TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)
|
|
- Natalia Calderón Gómez
- hace 5 años
- Vistas:
Transcripción
1 .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems de optimizción. Aunque los ejemplos son esencilmente geométricos, ellos ilustrn un procedimiento generl. Antes de enumerr los psos que se deben seguir l bordr problems que incluyen extremos bsolutos, se enunci sin demostrción, un teorem, conocido como el criterio de l segund derivd, el cul permite, en lgunos csos, determinr, de un mner ms fácil, si un punto crítico ddo corresponde un máximo o un mínimo reltivo. TEOREMA (Criterio de l segund derivd pr extremos reltivos) Se f un función dos veces derivble en un intervlo bierto I, se c un punto de I, tl que f ' ( c ) 0. Entonces: i. Si f ' ' ( c ) < 0, entonces, f present un máximo reltivo en c. ii. Si f ' ' ( c ) > 0, entonces, f present un mínimo reltivo en c. Observción: Si f ' ' ( c ) 0, entonces, l nturlez del punto crítico c no qued determind, como lo ilustrn los siguientes csos: L función, f (x) x, stisfce: f (0) 0 y f (0) 0. Sin embrgo, f (x) present un mínimo reltivo en x 0 (fig.. ()).
2 fig..
3 Igulmente, l función: g (x) - x, stisfce: g (0) 0 y g (0) 0. Sin embrgo, g (x) present un máximo reltivo en x 0 (fig.. (b)). Tmbién, l función, h (x) x, stisfce: h (0) 0 y h (0) 0, pero h (x) es creciente en todo el eje rel y no present extremo reltivo en x 0 (fig.. (c)). En lo que sigue se considerrán lgunos problems cuy solución es un extremo bsoluto de un función definid en un intervlo cerrdo. Se hce uso del teorem de l sección. (Teorem de los vlores extremos), el cul grntiz l existenci de un vlor máximo bsoluto y de un vlor mínimo bsoluto de un función continu en un intervlo cerrdo. Se enumern continución lgunos psos que son útiles l bordr un problem de est nturlez.. Hcer hst donde se posible un dibujo indicndo ls vribles que intervienen en el problem.. Determinr l función mximizr o minimizr si como el intervlo en el cul está definid.. Utilizr l informción del problem pr expresr l función obtenid en el pso., en términos de un sol vrible.. Utilizr l regl práctic dd en l observción l teorem de l sección pr encontrr extremos bsolutos. Se ilustr el procedimiento nterior con lgunos ejemplos. Ejemplo. Los puntos A y B están situdos uno frente l otro y en ldos opuestos de un rio recto de 00 mts. de ncho. El punto D está 00 mts. de B y en su mism orill. (fig..). Un compñí de teléfonos dese tender un cble desde A hst D. Si el costo por metro de cble es el 5% ms cro bjo el gu que por tierr. Cómo se debe tender el cble, pr que el costo totl se mínimo?.
4 fig.. Solución: Se Q el punto sobre l mism orill y un distnci x de B donde termin el trmo de cble bjo el gu. Se puede definir hor ls constntes y vribles del problem: x: distnci de B Q; 0 x 00 y: distnci de A Q; (longitud de cble bjo el gu). 00 x: distnci de Q D; (longitud de cble por tierr). k (const): costo por metro de cble por tierr. 5 5 k (const): costo por metro de cble por gu. k. 5k P : costo totl (función minimizr). De cuerdo l teorem de Pitágors, y x + 00 (). Ahor, l función costo totl viene dd por:
5 C 5 k y + k ( 00 x ) (). Sustituyendo () en (), l función costo totl puede escribirse en términos solmente de l vrible x sí: C ( x ) 5 k x k ( 00 x ) ; con 0 x 00 (dominio de C (x)). C ( x ) / ( x + 00 ) + k ( 00 x ) 5 k () Como C (x) es un función continu en un intervlo cerrdo, C (x) lcnz un vlor máximo y un vlor mínimo en [0, 00]. Al derivr en () e igulr cero, se obtienen los puntos críticos: C ' ( x ) 5 k ( x ) / ( x + 00 ) k 0 5 x k 0 / y como k 0 ( x + 00 ) ( x + 00 ) 5 x 0 5 x x + 00 / 0 x x. De donde x 00. Asi que x 00 es el único punto crítico y de cuerdo l criterio de l segund derivd, corresponde un mínimo reltivo (verifíquelo). En consecuenci, el mínimo bsoluto es el menor entre los siguientes vlores: C (0), C (00) y C (00). 5 C ( 0 ) k k 975 k Esto signific geométricmente, que el cble se tir desde A hst B bjo el gu y desde B hst D por tierr, implicndo un gsto de 975 k pesos. (fig.. ())
6
7 fig.. 5 C ( 00 ) k k k. Esto indic geométricmente, que el punto Q coincide con D, y en este cso el cble se tiende directmente desde A hst D por gu, demndndo un gsto totl de 75 5k 88. 5k pesos.. (fig.. (b)). 5 C ( 00 ) k k 85 k. Esto signific que si el punto Q está 00 mts. de B y se tiende el cble bjo el gu desde A hst Q y por tierr desde Q hst D, demndrí un gsto de 85 k pesos, menor, pr l compñí que los dos nteriores. (fig.. (c)). Ejemplo. Un lmbre de 00 cm. de longitud, se cort en dos prtes formndo con un de ells un círculo y con l otr un cudrdo. Cómo debe ser cortdo el lmbre pr que:. L sum de ls áres de ls dos figurs se máxim. b. L sum de ls áres de ls dos figurs se mínim.
8 Solución: Supóngse que el lmbre se prte un distnci x de uno de sus extremos. Si x es l longitud de l circunferenci, entonces 00 x es el perímetro del cudrdo. (fig..) fig.. Por lo tnto, el rdio de l circunferenci es x π y el ldo del cudrdo es 00 x. Si A (x) es l función que represent l sum de mbs áres, se tiene entonces: A( x) x x + (00 ) ; 0 00 π x () Puesto que A (x) es un función continu en el intervlo [0, 00], entonces, existe un vlor máximo y un vlor mínimo de A (x) en [0, 00]. Al derivr () e igulr cero, se obtienen los puntos críticos. En efecto:
9 A' ( x) x π + ( )(00 x) intervlo x 00 x 00 0 x π 8 + [0, 00] (Porqué?). π π es el único punto crítico y pertenece l Además, por el criterio de l segund derivd, dicho vlor corresponde un mínimo reltivo. Ahor, los vlores máximo y mínimo de A (x) está entre los vlores: A (0), A (00) y 00 π A. + π Pero, A (0) 0 π + (00 0) 00 A (00 ) (00 00 ) π π 00π A + π 00π π + π π + π 00 + π Como π < < + π, entonces, desiguldd, se deduce que: < < + π π y de est últim π < < A < A(0) < + π π + π A(00 ). De est form, l últim desiguldd indic que el áre máxim se obtiene pr x 00, o se, no prtiendo el lmbre y formndo con el un circunferenci, mientrs que el áre mínim se obtiene prtiendo el lmbre un distnci 00 π + π de uno de sus extremos, y, formndo con est primer prte un circunferenci y con l prte restnte 00 + π un cudrdo. Ejemplo. Se dispone de un crtulin cudrd de ldo y se quiere hcer un cj sin tp recortndo cudrdos igules en ls esquins y doblndo sus ldos. Cuál debe ser l
10 longitud del ldo del cudrdo que se recort pr que el volumen de l cj se máximo? Cuál es el volumen de l cj?. Solución: Se x: longitud del ldo del cudrdo que se recort en cd un de ls esquins (fig..5 ()), donde 0 x. fig..5 Al doblr l prte de crtulin restnte, se form l cj biert que prece en l fig..5 (b). Ahor, volumen de l cj áre de l bse x ltur. Esto es, V ( x) ( x) x x x + x ; 0 x (). Puesto que V (x) (función mximizr) es un función continu en el intervlo 0,, entonces V (x) lcnz un vlor máximo y un vlor mínimo en dicho intervlo. Al derivr V (x) en () e igulr cero, se obtienen los puntos críticos. En efecto: V ' ( x) x 8x + (x )(x ) 0
11 0 0 x x x x puntos críticos Pr nlizr l nturlez de los puntos críticos, se us el criterio de l segund derivd. Asi, V x x 8 ) ( ' ' 0 8 ' ' > V, lo cul indic que x corresponde un mínimo reltivo. (interprete geométricmente el resultdo). 0 8 ' ' < V, lo cul indic que x corresponde un máximo reltivo. En consecuenci, el volumen máximo se obtiene recortndo en ls esquins de l crtulin cudrdos de ldo y se obtiene de est form un cj cuyo volumen viene ddo por: 7 V. Ejemplo. Dos psillos de y 9 pies de ncho están unidos en ángulo recto (Ver fig..). Encuentre l longitud de l brr rect ms lrg que puede psrse horizontlmente de un psillo otro por un esquin. Solución: Supóngse que l brr puede psr horizontlmente, cundo esté en l posición como prece en l figur djunt.
12 Si θ (rdines) denot el ángulo que form l brr con el psillo menor, entonces π θ será el ángulo que form con el psillo myor. L longitud desed es l longitud L mínim de l brr. L AC AB + BC (). En el triángulo APB se tiene: AB sec θ AB 9 9 sec θ () En el triángulo BQC se tiene: BC csc θ BC csc θ () Sustituyendo () y () en () se obtiene l función mximizr: L ( θ ) 9 sec θ + csc θ () ; 0 < θ < π / + Note que L + cundo θ 0 ó π θ (Porqué?) Luego, L ' ( θ ) 9 sec θ. tn θ csc θ. cot θ (R.D. 5 y )
13 L ' ( θ ) 9 cos θ sen θ cos θ sen θ cos θ sen θ 9 sen θ cos θ cos sen θ cos θ sen θ ( tn θ ) θ cos θ ( tn θ ) cos θ sen θ 9 sen sen (5) θ cos θ θ cos θ Asi que L' ( θ ) 0 tn θ θ tn Ahor, el signo de ' ( θ ) θ 0.78 (Rd.) L solo depende del signo del fctor ( θ ) tn. Pr ello, considere l gráfic de l función tngente (fig..7 ()) y en l cul se h señldo el vlor de tn θ pr θ
14 fig..7 A l izquierd de θ 0. 78, tn θ <, con lo cul, ( θ ) 0 tn θ < tn θ < 0 L' <. A l derech de θ 0. 78, tn θ >, con lo cul, ( θ ) 0 tn θ > tn θ > 0 L' >. Del nálisis nterior, se deduce que θ (Rd.) corresponde un mínimo reltivo de L(θ) y cuy gráfic se prece l de l fig..7 (b). Esto signific que el vlor mínimo bsoluto de L (y por lo tnto, l longitud máxim de l vrill en cuestión) es: L ( 0.78 ) 9 sec ( 0.78 ) + csc ( 0.78 ) Un procedimiento lgebráico, pr obtener el vlor excto de L es el siguiente:
15 Como, sec θ tn + θ + / / + / / y, csc θ cot + θ + / / + / / Se tiene que: L 9 sec θ + csc θ 9 ( ) / / / / + / + ( + ) / / / / / ( / + ) + (fctor común) / / ( ) [ ] / + / / / / + / / ( + ) problem. / es l longitud de l brr que cumple ls condiciones del
PROBLEMAS DE OPTIMIZACIÓN
PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito
Aplicaciones del cálculo integral
Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:
APUNTES DE MATEMÁTICAS
APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición
Ejercicios de optimización
Ejercicios de optimizción 1. Entre todos los triángulos isósceles de perímetro 0, cuál es el de áre máxim? Función mximizr: A yh Relcionr vribles: Estudimos l función: h h y x h x y x y 0 x 0y 0 y 0 0y
Tema 5. Trigonometría y geometría del plano
1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene
CURSO DE MATEMÁTICA 1. Facultad de Ciencias
CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl
REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS
TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen
Los números racionales:
El número rel MATEMÁTICAS I 1 1. EL CONJUNTO DE LOS NÚMEROS REALES. LA RECTA REAL 1.1. El conjunto de los números reles. Como y sbes los números nturles surgen de l necesidd de contr, expresr medids, pr
Razones trigonométricas
LECCIÓ CODESADA 12.1 Rzones trigonométrics En est lección Conocerás ls rzones trigonométrics seno, coseno y tngente Usrás ls rzones trigonométrics pr encontrr ls longitudes lterles desconocids en triángulos
INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE
INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,
7.1. Definición de integral impropia y primeras propiedades
Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,
Resolución de triángulos
8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del
Integrales impropias
Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección
Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica
Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel
1.6 Perímetros y áreas
3 1.6 Perímetros y áres Perímetro: es l medid del contorno de un figur. Superficie (pln): es el conjunto de puntos del plno encerrdos por un figur geométric pln. Áre: es l medid de un superficie. Represente
Grado en Biología Tema 3 Integración. La regla del trapecio.
Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con
Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz
Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr
Curvas en el plano y en el espacio
Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que
O(0, 0) verifican que. Por tanto,
Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O
1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c)
Pág. 1 Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m 25 m 11,6 cm 8 m 32 m 60 m 2 Midiendo los ldos, hll ls rzones trigonométrics
INTEGRACIÓN. CÁLCULO DE
Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis
CONSIDERACIONES SOBRE LAS COMPUERTAS
Abril de 006 CONSDERACONES SOBRE LAS COMPUERTAS Cátedr de Mecánic de los Fluidos Escuel de ngenierí Mecánic Autores: ngeniero Edgr Blbstro ngeniero Gstón Bourges e-mil: gbourges@fcei.unr.edu.r 1 Abril
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid
BLOQUE III Geometría
LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40
EJERCICIOS DE GEOMETRÍA
VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3
Aplicaciones de la derivada (II)
UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre
Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).
64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls
PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO
PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este
TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL
TEMA INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL. Funciones.. Incrementos rzones de cmbio. 3. Derivds 4. Derivds de orden superior. 5. Primitivs 6. Integrl definid. Este mteril puede descrgrse desde
Presentación Axiomática de los Números Reales
Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. 1 Prte I Presentción Axiomátic de los Números Reles 1. Axioms de los Números Reles 1.1. Axioms de Cuerpo Aceptremos l existenci de un conjunto R cuyos elementos
Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida
Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de
El Teorema Fundamental del Cálculo
del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 PÁGINA 70 EJERCICIOS Áres y perímetros de figurs sencills Hll el áre y el perímetro de ls figurs coloreds de los siguientes ejercicios: 1 ) b) 3 m 3 m 1,8 m 4 m 6 m ) S3 m3 m9 m b) S 6m 1,8 m 5,4
PROGRESIONES ARITMETICAS
PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00
TABLA DE DISTRIBUCIÓN DE FRECUENCIAS
TABLA DE DISTRIBUCIÓN DE FRECUENCIAS L.C. y Mtro. Frncisco Jvier Cruz Ariz L.C. y Mtro. Frncisco Jvier Cruz Ariz TABLA DE DISTRIBUCIÓN DE FRECUENCIAS Un mner de simplificr los dtos es usr un tbl de frecuenci
Tema 4. Integración de Funciones de Variable Compleja
Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores
N I Plegado de planos. Septiembre de 1999 EDICION: 1ª NORMA IBERDROLA
N I 00.02.52 Septiembre de 1999 EDICION: 1ª NORMA IBERDROLA Plegdo de plnos DESCRIPTORES: Plegdo de plnos. N O R M A N I 00.02.52 Septiembre de 1999 EDICION: 1ª I B E R D R O L A Plegdo de plnos Indice
7Soluciones a los ejercicios y problemas PÁGINA 161
7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60
Tema 4: Integrales Impropias
Prof. Susn López 1 Universidd Autónom de Mdrid Tem 4: Integrles Impropis 1 Integrl Impropi En l definición de un integrl definid f (x) se exigió que el intervlo [, b] fuese finito. Por otro ldo el teorem
UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS
u r s o : Mtemátic Mteril N 13 GUÍ TÓRIO PRÁTI Nº 11 UNI: GOMTRÍ POLÍGONOS URILÁTROS POLÍGONOS FINIIÓN: Un polígono es un figur pln, cerrd, limitd por trzos llmdos ldos y que se intersectn sólo en sus
Formalización de los Números Reales. M. en I. Gerardo Avilés Rosas
Formlizción de los Números Reles M. en I. Gerrdo Avilés Ross Agosto de 016 Tem Formlizción de los Números Reles Objetivo: El lumno plicrá ls propieddes de los números reles y sus subconjuntos, pr demostrr
INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA
INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA I. LA RECTA. Ejercicios pr resolver. 1. Demuestr que los puntos A(-,8); B(-6,1) C(0,4) son los vértices de un tringulo
MATEMÁTICAS III (Carrera de Economía) OPTIMIZACIÓN CON RESTRICCIONES ( )
MATEMÁTICAS III (Crrer de Economí) OPTIMIZACIÓN CON RESTRICCIONES ( http://www.geocities.com/jls ) El propósito centrl de l economí como cienci es el estudio de l signción óptim de los recursos escsos.
Métodos de Integración I n d i c e
Métodos de Integrción I n d i c e Introducción Cmbio de Vrible Integrción por prtes Integrles de funciones trigonométrics Sustitución Trigonométric Frcciones prciles Introducción. En est sección, y con
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus
CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES
Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.
Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales
Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles
Tutorial MT-m3. Matemática Tutorial Nivel Medio. Función cuadrática
12345678901234567890 M te m átic Tutoril MT-m3 Mtemátic 2006 Tutoril Nivel Medio Función cudrátic Mtemátic 2006 Tutoril Función Cudrátic Mrco Teórico 1. Función cudrátic: Está representd por: y = x 2 +
Aplicaciones de la integral
5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 PÁGINA 06 EJERCICIOS Tipos de poliedros 1 Di, justificdmente, qué tipo de poliedro es cd uno de los siguientes: A B C D E Hy entre ellos lgún poliedro regulr? A Prism pentgonl recto. Su bse es un
TEMA 1. NÚMEROS REALES
TEMA. NÚMEROS REALES. El número que indic los dís del ño es un número muy curioso. Es el único número que es sum de los cudrdos de tres números nturles consecutivos y que demás es sum de los cudrdos de
NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007
NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007 1 1. Intervlos Ddos dos números reles y,
MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL
MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL RAFAEL HERRERÍAS PLEGUEZUELO EDUARDO PÉREZ RODRÍGUEZ Deprtmento de Economí Aplicd Universidd de Grnd. INTRODUCCIÓN Se supone que el Sr. Corto dispone de
Integral de Riemann. Introducción a la integración numérica.
Cálculo Mtemático (Práctics) M. I. Berenguer Mldondo mribel@ugr.es. 1 Integrl de Riemnn. Introducción l integrción numéric. En est práctic usremos l clculdor ClssPd pr trtr el problem de integrción. Se
TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD
Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,
5. Integral y Aplicaciones
Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción
LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.
Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función
2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.
. Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )
CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES
FUNDAMENTOS DEL ÁLGEBRA CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES NOMBRE ID SECCIÓN SALÓN Prof. Evelyn Dávil Tbl de contenido TEMA A. CONJUNTOS NUMÉRICOS... REGLA PARA LA SUMA DE NÚMEROS REALES...
Señaléticas Diseño gráfico de señales
Señlétics Diseño gráfico de señles El cálculo de perímetros y áres de figurs plns es de grn utilidd en l vid práctic, pues l geometrí se encuentr presente en tods prtes. En un min subterráne, ls señles
TEMA 1. LOS NÚMEROS REALES.
TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones
Integración. Capítulo 1. Problema 1.1 Sea f : [ 3, 6] IR denida por: e x 2 2 x 6. (i) Estudiar la continuidad y derivabilidad de f.
Cpítulo Integrción Problem. Se f : [, 6] IR denid por: + +
CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte
CÁLCULO Primer curso de Ingeniero de Telecomunicción Exmen, 7 de Septiembre de 24 Primer prte Ejercicio. Clculr ls coordends de los puntos P y Q de l prábol y x 2, tles que el triángulo formdo por el eje
La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.
INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.
Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores
Semn 2 2 Repso de vectores Repso de vectores Empecemos! Estimdo prticipnte, en est sesión tendrás l oportunidd de refrescr tus seres en cunto l tem de vectores, los cules tienen como principl plicción
APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 2 VARIABLES.
DP. - AS - 5119 007 Mtemátics ISSN: 1988-79X 00 APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON VARIABLES. Descompón el número 9 en dos sumndos e, tles que l sum + 6 se mínim. DETERMINACIÓN DE INCÓGNITAS
int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica.
Práctic 3: Cálculo Integrl con MtLb Curso 2010-2011 1 1 Introducción Un de los pquetes más útiles pr el cálculo con MtLb lo constituye Symbolic Mth Toolbox, que permite relizr cálculo simbólico vnzdo,
Funciones cuadráticas
Funciones cudrátics A l función polinómic de segundo grdo f() + b + c siendo, b, c números reles y 0, se l denomin función cudrátic. Los términos de l función reciben los siguientes nombres: y + b + c
Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple
Integrl de un función rel Tem 08: Integrles Múltiples Jun Igncio Del Vlle Gmbo Sede de Guncste Universidd de Cost ic Ciclo I - 2014 Ls integrles definids clculn el áre bjo un curv y = f (x) pr un región
DINÁMICA Y LAS LEYES DE NEWTON
DINÁMICA Y LAS LEYES DE NEWTON EXPERIENCIA N 7 Un propiedd de los cuerpos mteriles es su ms inercil. L fuerz es otro concepto nuevo, útil cundo se trt de describir ls intercciones entre cuerpos mteriles.
Aproximación e interpolación mediante polinomios
LA GACETA DE LA RSME, Vol. 5.3 (2002), Págs. 621 627 621 Aproximción e interpolción medinte polinomios por Miguel Mrno y Mrt Mrcolini En este trbjo se muestr un relción entre los conceptos de interpolción
FICHA DE TRABAJO. Bimestre IVº 4ºgrado - sección A B C D Ciclo IVº Fecha: - 11-10 Área : Matemática POLIEDROS REGULARES E IRREGULARES
I TRJ Nombre Nº orden imestre IVº 4ºgrdo - sección iclo IVº ech: - 11-10 Áre : temátic Tem LIRS RULRS IRRULRS LIRS RULRS s quel poliedro en el cul sus crs son regiones poligonles congruentes entre sí,
6.1 Sumas de Riemann e integral definida
Tem 6 Integrción Definid 6.1 Sums de Riemnn e integrl definid Supongmos que estmos interesdos en clculr el áre que se encuentr bjo un curv y = f(x) en un intervlo [, b] (pr simplificr, consideremos el
UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo
IES Pdre Poved (Gudi UNIDAD 6: DERIVADAS.. TASA DE VARIACIÓN MEDIA. Se deine l ts de vrición medi de un unción y en un intervlo [ b] T. M. [, b] ( b (, como: b (,, B,, Si considero l rect que une A ( b
INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 -
INFORME DE LA PRÁCTICA nº : LA RUEDA DE MAXWELL Fernndo Hueso González. Crlos Huerts Brr. (1º Fís.), L1, 1-XI-7 - - RESUMEN L práctic de l rued de Mxwell consiste en medir el tiempo que trd en descender
Los elementos de un polígono son los lados, los vértices, los ángulos interiores, los ángulos exteriores, las diagonales, el perímetro y el área.
POLÍGONOS. ELEMENTOS DE UN POLÍGONO. Los elementos de un polígono son los ldos, los vértices, los ángulos interiores, los ángulos exteriores, ls digonles, el perímetro y el áre. LADO REGIÓN EXTERIOR A
Cálculo integral de funciones de una variable
Lino Alvrez - Aure Mrtínez CÁLCULO II Cálculo integrl de funciones de un vrible 1 L integrl de Riemnn Se f : [, b] R R un función cotd en [, b]. Definición 1.- Un prtición P = {t 0, t 1,..., t n } del
TEMA 1 EL NÚMERO REAL
Tem El número rel Ejercicios resueltos Mtemátics B º ESO TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN DE NÚMEROS REALES EJERCICIO : Clsific los siguientes números como 0 ; ;,...; 7; ; ; ; 7, = 0,8
CAPÍTULO XII. INTEGRALES IMPROPIAS
CAPÍTULO XII. INTEGRALES IMPROPIAS SECCIONES A. Integrles impropis de primer especie. B. Integrles impropis de segund especie. C. Aplicciones l cálculo de áres y volúmenes. D. Ejercicios propuestos. 9
Estudio de funciones exponenciales y logarítmicas
FUNCIÓN EXPONENCIAL Recomendciones l Docente: L ctividd proponer debe puntr que los lumnos puedn nlizr los siguientes spectos: 1. Cómo vrí el gráfico de l función eponencil y de qué depende su monotoní.
1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de
Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo
El conjunto de los números naturales tiene las siguientes características
CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág Págin 56 PRACTICA Escribe los seis primeros términos de ls siguientes sucesiones: ) Cd término se obtiene sumndo l nterior El primero es 8 b) El primer término es 6 Los demás se obtienen multiplicndo
COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti
COLEGIO SAN FRANCISCO DE SALES - 0 - Prof. Cecili Glimerti MATEMÁTICA AÑO B GUÍA N - NÚMEROS IRRACIONALES NUMEROS IRRACIONALES Conocemos hst hor distintos Conjuntos Numéricos: - Los n nturles: (, 8,.8),
Ejemplo: Para indicar el conjunto (que llamaremos M), formado por los números 4, 6 y 8, escribimos: M = { 4, 6, 8}
NÚMEROS REALES. BREVE REPASO DE LA TEORÍA DE CONJUNTOS En est unidd utilizremos ls notciones l terminologí de conjuntos. L ide de conjunto se emple mucho en mtemátic se trt de un concepto básico del que
Los Números Racionales
Cpítulo 12 Los Números Rcionles El conjunto de los números rcionles constituyen un extesión de los números enteros, en el sentido de que incluyen frcciones que permiten resolver ecuciones del tipo x =
La Geometría de las Normas del Espacio de las Funciones Continuas
Divulgciones Mtemátics Vol. 11 No. 1(2003), pp. 71 82 L Geometrí de ls Norms del Espcio de ls Funciones Continus The Geometry of the Norms of the Spce of Continuous Functions Arístides Arellán (ristide@ciens.ul.ve)
MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES
Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión
1. La derivada del producto de funciones derivables
Cátedr de Mtemátic Mtemátic Fcultd de Arquitectur Universidd de l Repúblic 3 Segundo semestre Hoj 5 Derivd del producto e integrción por prtes Ddo que l derivción y l integrción pueden verse como operciones
Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3
Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd
INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202
UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Deprtmento de Ingenierí Mecánic CAV/mm. INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202 ASIGNATURA MECANICA DE FLUIDOS NIVEL 04 EXPERIENCIA
CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE
CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS
Estabilidad de los sistemas en tiempo discreto
Estbilidd de los sistems en tiempo discreto En tiempo discreto tmbién se puede hblr de estbilidd de estdo y de estbilidd de entrd slid de form similr l empled pr los sistems en tiempo continuo. Podemos
2Unidad. Expresiones algebraicas. fraccionarias EN ESTA UNIDAD APRENDERÁS A: 68 Unidad 2
Epresiones lgebrics Unidd frccionris EN ESTA UNIDAD APRENDERÁS A: Interpretr ls epresiones lgebrics frccionris como un generlizción de l opertori con frcciones numérics. Reconocer pr qué vlores un epresión
1. Cuales son los números naturales?
Guí de mtemátics. Héctor. de bril de 015 1. Cules son los números nturles? Los números nturles son usdos pr contr (por ejemplo, hy cinco moneds en l mes ) o pr imponer un orden (por ejemplo,. Es t es l
1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 PÁGIN 13 EJERCICIOS Operciones con ángulos y tiempos 1 Efectú ls siguientes operciones: ) 7 31' 15" 43 4' 57" b) 163 15' 43" 96 37' 51" c) (37 4' 19") 4 d) (143 11' 56") : 11 ) 7 31' 15" 43 4' 57"
CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS
CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD
Guía Práctica N 13: Función Exponencial
Fuente: Pre Universitrio Pedro de Vldivi Guí Práctic N : Función Eponencil POTENCIAS ECUACIÓN EXPONENCIAL FUNCIÓN EXPONENCIAL PROPIEDADES DE LAS POTENCIAS Sen, b lr {0} m, n. Entonces: PRODUCTO DE POTENCIAS