2.3.1 Cálculo de primitivas
|
|
- Clara Lozano Castellanos
- hace 5 años
- Vistas:
Transcripción
1 Mtemátics I.3 Lists de ejercicios de Cálculo Integrl.3 Lists de ejercicios de Cálculo Integrl.3. Cálculo de primitivs 75. Encontrr l epresión de ls siguientes integrles indefinids: ) p) tg b) e sen cos e) ( +5) h) k) e n) sen q) (3 +) 4 c) f) + 4 (+5) i) + + l) ln() ln(4) o) rctg r) ( +5) sen 3 cos ln 76. Encontrr l epresión de ls siguientes integrles indefinids: ) (+)( + ) b) (+)( ++) e) (+) ( +) h) 3 + ( +) c) 6 + f) 8 ( ) 5 i) ( +) + ( +4) Encontrr l epresión de ls siguientes integrles indefinids: ) cos cos (3) b) cos cos 3 c) tg (5) (tg 3 4 +tg4 ) 4 e) sen 5 f) sen 3 cos5 cos 5 sen 3 h) cos 6 (3) i) sen 4 (sen cos ) cos k) l) cos 6 sen 6 3 sen + cos n) +3 cos sen +3 cos o) cos + sen Encontrr l epresión de ls siguientes integrles indefinids: ) e + b) e) sh +ch ++ (+) + h) + 3 ( ) 5 4 k) n) ch 4 c) cotg 4 f) + i) +4 4 l) 4 ( + ) o) sh 3 ch th() ( ) I.T.I. en Electricidd 3
2 Mtemátics I.3 Lists de ejercicios de Cálculo Integrl.3. Integrl Definid 79. Comprobr que l función f() = k, donde k es constnte, es integrble en culquier intervlo [, b] de IR y clculr el vlor de l integrl. {, si [, ] 8. Comprobr que l función f() =, si (, ] l condición de integrbilidd de Riemnn.) es integrble Riemnn en [, ]. (Utilizr 8. Justificr rzondmente l flsedd de ls siguientes firmciones: ) U(f,P ) = 4 pr P = {,, 3, } y U(f,P ) = 5 pr P = {, 4,, 3, }. b) L(f,P ) = 5 pr P = {,, 3, } y L(f,P ) = 4 pr P = {, 4,, 3, }. c) Tomndo P P[, ], (i) L(f,P) =3 y U(f,P) =. (ii) L(f,P) =3 y U(f,P) =6 y (iii) L(f,P) =3 y U(f,P) =6 y f() =. f() =. 8. Se sbe que f() =6, ls siguientes integrles: f() =4 y 5 f() =. Hllr el vlor de cd un de ) 5 f() b) f() c) 5 f(). 83. Considerr l gráfic de l función f() =+ en [, ]. Construir, prtir de ell, l función F :[, ] IR definid medinte F () = f(t) dt. 84. Se f() = F () = {, si [, ], si (, 3] f(t) dt y F () =. Considerr ls funciones F,F :[, 3] IR dds por f(t) dt. ) Obtener epresiones pr F y F. Son continus en [, 3]? b) Estudir l derivbilidd de F y F. En los puntos donde dmiten derivd, es cierto que F () =f()? y que F () =f()? c) F F, pero en qué se diferencin?, si <, si [, ] 85. Sen f() = y g() = f(t) dt., si <, si > ) Hllr el dominio de g. b) Encontrr un epresión pr g y dibujr ls gráfics de mbs funciones. c) Estudir l continuidd y derivbilidd de mbs funciones. Comprobr que g () =f(), pr cd Dom(g ). 86. Se f() = +sen t dt. Clculr f() yf (), indicndo sus dominios de definición. I.T.I. en Electricidd 3
3 Mtemátics I.3 Lists de ejercicios de Cálculo Integrl 87. Hllr f (), indicndo su dominio de definición, pr ) f() = c) f() = 3 ( ) 3 +sen t dt. b) f() = +sen t dt. ( sen ) +sen t dt. f() = +sen dt t +sen t dt. 88. Hllr el dominio y l epresión de f () pr cd un de ls siguientes funciones: ) f() = Sen f derivble y F () = t dt b) f() = ln f(t) dt. Es cierto que F () = 9. Si f es continu, clculr F (), siendo F () = cos t dt c) f() = sen(t ) dt f(t) dt. 9. Probr que si f:ir IR es continu y periódic de periodo T, entonces 3 f (t) dt? Por qué? +T f() = T f() IR. 9. Demostrr que se verific l iguldd b f() = b f( + b ). 93. Se f:ir IR estrictmente creciente y continu, con f() =. Clculr los etremos de l función (+3)( ) f(t) dt. 94. Dd l función f estrictmente creciente en IR, con f() =, y continu, estudir el crecimiento, decrecimiento y los etremos de F () = Encontrr los vlores de pr los que l función F () = f(t) dt. 96. Sen f y g funciones reles continus en [, b] que verificn que b f() = b g(). Demostrr que eiste un punto c [, b] tl que f(c) =g(c). 97. Se define l función bet por B(n, = ) Probr que B(n, =B(m, n). b) Probr que B(n, ) = B(,n)= n = (n )!! n!. c) Probr que si n, m, B(n, = n m de ello que B(n, = (n )! (m )! (n+m )!. te t dt lcnz lgún etremo. n ( ) m pr n, m IN, n, m >. B(n,m+)= m n B(n +,m ) y deducir I.T.I. en Electricidd 33
4 Mtemátics I.3 Lists de ejercicios de Cálculo Integrl.3.3 Aplicciones de l Integrl 98. Probr que el áre encerrdo por l curv f() =p n, con [,], p IR y n IN es f() n Hllr el áre de l figur limitd por l curv y = ( )( ) y el eje de bciss.. Clculr, de dos mners distints, el áre de l figur limitd por l curv y = 3, l rect y = 8, y el eje OY.. Hllr el áre encerrdo por l elipse + y b =.. Hllr el áre de l figur comprendid entre ls prábols y =, y =, y l rect y =. 3. Clculr el áre de ls dos prtes en que l prábol y = divide l círculo + y =8. 4. Clculr el áre de l figur limitd por l hipérbol y b = y l rect =. 5. Clculr el áre de cd un de ls prtes en que ls curvs y = y = y dividen l círculo + y Clculr el áre limitd por ls curvs f() = e +e y g() = ( ++) cundo [, ]. 7. Clculr el áre encerrd por l curv y = + rcsen y el eje de bciss. (Not: Estudir el dominio y el signo de l función.) 8. L curv que prece en l figur de l derech, llmd stroide, viene dd por l ecución 3 + y 3 = 3 Hllr el áre encerrd por l stroide. (Not: Se sugiere el cmbio = sen 3 t ó = cos 3 t.) 9. Clculr el áre de l figur limitd por l curv y = ( ).. Clculr el áre de l figur comprendid dentro de l curv ( 5 ) +( y 4 ) 3 =.. Comprobr usndo l integrción, que el volumen de un esfer de rdio r es 4 3 πr3. Considerr el sólido V, epresdo nlíticmente como V = { } (, y, z) : + y ; z y y formdo l cortr el cilindro + y por los plnos z = e y + z =. Describir y clculr el áre de ls secciones de V prlels cd uno de los plnos coordendos. 3. Hllr el volumen del elipsoide + y + z =. b c 4. Hllr el volumen encerrdo por el prboloide elíptico y 4 +z 6 = y limitdo por el plno =5. 5. Hllr el volumen del elipsoide, engendrdo por l rotción de l elipse del eje OX. + y b = lrededor 6. Hllr el volumen del cuerpo engendrdo l girr lrededor del eje OY, l prte de l prábol y =, que intercept l rect =3. I.T.I. en Electricidd 34
5 Mtemátics I.3 Lists de ejercicios de Cálculo Integrl 7. L rect = divide l círculo ( ) + y 4 en dos prtes. ) Clculr el volumen generdo l girr lrededor de l rect y = l prte de myor áre. b) Clculr el volumen generdo l girr lrededor de l rect = l prte de menor áre. c) Clculr el volumen generdo l girr lrededor de l rect = l prte de myor áre. Clculr el volumen generdo l girr lrededor de l rect = l prte de myor áre. e) Clculr el volumen generdo l girr lrededor de l rect = l prte de menor áre. 8. Hllr el volumen del cuerpo limitdo por el hiperboloide de un hoj plnos z = y z = h. + y z c = y los 9. Hllr el volumen del cono elíptico recto, cuy bse es un elipse de semiejes y b y cuy ltur es igul h.. Hllr el volumen del cuerpo limitdo por los cilindros: + z = e y + z =.. Hllr el volumen del cuerpo limitdo por ls superficies z = y z = y (ver figur de l derech) prtir de ls áres formds l seccionr el cuerpo por plnos prlelos l plno z =.. Clculr el volumen de cd un de ls prtes en que qued dividido un cilindro circulr recto de rdio y de ltur 8 por un plno que, conteniendo un diámetro de un de ls bses, es tngente l otr bse. 3. Sobre ls cuerds de l stroide 3 + y 3 = 3, prlels l eje OX, se hn construido unos cudrdos, cuyos ldos son igules ls longitudes de ls cuerds y los plnos en que se encuentrn son perpendiculres l plno XY. Hllr el volumen del cuerpo que formn estos cudrdos. 4. El plno de un triángulo móvil permnece perpendiculr l diámetro fijo de un círculo de rdio. L bse del triángulo es l cuerd correspondiente de dicho círculo, mientrs que su vértice resbl por un rect prlel l diámetro fijo que se encuentr un distnci h del plno del círculo. Hllr el volumen del cuerpo (llmdo conoide, ver figur ne engendrdo por el movimiento de este triángulo desde un etremo del diámetro hst el otro. 5. Un círculo deformble se desplz prlelmente l plno XZ de tl form, que uno de los puntos de su circunferenci descns sobre el eje OY y el centro recorre l elipse + y =. Hllr b el volumen del cuerpo engendrdo por el desplzmiento de dicho círculo. 6. Se S el recinto del plno limitdo por l prábol y =4 y el eje de bsciss. Pr cd p> considermos los dos recintos en que l prábol y = p divide S, A(p) ={(, y) S : y p } y B(p) ={(, y) S : y p }. ) Hllr p pr que ls áres de A(p) yb(p) sen igules. b) Hllr p pr que l girr A(p) yb(p) lrededor del eje de ordends obtengmos sólidos de igul volumen. I.T.I. en Electricidd 35
6 Mtemátics I.3 Lists de ejercicios de Cálculo Integrl.3.4 Integrles Impropis 7. Clculr el vlor de 8. Clculr + e y 9. Estudir el crácter de 3. Probr que 3. Probr que e. + y hllr VP α diverge pr culquier α IR sen no es convergente. Eiste VP sen? 3. Estudir el crácter de ls siguientes integrles, según los vlores de IR. ) + sen b) + ln, pr > 33. Responder rzondmente, sobre l vercidd o flsedd de ls siguientes firmciones: ) Si f:[, + ) IR, es continu y lím f() =, entonces f() converge. + b) Si f:[, + ) IR, es derivble, creciente y cotd entonces c) Si Si e) Si f() es convergente, entonces f() +g() converge, entonces f() f() y f(). f () converge. g() son convergentes. f() y g() convergen, entonces f()g() converge necesrimente Probr que si f y g son funciones positivs tles que f() y eiste, cundo, ellímite de un de ls funciones, entonces 35. Estudir el crácter de ls integrles siguientes: g() convergen y f()g() converge. ) p) ( + sen ) b) ch e) e ( 4) h) + 4 k) e sen n) π cos q) + e c) e 4 + f) e ( 4) e i) l) o) ( ) π e e r) sen 3 +cos +e ln (+ ) sen +cos ( ) e sen I.T.I. en Electricidd 36
7 Mtemátics I.3 Lists de ejercicios de Cálculo Integrl 36. Estudir el crácter de ls integrles siguientes: ) sen b) ( ) e) π sen c) ln f) sen h) ln ln( +) i) ln ( 3 +) e e Estudir el crácter de ls integrles siguientes: ) π 4 ( tg ) sen ( π 4 ) 3 3 b) π 4 rcsen c) ( ) 3 e e + e e rctg( ) π 3 ( ) 4 e) ( e cos ) h) sen 3 ( ) ln 3 f) π + 8 +sen 7 i) sen ln(+) sen rctg 3 ( ) ( ) 3 sh. 38. Encontrr los vlores de, pr que ls integrles siguientes sen convergentes. ) π cos b) sen e) sen h) ( ) + + c) ( + sen ) + f) i) e Se define l función gmm por Γ(p) = p e. ) Probr que está definid pr todo p> y se verific que Γ(p +)=pγ(p). b) Clculr, usndo ), Γ(6). 4. Se f:[, + ) IR. Se define l función trnsformd integrl de Lplce de l función f, que denotremos por L{f}, como L{f()} = F (s) = f()e s, siempre que l integrl eist. Probr que: ) Si f() =, F (s) =L{} = s. b) Si F (s) =L{f()} y G(s) =L{g()}, entonces, pr todo λ, µ IR, L{λf()+µg()} = λl{f()} + µl{g()}. c) Si f es derivble y verific que lím + f()e s =, prtir de un cierto s, y eiste L{f ()}, entonces L{f ()} = sl{f()} f(). L{} = s y que L{sen()} = s +, usndo l prte c). I.T.I. en Electricidd 37
Aplicaciones de la integral
5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle
Aplicaciones del cálculo integral
Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:
Integración. Capítulo 1. Problema 1.1 Sea f : [ 3, 6] IR denida por: e x 2 2 x 6. (i) Estudiar la continuidad y derivabilidad de f.
Cpítulo Integrción Problem. Se f : [, 6] IR denid por: + +
Aplicaciones de la derivada (II)
UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre
Grado en Biología Tema 3 Integración. La regla del trapecio.
Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con
Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida
Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de
LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.
Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función
5. Integral y Aplicaciones
Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción
7.1. Definición de integral impropia y primeras propiedades
Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,
PROBLEMAS DE OPTIMIZACIÓN
PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito
Aplicaciones de la integral.
Tem 1 Aplicciones de l integrl. 1.1 Áres de superficies plns. 1.1.1 Funciones dds de form explícit. A l vist del estudio de l integrl definid relizdo en el Tem 1, prece rzonble l siguiente definición:
Cálculo integral de funciones de una variable
Lino Alvrez - Aure Mrtínez CÁLCULO II Cálculo integrl de funciones de un vrible 1 L integrl de Riemnn Se f : [, b] R R un función cotd en [, b]. Definición 1.- Un prtición P = {t 0, t 1,..., t n } del
LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES
LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES L integrl definid Se y f un función definid en el intervlo,, se llm integrl definid de f en n el intervlo, y se denot por fd lim fc i i i. n i y se llmn límites
CAPÍTULO XII. INTEGRALES IMPROPIAS
CAPÍTULO XII. INTEGRALES IMPROPIAS SECCIONES A. Integrles impropis de primer especie. B. Integrles impropis de segund especie. C. Aplicciones l cálculo de áres y volúmenes. D. Ejercicios propuestos. 9
1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)
Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv
CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0.
CÁLCULO ELEMENTAL APUNTES Vlor bsoluto Definición 1. El vlor bsoluto del número rel, que se design por, se define por { si 0, = si < 0. Definición 2. L distnci entre los números x 1 y x 2 de l rect rel
TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD
Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,
EJERCICIOS DE GEOMETRÍA
VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid
PROBLEMAS DE GEOMETRÍA ANALÍTICA PLANA. Capítulo SISTEMA DE COORDENADAS. Demostrar que los puntos A = ( 0,1) son los vértices de un cuadrado.
PROBLEMAS DE GEOMETRÍA ANALÍTICA PLANA Cpítulo SISTEMA DE COORDENADAS Demostrr que los puntos A ( 0,) B (,5) ; C ( 7,) D (, ) son los vértices de un cudrdo. Solución AB 9 6 5 5 BC 6 9 5 5 AD 9 6 5 5 CD
INTEGRALES DOBLES SOBRE REGIONES GENERA- LES.
INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. 6. En l integrl dole f(, ), colocr los límites de integrción en mos órdenes, pr los siguientes recintos: i) trpecio de vértices (, ), (, ), (, ) (, ). ii)
Curvas en el plano y en el espacio
Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que
Tema 4: Integrales Impropias
Prof. Susn López 1 Universidd Autónom de Mdrid Tem 4: Integrles Impropis 1 Integrl Impropi En l definición de un integrl definid f (x) se exigió que el intervlo [, b] fuese finito. Por otro ldo el teorem
O(0, 0) verifican que. Por tanto,
Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O
La Integral de Riemann
Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función potencil Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función
Integrales impropias
Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección
int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica.
Práctic 3: Cálculo Integrl con MtLb Curso 2010-2011 1 1 Introducción Un de los pquetes más útiles pr el cálculo con MtLb lo constituye Symbolic Mth Toolbox, que permite relizr cálculo simbólico vnzdo,
La Geometría de las Normas del Espacio de las Funciones Continuas
Divulgciones Mtemátics Vol. 11 No. 1(2003), pp. 71 82 L Geometrí de ls Norms del Espcio de ls Funciones Continus The Geometry of the Norms of the Spce of Continuous Functions Arístides Arellán (ristide@ciens.ul.ve)
Aplicaciones de la integral indefinida
Aplicciones_de_l_integrl.n Aplicciones de l integrl indefinid Práctic de Cálculo, E.U.A.T,Grupos ºA y ºB, 2005 Est práctic muestr cómo clculr lguns áres y volúmenes utilizndo integrles. En cd cso dremos
CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte
CÁLCULO Primer curso de Ingeniero de Telecomunicción Exmen, 7 de Septiembre de 24 Primer prte Ejercicio. Clculr ls coordends de los puntos P y Q de l prábol y x 2, tles que el triángulo formdo por el eje
APUNTES DE MATEMÁTICAS
APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición
Tema 5. Trigonometría y geometría del plano
1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus
1.6 Perímetros y áreas
3 1.6 Perímetros y áres Perímetro: es l medid del contorno de un figur. Superficie (pln): es el conjunto de puntos del plno encerrdos por un figur geométric pln. Áre: es l medid de un superficie. Represente
Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales
Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles
INTEGRAL DEFINIDA APLICACIÓN al CÁLCULO de ÁREAS
INTEGRAL DEFINIDA APLICACIÓN l CÁLCULO de ÁREAS Isc Brrow (60-677), teólogo y mtemático inglés, mestro de Newton y precursor de l regl que llev su nomre. MATEMÁTICAS II º Bchillerto Alfonso González IES
TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL
TEMA INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL. Funciones.. Incrementos rzones de cmbio. 3. Derivds 4. Derivds de orden superior. 5. Primitivs 6. Integrl definid. Este mteril puede descrgrse desde
El Teorema Fundamental del Cálculo
del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su
Tema 4. Integración de Funciones de Variable Compleja
Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores
Ejercicios de optimización
Ejercicios de optimizción 1. Entre todos los triángulos isósceles de perímetro 0, cuál es el de áre máxim? Función mximizr: A yh Relcionr vribles: Estudimos l función: h h y x h x y x y 0 x 0y 0 y 0 0y
8 - Ecuación de Dirichlet.
Ecuciones Diferenciles de Orden Superior Prte V III Integrl de Dirichle t Ing. Rmón scl Prof esor Titulr de nálisi s de Señles Sistems Teorí de los Circuit os I I en l UTN, Fcultd Regionl vellned uenos
X obtener las relaciones que deben
odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint
INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE
INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,
BLOQUE III Geometría
LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40
TEMA 1. NÚMEROS REALES
TEMA. NÚMEROS REALES. El número que indic los dís del ño es un número muy curioso. Es el único número que es sum de los cudrdos de tres números nturles consecutivos y que demás es sum de los cudrdos de
UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo
IES Pdre Poved (Gudi UNIDAD 6: DERIVADAS.. TASA DE VARIACIÓN MEDIA. Se deine l ts de vrición medi de un unción y en un intervlo [ b] T. M. [, b] ( b (, como: b (,, B,, Si considero l rect que une A ( b
Relación entre el cálculo integral y el cálculo diferencial.
Relción entre el cálculo integrl y el cálculo diferencil. Por: Miguel Solís Esquinc Profesor de tiempo completo Universidd Autónom de Chips En est sección presentmos l relción que gurdn l función derivd
Modelo 5 de sobrantes de Opción A
Ejercicio. [ puntos] Se f : R l función dd por Modelo de sobrntes de 6 - Opción. Ln f siendo Ln l función logrito neperino. Estudi l eistenci de síntot horiontl pr l gráfic de est función. En cso de que
CAPÍTULO 3 CÁLCULO INTEGRAL
CAPÍTULO 3 CÁLCULO INTEGRAL. INTERROGANTES CENTRALES DEL CAPÍTULO Concepto de áre Sums de Riemnn Integrl definid Propieddes de l integrl definid Integrl indefinid Propieddes de l integrl indefinid Teorem
Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura).
TEOREMA E GAU. 15. Hllr el flujo del cmpo i + j + z k trvés de l superficie z 1 +, z 1. ) irectmente. b) Aplicndo el teorem de Guss. olución Llmremos l superficie dd su proección sobre el plno XY (ver
UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS
u r s o : Mtemátic Mteril N 13 GUÍ TÓRIO PRÁTI Nº 11 UNI: GOMTRÍ POLÍGONOS URILÁTROS POLÍGONOS FINIIÓN: Un polígono es un figur pln, cerrd, limitd por trzos llmdos ldos y que se intersectn sólo en sus
INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA
INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA I. LA RECTA. Ejercicios pr resolver. 1. Demuestr que los puntos A(-,8); B(-6,1) C(0,4) son los vértices de un tringulo
Cálculo integral. Beatriz Campos Sancho Cristina Chiralt Monleon. Departament de matemàtiques. Codi d assignatura 305. Cálculo integral - UJI
Cálculo integrl Betriz Cmpos Sncho Cristin Chirlt Monleon Deprtment de mtemàtiques Codi d ssigntur 35 Betriz Cmpos / Cristin Chirlt - ISBN: 978-84-694-64- Edit: Publiccions de l Universitt Jume I. Servei
7.1. Definición de la Integral de Riemann
Cpítulo 7 Integrl de Riemnn 71 Definición de l Integrl de Riemnn En este cpítulo supondremos, menos que se indique lo contrrio, que < b y f : [, b] R es un función cotd Definición 71 Un prtición del intervlo
6.1 Sumas de Riemann e integral definida
Tem 6 Integrción Definid 6.1 Sums de Riemnn e integrl definid Supongmos que estmos interesdos en clculr el áre que se encuentr bjo un curv y = f(x) en un intervlo [, b] (pr simplificr, consideremos el
TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN 6.1.1 Partición de un intervalo
TEMA 6. INTEGRAL DE RIEMANN 6.1 INTEGRAL DE RIEMANN 6.1.1 Prtición de un intervlo Se f :, y fx K x,. Definición: Un prtición de, es un conjunto ordendo y finito de números reles y distintos P x 0,...,x
Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua.
Integrción indefinid y definid. Aplicciones de l integrl: vlor medio de un función continu. Jun Ruiz 1 Mrcos Mrvá 1 1 Deprtmento de Mtemátics. Universidd de Alclá de Henres. Contenidos Introducción 1 Introducción
CURSOSO. MóduloIV: Continuidadyderivabilidad MATEMÁTICASESPECIALES(CAD) M.TeresaUleciaGarcía RobertoCanogarMcKenzie
CURSOSO CURSOSO MATEMÁTICASESPECIALESCAD MóduloIV: Continuiddyderivbilidd MTeresUleciGrcí RobertoCnogrMcKenzie DeprtmentodeMtemáticsFundmentles FcultddeCiencis Curso de Mtemátics Especiles Introducción
Notas de Integral de Riemann-Stieltjes
Nots de Integrl de Riemnn-Stieltjes 1. Definición y propieddes Dds funciones g, F : [, b] R que cumpln ciertos requisitos, definiremos l expresión g(x)df(x) de tl mner que cundo consideremos el cso prticulr
TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ
TEM. VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ . VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ... Concepto de Trz.... Propieddes de l trz.... Determinnte de un mtriz.... Cálculo de determinntes
Aplicaciones de la Integral
Aplicciones de l Integrl Cálculo 6// Prof. José G. Rodríguez Ahumd de Se f, g dos funciones tl que pr todo vlor en [, ]. Entonces, el áre A entre sus gráfics en el intervlo [, ] es: ÁREA ENTRE DOS CURVAS
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 PÁGINA 70 EJERCICIOS Áres y perímetros de figurs sencills Hll el áre y el perímetro de ls figurs coloreds de los siguientes ejercicios: 1 ) b) 3 m 3 m 1,8 m 4 m 6 m ) S3 m3 m9 m b) S 6m 1,8 m 5,4
TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida
Integrl Indefinid Estmos costumrdos decir que el producto el cociente son operciones inverss. Lo mismo sucede con l potencición l rdicción. Vmos estudir hor l operción invers de l diferencición. Dd l función
TEMA 3. Integración de funciones reales de variable real.
TEMA 3 Integrción de funciones reles de vrible rel. Ls integrles formlizn un concepto bstnte sencillo e intuitivo, el de áre. Los orígenes del cálculo de áres los podemos encontrr en el método de exhución
2. Cálculo de primitivas
5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv
1. INTEGRALES DEFINIDAS E IMPROPIAS
. INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El
Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz
Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3
UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch
CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE
CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS
TRABAJOS DE MATEMATICA
UNIVERSIDAD NACIONAL DE CÓRDOBA FACULTAD DE MATEMÁTICA, ASTRONOMÍA Y FÍSICA SERIE C TRABAJOS DE MATEMATICA Nº 36/07 Un segundo curso de Cálculo Crin Boyllin, Elid Ferreyr, Mrt Urciuolo, Cynthi Will Editores:
INTEGRACIÓN. CÁLCULO DE
Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo
OBTENCIÓN DEL DOMINIO DE DEFINICIÓN A PARTIR DE LA GRÁFICA
. DOMINIO inio de o cmpo de eistenci de es el conjunto de vlores pr los que está deinid l unción, es decir, el conjunto de vlores que tom l vrible independiente. Se denot por. { R / y R con y } OBTENCIÓN
La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.
INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.
CURSO DE MATEMÁTICA 1. Facultad de Ciencias
CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl
Integral de Riemann. Introducción a la integración numérica.
Cálculo Mtemático (Práctics) M. I. Berenguer Mldondo mribel@ugr.es. 1 Integrl de Riemnn. Introducción l integrción numéric. En est práctic usremos l clculdor ClssPd pr trtr el problem de integrción. Se
TRANSFORMADA DE LAPLACE
HUGO BARRANTES TRANSFORMADA DE LAPLACE Mteril complementrio ii Revisión filológic Mrí Benvides González Digrmción Hugo Brrntes Cmpos Encrgdo de cátedr Eugenio Rojs Mor Producción cdémic y sesorí metodológic
UNIDAD 4: INTEGRAL DEFINIDA
UNIDAD 4: INTEGRAL DEFINIDA ÍNDICE DE LA UNIDAD.- INTRODUCCIÓN.....- SUMAS SUPERIORES E INFERIORES....- LA INTEGRAL DEFINIDA.... 4.- PROPIEDADES DE LA INTEGRAL DEFINIDA... 5.- TEOREMA FUNDAMENTAL DEL CÁLCULO
TEMA 1. LOS NÚMEROS REALES.
TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones
MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A
MTRICES. Determinr l mtriz trnspuest de cd un de ls siguientes;,, C 8. Efectú l siguiente operción con mtrices y clcul. Sen 8, y C determinr: ) t C ) (-C) t t c) -C( t -) d) - t -(C). Dds ls siguientes
Resolución de triángulos
8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del
Funciones cuadráticas
Funciones cudrátics A l función polinómic de segundo grdo f() + b + c siendo, b, c números reles y 0, se l denomin función cudrátic. Los términos de l función reciben los siguientes nombres: y + b + c
Integración en una variable. Aplicaciones
Tem 4 Integrción en un vrible. Aplicciones Ls integrles formlizn un concepto bstnte sencillo e intuitivo, el de áre. Los orígenes del cálculo de áres los podemos encontrr en el método de exhución desrrolldo
CÁLCULO INTEGRAL EN VARIAS VARIABLES
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS CÁLCULO INTEGRAL EN VARIAS VARIABLES Rmón Bruzul Mrisel Domínguez Crcs, Venezuel Julio 25 Rmón
Los elementos de un polígono son los lados, los vértices, los ángulos interiores, los ángulos exteriores, las diagonales, el perímetro y el área.
POLÍGONOS. ELEMENTOS DE UN POLÍGONO. Los elementos de un polígono son los ldos, los vértices, los ángulos interiores, los ángulos exteriores, ls digonles, el perímetro y el áre. LADO REGIÓN EXTERIOR A
3.- Derivada e integral de funciones de variable compleja.
3.- Derivd e integrl de funciones de vrile complej. ) Derivds, funciones nlítics e interpretción geométric. ) Regls de diferencición. c) Ecuciones de uch-riemnn. d) Funciones rmónics. e) Integrción complej.
2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.
. Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )
TEMA 1 Matrices MATRICES A... es una matriz de dos filas y tres columnas. El elemento a 2,3 = -3
. DEFINICIÓN. http://mtemticsconsole.wikispces.com/ TE trices TRICES Un mtriz de m fils n columns es un serie ordend de m n números ij, i=,,...m; j=,,...n, dispuestos en fils columns, tl como se indic
10.1 Funciones integrables Teorema fundamental del Cálculo Ejercicios
Integrción Funciones integrbles Integrción. Funciones integrbles 49. Teorem fundmentl del Cálculo 55.3 Ejercicios 58 El áre de un recinto, l longitud de un cble que cuelg entre dos postes, el volumen o
1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de
Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo
MOV. CIRCULARES: Solución: I.T.I. 93, 96, I.T.T. 00. Texto solución
MOV. CICULAES: Un prto de un prque de trcciones consiste en un grn cilindro verticl que gir lrededor de su eje lo suficientemente rápido pr que culquier person que se encuentre dentro de él se mnteng pegd
Estudio de funciones exponenciales y logarítmicas
FUNCIÓN EXPONENCIAL Recomendciones l Docente: L ctividd proponer debe puntr que los lumnos puedn nlizr los siguientes spectos: 1. Cómo vrí el gráfico de l función eponencil y de qué depende su monotoní.
Continuidad. Funciones
I. E. S. Siete Colins (Ceut) Deprtmento de Mtemátics Mtemátics de º de Bchillerto Continuidd de Funciones Por Jvier Crroquino CZs Ctedrático de mtemátics del I.E.S. Siete Colins Ceut 005 Continuidd De
REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS
TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen
0 PRELIMINARES. NÚMEROS REALES
ACCESO A LA UNIVERSIDAD MATEMÁTICAS VOLUMEN II PRELIMINARES. NÚMEROS REALES. El conjunto de los número reles L representción más común de hce ver l conjunto como un líne rect del plno.,, 4, 8,.7,... 3
1. INTEGRALES DEFINIDAS E IMPROPIAS
. INTEGRALES DEFINIDAS E IMPROPIAS.. INTEGRAL DEFINIDA Se y = f(x) definid pr todo x [, b]. Consideremos un prtiión P del intervlo [, b] P {x 0 = < x < x 2 < < x n = b} Sen P = máx{x i x i }, s n = n m
PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO
PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este
Integral Definida. Aplicaciones
Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució
POTENCIAS Y LOGARITMOS DE NÚMEROS REALES
www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (
Apuntes de Integración de funciones de una variable
Apuntes de Integrción de funciones de un vrible Miguel Mrtín Suárez Deprtmento de Análisis Mtemático Universidd de Grnd INTEGRACIÓN DE FUNCIONES DE UNA VARIABLE Sums de Riemnn. Definición de áre y de integrl.