM 5 de octubre de 009 Índice Introducción Derivada parcial El Jacobiano de una Función 5 Derivadas Superiores 5 5 Derivada

Más detalles

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) =

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) = Transformada de Laplace - Conceptos Básicos Definición: Sea f (t) una función de t definida para t > 0. La Transformada de Laplace de f(t) se define como: L { f (t) } = F(s) = 0 e -st f(t)dt Algunas Propiedades

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

2.1.5 Teoremas sobre derivadas

2.1.5 Teoremas sobre derivadas si x < 0. f(x) = x si x 0 x o = 0 Teoremas sobre derivadas 9 2. f(x) = x 3, x o = 3 a. Determine si f es continua en x o. b. Halle f +(x o ) y f (x o ). c. Determine si f es derivable en x o. d. Haga la

Más detalles

Introducción a la simulación de fluidos (II) Animación Avanzada

Introducción a la simulación de fluidos (II) Animación Avanzada Introdcción a la simlación de flidos (II) Animación Avanzada Iván Aldán Íñigez 7 de Marzo de 014 Índice Flidos en el contino Leyes de conservación Método de paso fraccionado Advección Viscosidad Ferzas

Más detalles

Análisis Dinámico: Ecuaciones diferenciales

Análisis Dinámico: Ecuaciones diferenciales Análisis Dinámico: Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Análisis Dinámico: 1 / 51 Introducción Solución genérica Solución de

Más detalles

Solución Numérica de Ecuaciones Diferenciales Parciales Parabólicas

Solución Numérica de Ecuaciones Diferenciales Parciales Parabólicas Solción Nmérica de Ecaciones Diferenciales Parciales Parabólicas Diferencias Finitas En la discretización de las EDPs samos fórmlas de diferencias finitas para las derivadas qe se derivan de las fórmlas

Más detalles

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1 TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II º Bach. TEMA 5 VECTORES EN EL ESPACIO 5. LOS VECTORES Y SUS OPERACIONES DEINICIÓN Un ector es n segmento orientado. Un ector extremo B. Elementos de n ector:

Más detalles

4 Ecuaciones diferenciales de orden superior

4 Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4. educción de orden allar un método para encontrar soluciones que formen un conjunto fundamental de la ED será nuestro trabajo en las siguientes secciones.

Más detalles

Cálculo Diferencial e Integral - Integración por partes. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Integración por partes. Prof. Farith J. Briceño N. Cálculo Diferencial e Integral - Integración por partes. Prof. Farith J. Briceño N. Objetivos a cubrir Integración : Integración por partes. Ejemplo : Integre ln d Código : MAT-CDI.6 Ejercicios resueltos

Más detalles

TEMA 1. MAGNITUDES FÍSICAS

TEMA 1. MAGNITUDES FÍSICAS TEMA 1. MAGNITUDES FÍSICAS 1. Definición de magnitd física 2. Magnitdes físicas fndamentales deriadas. Sistema Internacional de Unidades (SI) 3. Cambio de nidades: Método de las fracciones nitarias 4.

Más detalles

(Apuntes en revisión para orientar el aprendizaje) Capítulo III La derivada y algunas aplicaciones

(Apuntes en revisión para orientar el aprendizaje) Capítulo III La derivada y algunas aplicaciones (Apuntes en revisión para orientar el aprendizaje) Capítulo III La derivada y algunas aplicaciones INTRODUCCIÓN Uno de los problemas fundamentales del Cálculo Diferencial se refiere a la determinación

Más detalles

Segunda Parte: Producto escalar de vectores

Segunda Parte: Producto escalar de vectores Segnda Parte: Prodcto escalar de ectores Constrcciones ectores En el diseño del techo de na galería se emlea n semicílindro, qe se sostiene a traés de igas qe se cran en distintos ntos sobre el techo.

Más detalles

1. ECUACIONES DIFERENCIALES ORDINARIAS

1. ECUACIONES DIFERENCIALES ORDINARIAS 1 1. ECUACIONES DIFERENCIALES ORDINARIAS 1.1. PRIMERAS DEFINICIONES. PROBLEMA DEL VALOR INICIAL Definición 1.1. Una ecuación diferencial es una ecuación en la que intervienen una variable dependiente y

Más detalles

Introducción a la Programación Lineal

Introducción a la Programación Lineal UNIDAD 0 Introducción a la Programación Lineal. Modelo de Programación Lineal con dos variables Ejemplo: (La compañía Reddy Mikks) Reddy Mikks produce pinturas para interiores y eteriores, M y M. La tabla

Más detalles