UNIVERSIDAD ARTURO PRAT IQUIQUE CHILE DEPARTAMENTO DE CIENCIAS FISICAS Y MATEMATICAS INTEGRALES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIVERSIDAD ARTURO PRAT IQUIQUE CHILE DEPARTAMENTO DE CIENCIAS FISICAS Y MATEMATICAS INTEGRALES"

Transcripción

1 DEPARTAMENTO DE CIENCIAS FISICAS Y MATEMATICAS INTEGRALES MARIA ELISA VODNIZZA LIRA mvodnizz@cec.unap.cl url : SEPTIEMBRE - 00

2 INTEGRALES Uno de los problemas importantes en Cálculo es la determinación de la antiderivada de una función dada, es decir encontrar la función primitiva de la cual se conoce su derivada Una antiderivada o primitiva de la función f es una función F tal que F () f() siempre y cuando f() esté definida. Ejemplo Dada la función f(), entonces F() es una antiderivada o primitiva de f(), ya que d ( ), también son antiderivadas de f() las d funciones G() 7, H() - 0, T() - etc. Si F () f () en cada punto del intervalo abierto I, entonces cada primitiva P de f en I tiene la forma P() F() C donde C es una constante. Integral Indefinida La epresión f ( ) d representa la integral indefinida de f() con respecto de la variable. Así si F es cualquier primitiva de f en el intervalo I, entonces la primitiva más general de f en I tiene la forma F() C Entonces f ( ) d F ) C d d ( ( F( ) C) f ( ) El símbolo de la integral es una letra S alargada que corresponde a una sumatoria como se verá cuando se trate el tema de la integral definida. Profesora: María Elisa Vodnizza Lira

3 Ejemplos Calcular las siguientes integrales d ' ) d ln C ( ln C) ' ) Cos d Sen C ( Sen C) Cos Esta claro que para encontrar una antiderivada de una función dada, es necesario recordar las derivadas de las distintas funciones estudiadas anteriormente. Propiedades. De las propiedades estudiadas para las derivadas se deduce que: a) [ ( ) g( ) t( ) ] d f ( ) d g( ) d f t( ) d k f ( ) d b) f ( ) d k De cada una de las fórmulas fundamentales de derivación, podemos deducir una fórmula elemental de integración, las que se pueden probar derivando el segundo miembro de la igualdad. INTEGRALES INMEDIATAS n n u ) u du c n u u ) e du e c ) du ln u c u ) u u a du a c lna 5) Sen u du Cosu c 6) Cos u du Senu c Profesora: María Elisa Vodnizza Lira

4 7) Sec u du tgu c 8) Co sec u du cot gu c 9) Sec u tgu du Secu c 0) Co sec u cot gu du cos ecu c du u ) arcsen c a u a du u ) arctg c a u a a du u ) arcsec c u u a a a Ejercicios Resueltos ) Calcular [ 5 6 ] d d 5 d 6 d Propiedades a) y b) 5 6 C Fórmula 8 ) Calcular d 5 Cuando en el integrando se presenta el cuociente de dos polinomios, es conveniente calcular la derivada del denominador y tratar de formarla en el numerador. Haciendo u 5, du ( 8 ) d entonces 8 du C Fórmula 5 u d ln u C ln 5 ) Calcular d No parece corresponder a ninguna de la fórmulas de integrales inmediatas, pero dividiendo los polinomios tenemos: ( ) ( ) resto Profesora: María Elisa Vodnizza Lira

5 La fracción Así d d d ln C d d ) Calcular e 5 d Haciendo u 5, du 5d du d entonces 5 5 d u du u u 5 e e du e C e C e Fórmula 5) Calcular d 9 d 9 se puede escribir como d ( ) que corresponde a la du d du arc sen C u fórmula, donde a, u, du d entonces d 9 ( ) 6) Calcular d Podemos escribir la integral dada como ( ) ( )d Haciendo u ( ), du ( 6 ) d du ( )d du ( )d entonces Profesora: María Elisa Vodnizza Lira 5

6 ( ) d ( ) ( )d u du u u C 7) Calcular 8 d. Cuando en el integrando se presenta el cuociente de dos polinomios, es conveniente calcular la derivada del denominador y tratar de formarla en el numerador Haciendo u 8, du ( )d entonces entonces d 8 La primera integral es inmediata 6 6d d 8 d 8 8 du C Fórmula 8 u d ln u C ln 8 La segunda integral, debemos arreglarla para visualizarla como inmediata 6d d 6 8 ( ) haciendo u, du d a tenemos 6d du 6 u C Fórmula 8 u 6 arc tg arc tg Por lo tanto la respuesta al ejercicio es: d ln 8-8 tg arc C Profesora: María Elisa Vodnizza Lira 6

7 8) Calcular Sen d No parece corresponder a ninguna de la fórmulas dadas de integrales inmediatas, pero si usamos la identidad trigonométrica sen [ cos ] tenemos: sen d ( cos) d [ d cos d] sen C Ejercicios Propuestos Calcular las siguientes integrales indefinidas: dy ) a by ) t t dt ) 8 d ) t a dt t 5) ln d 6) sena ad cos d 7) tg sec d 8) y 9) y dy y 0) sen d cos ( ) ) d ( ) d ) dt ) t t ) e e d 5 5 5) 5 d 6 Profesora: María Elisa Vodnizza Lira 7

8 d 6) e e d 7) e d 8) cos 9) sen d cos 0) d 6 9 ) 5d ad ) b dt 9 ) ( t ) ) e e d 5) d 6) d ( ) d 9 7) 8) s 9 s ds 9) ( ) d 0) ln d d ) 6 ) (cos a sena) d ) sec (a b) d 5) ) sen ( ) d ln d Profesora: María Elisa Vodnizza Lira 8

9 Respuestas b ) a by c a t ) c 7) tg c ln cos 0) ) c t ln cos 9) ( ) c a ) arctg c b b 6) arcsen c ln 0) c a ) tg( a b) c ln 5) ( ) c 6 ) ( t ) c ( ln ) 5) ln c 8) c ln ) c 6) c e arcsen t arctg 0) c ) c 7) arctg ln 9 c 9) arcsen c cos a ) a c 8 8 ) c sen a a 6) c ln y y 9) c 5 ln ) c 8) tg c 5 arcsen ) c 5) arctg ln c 8) 9 s arcsen s arctg ) c cos ) ( ) c Profesora: María Elisa Vodnizza Lira 9

10 METODOS DE INTEGRACION Todos los ejemplos anteriores se han caracterizado porque las integrales se han podido calcular en forma inmediata. Pero es necesario conocer algunas estrategias o métodos de integración, para facilitar el cálculo de integrales indefinidas, que no sean inmediatas. I Integración por partes Sean u y v funciones diferenciables de la variable, entonces la derivada de su producto es: d d ( u v) u dv d du v d en notación de diferenciales, tenemos: despejando integrando por lo tanto ( u v) u dv v du d udv u v u v d ( u v ) v du d u v ( u v ) v du v du Este método de integración por partes es útil para resolver integrales en las que el integrando es un producto de funciones: eponenciales, logarítmicas, trigonométricas, etc. Este método permite sustituir la función y la diferencial, dando origen a otra integral v du que en grado de dificultad debe ser menor o a lo sumo igual que la integral original. Ejemplos ) Calcular cos d Haciendo Entonces u du d dv cos d v sen Cos d sen sen d sen cos 9 C Profesora: María Elisa Vodnizza Lira 0

11 ) Calcular sen cos d Haciendo u du d sen dv sen cos d v Entonces SenCos d sen usando sen d sen ( cos) d sen sen c 8 El mismo ejercicio puede resolverse también como sen [ cos ] Haciendo u du d dv sen cos d v cos ) Calcular SenCos d cos cos d cos ( cos ) d cos sen C 8 ln d Haciendo u ln du d dv d v cos ( cos) ln d d c C ln ln - ln - Profesora: María Elisa Vodnizza Lira

12 El método de integración por partes, puede aplicarse varias veces en un ejercicio. En algunas ocasiones al repetir la integración por partes se vuelve a la integral original, como se muestra en el siguiente ejercicio. ) Calcular e sen d Haciendo u sen du e cos d e Finalmente dv e d v e Sen d e sen * cos e Sen d e sen e e Sen d e sen e e cos cos cos d Entonces, la int egral original queda epresada como e Sen d e Ejercicios Propuestos e ( sen cos ) C Cos d * e sen d aplicando por partes nuevamente u cos dv e d v e e sen d du -sen d Determine la integral dada usando integración por partes ) cos d ) sen cos d ) arctg d ln ) d Algunas Respuestas sen cos ) c 9 ) arctg c 5) send 6) cos sen ) c 8 ln ) c ( 8) d Profesora: María Elisa Vodnizza Lira

13 II Integración por Sustitución a) Sustituciones Algebraicas: Haciendo un cambio de variable adecuado es posible eliminar las raíces del integrando Ejemplos d ) Calcular sustitución algebraica u u u d u d u ( u )( u du) ( u ) d u u u C volviendo a la var iable original ( ) C du ) Calcular d Sustitución a lgebraica u d u du ( u )( u du) u u u d u u du u u : u u u u d u u du u u u u ln u C volviendo a la var iable original ln u C Profesora: María Elisa Vodnizza Lira

14 b) Sustituciones trigonométricas: Este método se usa cuando en el integrando aparecen epresiones del tipo a, a y a Es posible eliminar las raíces del integrando mediante una adecuada sustitución trigonométrica. Analizaremos los casos más frecuentes: ) Para la epresión a se recomienda sustituir asen t o bien acos t, obteniendo ( Sen t) acos t ( Cos t) asent a a a Sen t a a a a Cos t a ) Para la epresión a se recomienda sustituir a tg t obteniendo ( tg t) asec t a a a tg t a ) Para la epresión a se recomienda sustituir a Sec (t) obteniendo ( Sec t) a tg t a Sec t a Ejemplos ) Calcular d Sustitución trigonométrica tg t d sec t dt sec t dt tg t sec t sec dt t sec t dt sec t sect tgt dt sect tgt ln sect tg t sec t sect sec t du u tg t dt tg t Profesora: María Elisa Vodnizza Lira

15 Sabiendo que tg t, usaremos el tríangulo rectángulo para volver a la variable original sec t t Finalmente d ln C ) Calcular d Sustitución trigonométrica tg t d sec t dt d sec t dt tg t tg t sect dt tg t cosec t C sec t dt tg t sect cosec t ctgt dt Para volver a la variable original usaremos el triángulo por lo tanto co Finalmente sect d t C ) Calcular d Sustitución trigonométrica sec z d sec z tg z dz Profesora: María Elisa Vodnizza Lira 5

16 * sec z sec sec zdz I dv sec ( sec ztgz) z u sec z du sec z tg z I I secztgz sec z tg z - sec z tg sec z tg z - dz int egrando por partes z dz v tg z sec ztgz ln secztg z dz sec z (sec z ( sec z sec z) sec z dz sec z z - secz tgz sec z tg z dz tg z ) dz dz dz I [ sec ztgz ln sec z tgz ] * [ ] { I sec ztgz ln sec z tgz [ sec ztgz ln z tgz ] I sec z Para volver a la variable original usaremos el triángulo, donde sec z y tg z I ln C I ln C Profesora: María Elisa Vodnizza Lira 6

17 Ejercicios Propuestos Determine la integral dada usando integración por sustitución d ) ) d ) t 5 t ( t ) dt d 5 d 6 d 7 d 8 d ( ) d * (sugerencia, usar sustitución trigonométrica). RESPUESTAS ) ( ) c ) ln c ) t t arctg c ) arcsen c 5) c 6) ( ) c 7) c arctg c 8) ( ) III Integración por Fracciones Parciales Este método de integración, se usa cuando el integrando es una función Racional de la forma P( ) Q( ) la cual puede epresarse como suma de fracciones simples, de tal forma que la integración se simplifique. Profesora: María Elisa Vodnizza Lira 7

18 Ejemplos 7 d ) Calcular 7 ( ) ( ) I d - A - A d B - A( - ) B( - ) B ln ln ln ( - )( - ) - 7 C A( - ) B( - ) ( )( ) C 7 d ) Calcular Como el grado del numerador es mayor que el grado del denominador primeramente hay que dividir 7 : 5 resto d - 5 d d I } Ejercicio 7 d 5 ln ( )( ) C Profesora: María Elisa Vodnizza Lira 8

19 ) Calcular d 5 Como el grado del numerador es mayor que el grado del denominador primeramente hay que dividir 85 6 : d 7 5 ( )( 5) A - A B 5 B 6 C - B - 8 I d d - d - d ( - ) 8 ( 5) ( ) d 6 I ln ln 8 5 ln 6 C I ln 8 ( )( ) ( 5) 9 C d ) Calcular Fracciones Parciales ( )( ) Profesora: María Elisa Vodnizza Lira 9

20 Profesora: María Elisa Vodnizza Lira 0 ( ) ( ) ( ) C A C B A B A C B C B A A c B A C B A A ) )( ( ) ( A B 0 C B A -A B C ln 6 ln - * 6 ln - 6 ln - I d d d d d d I c I c d d I - tg arc 8 ) ( ln 6 * - tg arc 8 8 ) ( 8

Ejercicios de Integrales resueltos

Ejercicios de Integrales resueltos Ejercicios de Integrales resueltos. Resuelve la integral: Ln Ln Llamemos I Ln u du Aplicamos partes: dv v I Ln t t 4 t t t 4 t t 4 t 4 4 4t 4 t t t A t B t A( t) B( t) A ; B 4 t t Ln t Ln t t C Deshaciendo

Más detalles

DERIVADAS (1) LA DERIVADA DE UNA CONSTANTE es cero. Sol: Sol: Sol: Sol: Derivada de una función potencial: Forma simple

DERIVADAS (1) LA DERIVADA DE UNA CONSTANTE es cero. Sol: Sol: Sol: Sol: Derivada de una función potencial: Forma simple DERIVADAS ( Derivada de una constante K K R F ( 0 LA DERIVADA DE UNA CONSTANTE es cero. nº nº nº nº 4 nº 5 nº 6 Derivada de una función potencial: Forma simple r r R r. r LA DERIVADA DE UNA FUNCIÓN POTENCIAL

Más detalles

duv = udv + vdu udv = uv vdu

duv = udv + vdu udv = uv vdu I. INTEGRACIÓN POR PARTES. Si la integración de una función no es posible encontrarla por alguna de las fórmulas conocidas, es posible que se pueda integrar utilizando el método conocido como integración

Más detalles

2 Unidad II: Ecuaciones Diferenciales de Orden Superior

2 Unidad II: Ecuaciones Diferenciales de Orden Superior ITESM, Campus Monterrey Departamento de Matemáticas MA-41: Ecuaciones Diferenciales Lectura # Profesor: Victor Segura Flores Unidad II: Ecuaciones Diferenciales de Orden Superior.1 Ecuaciones Diferenciales

Más detalles

, pero lím. 1 x3 1. (x 1) x(x + 1) = x = x 1 1 x 3 = que es una forma indeterminada. (x + 2) (1 + x + x 2 ) = 3

, pero lím. 1 x3 1. (x 1) x(x + 1) = x = x 1 1 x 3 = que es una forma indeterminada. (x + 2) (1 + x + x 2 ) = 3 Ana María Albornoz R. Ejercicios resueltos. Calcular los siguientes ites algebraicos + + 5 + + + 0 0 + pero + 0 0 0, pero 0 + + + 4 que es una forma indeterminada. Pero + + + + + + + + + + + + + + + +

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo

Más detalles

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante.

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante. Unidad II Integral indefinida y métodos de integración. 2.1 Definición de integral indefinida. Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones

Más detalles

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces, Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.

Más detalles

UNIVERSIDAD DIEGO PORTALES CALCULO II. Autores: Sara Arancibia C Viviana Schiappacasse C. Universidad Diego Portales CALCULO II

UNIVERSIDAD DIEGO PORTALES CALCULO II. Autores: Sara Arancibia C Viviana Schiappacasse C. Universidad Diego Portales CALCULO II UNIVERSIDAD DIEGO PORTALES Autores: Sara Arancibia C Viviana Schiappacasse C PROGRAMA OBJETIVOS Comprender y aplicar los conceptos fundamentales del Cálculo Integral y Series Usar el Cálculo Integral y

Más detalles

DERIVADAS (1) Derivada de una constante. LA DERIVADA DE UNA CONSTANTE es cero. Derivada de una función potencial: Forma simple.

DERIVADAS (1) Derivada de una constante. LA DERIVADA DE UNA CONSTANTE es cero. Derivada de una función potencial: Forma simple. DERIVADAS (1) Derivada de una constante f ( ) K K F ( ) 0 LA DERIVADA DE UNA CONSTANTE es cero. nº 1) nº ) nº 3) nº 4) nº 5) nº 6) Derivada de una función potencial: Forma simple r f ( ) r f ( ) r. r 1

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Integración por partes VIII INTEGRACIÓN POR PARTES. Supóngase que se tiene la función producto y = uv. Si se deriva con respecto de x se obtiene:

Integración por partes VIII INTEGRACIÓN POR PARTES. Supóngase que se tiene la función producto y = uv. Si se deriva con respecto de x se obtiene: VIII INTEGRACIÓN POR PARTES Área Supóngase que se tiene la función producto y = uv. Si se deriva con respecto de x se obtiene: dy d = uv dx dx dy dv du = u + v dx dx dx Multiplicando toda la igualdad por

Más detalles

INTEGRALES DE LA FORMA k dx

INTEGRALES DE LA FORMA k dx Integrales de la forma ( + + ) ax bx c V INTEGRALES DE LA FORMA k ( ax + bx + c), con k ± 1, - Las nueve fórmulas estudiadas en el capítulo anterior son las que habrán de utilizarse en este tema. Simplemente

Más detalles

UNIDAD DE APRENDIZAJE III

UNIDAD DE APRENDIZAJE III UNIDAD DE APRENDIZAJE III Que debo de saber antes de empezar el tema? -Concepto de derivada. -Reglas de derivación para funciones algebraicas. -Regla de la cadena. -Regla del producto. -Regla del cociente.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS 5 TRAYECTORIAS DE UN HAZ DE CURVAS: Se dice que una familia de curvas T(,, k) 0 (k una constante arbitraria)

Más detalles

ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA

ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA Una ecuación no polinómica es, en general, más difícil de resolver que una

Más detalles

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x = Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.

Más detalles

Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito

Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito OPERACIONES CON INFINITO Sumas con infinito Infinito más un número Infinito más infinito Infinito menos infinito Productos con infinito Infinito por un número Infinito por infinito Infinito por cero Cocientes

Más detalles

Fabio Prieto Ingreso 2003

Fabio Prieto Ingreso 2003 Fabio Prieto Ingreso 00. INECUACIONES CON UNA VARIABLE.. Inecuación lineal Llamaremos desigualdad lineal de una variable a cualquier epresión de la forma: a + b > 0 o bien a + b < 0 o bien a + b 0 o bien

Más detalles

LA INTEGRAL COMO ANTIDERIVADA

LA INTEGRAL COMO ANTIDERIVADA UNIDAD II La integral como antiderivada LA INTEGRAL COMO ANTIDERIVADA La integración tiene dos interpretaciones distintas ) como procedimiento inverso de la diferenciación, y ) como método para determinar

Más detalles

PLAN DE ESTUDIOS DE MS

PLAN DE ESTUDIOS DE MS PLAN DE ESTUDIOS DE MS Temario para desarrollar a lo largo de las clases 11 y 12. CLASE 11: I. ELEMENTOS DE ÁLGEBRA LINEAL. a) Revisión de conceptos Estructura de espacio vectorial. Propiedades de los

Más detalles

2 Métodos de solución de ED de primer orden

2 Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de E de primer orden.5 Ecuaciones diferenciales homogéneas Al tratar con polinomios de más de una variable, se define el grado de cada término como la suma de los grados de

Más detalles

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?

Más detalles

INTEGRACIÓN POR FRACCIONES PARCIALES

INTEGRACIÓN POR FRACCIONES PARCIALES IX INTEGRACIÓN POR FRACCIONES PARCIALES La integración por fracciones parciales es más un truco o recurso algebraico que algo nuevo que vaya a introducirse en el curso de Cálculo Integral. Es decir, en

Más detalles

Cálculo Diferencial e Integral - Integración por partes. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Integración por partes. Prof. Farith J. Briceño N. Cálculo Diferencial e Integral - Integración por partes. Prof. Farith J. Briceño N. Objetivos a cubrir Integración : Integración por partes. Ejemplo : Integre ln d Código : MAT-CDI.6 Ejercicios resueltos

Más detalles

= + = 1+ Cuarta relación fundamental

= + = 1+ Cuarta relación fundamental 1.- Determina las razones trigonométricas de los siguientes ángulos, relacionándolos con algunos ángulos notables (0º, 0º,, 60º, 90º, 180º, 70º, 60º), indicando en qué cuadrante se encuentran: a) 40º b)

Más detalles

Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función.

Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Unidad II Funciones 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Función En matemática, una función (f) es una relación entre un conjunto dado X (llamado dominio)

Más detalles

DERIVACIÓN DE LAS FUNCIONES ELEMENTALES

DERIVACIÓN DE LAS FUNCIONES ELEMENTALES DERIVACIÓN DE LAS FUNCIONES ELEMENTALES 2 El procedimiento mediante el cuál se obtiene la derivada de una función se conoce como derivación. Llamaremos funciones elementales a las funciones polinómicas,

Más detalles

COL LECCIÓ DE PROBLEMES RESOLTS

COL LECCIÓ DE PROBLEMES RESOLTS DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES

Más detalles

Matemáticas de 2º de bachillerato página 1 Integral indefinida. Integral indefinida

Matemáticas de 2º de bachillerato página 1 Integral indefinida. Integral indefinida Matemáticas de º de bachillerato página Integral indefinida Integral indefinida.introducción.- La integración es el proceso recíproco de la derivación, es decir, en la derivación se trata de hallar la

Más detalles

Ecuaciones diferenciales de primer orden

Ecuaciones diferenciales de primer orden Tema 8 Ecuaciones diferenciales de primer orden Las ecuaciones diferenciales tuvieron un origen de carácter puramente matemático, pues nacieron con el cálculo infinitesimal. El destino inmediato de esta

Más detalles

T0. TRANSFORMADAS DE LAPLACE

T0. TRANSFORMADAS DE LAPLACE ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA MATEMATICAS T0. TRANSFORMADAS DE LAPLACE Mediante transformadas de Laplace (por Pierre-Simon

Más detalles

DIVERSOS CAMBIOS DE VARIABLE TRIGONOMÉTRICOS

DIVERSOS CAMBIOS DE VARIABLE TRIGONOMÉTRICOS X DIVERSOS CAMBIOS DE VARIABLE TRIGONOMÉTRICOS Para integrales de la forma ± ± ( ) ( ) p ± a ± b d, en donde p() es un polinomio en el numerador o en el denominador (según tome el eponente el valor de

Más detalles

7.FUNCIÓN REAL DE VARIABLE REAL

7.FUNCIÓN REAL DE VARIABLE REAL 7.FUNCIÓN REAL DE VARIABLE REAL 7.1 CONCEPTOS PREVIOS Dados dos conjuntos A={ 1,, 3,...} y B={y 1, y, y 3,...}, el par ordenado ( m, y n ) indica que el elemento m del conjunto A está relacionado con el

Más detalles

Integrales de algunas funciones trigonométricas

Integrales de algunas funciones trigonométricas Integrales de algunas funciones trigonométricas Temas Integrales de potencias de algunas funciones trigonométricas. Capacidades Conocer algunos tipos de integrales de funciones trigonométricas y técnicas

Más detalles

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales. Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos

Más detalles

2.1. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable x)

2.1. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable x) Bloque : Cálculo Diferencial Tema : Límite y Continuidad de una función.. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable ) La forma de comportarse una función para valores muy grandes

Más detalles

(Apuntes en revisión para orientar el aprendizaje) Capítulo III La derivada y algunas aplicaciones

(Apuntes en revisión para orientar el aprendizaje) Capítulo III La derivada y algunas aplicaciones (Apuntes en revisión para orientar el aprendizaje) Capítulo III La derivada y algunas aplicaciones INTRODUCCIÓN Uno de los problemas fundamentales del Cálculo Diferencial se refiere a la determinación

Más detalles

MATEMÁTICAS 2º BACH CCyTECN INTEGRACIÓN INDEFINIDA. Profesor: Fernando Ureña Portero

MATEMÁTICAS 2º BACH CCyTECN INTEGRACIÓN INDEFINIDA. Profesor: Fernando Ureña Portero 1. PRIMITIVA DE UNA FUNCIÓN Definición: Sean F(x) y f(x) dos funciones reales definidas en un mismo dominio D. Se dice, entonces, que F(x) es una primitiva de f(x) si se cumple que F'(x) = f(x), x. Dicho

Más detalles

I. Determinar los siguientes límites, aplicando las propiedades. lim =

I. Determinar los siguientes límites, aplicando las propiedades. lim = Ejercicios resueltos I. Determinar los siguientes límites, aplicando las propiedades ) 3 + 2 4 3 + 2 4 = (2) 3 + 2 (2) 2 - (2) - 4 Sustituir la por el 2 = 8 + 8-2 - 4 = 0 Aplicar límite a cada término

Más detalles

A.1 Razones trigonométricas de un triángulo rectángulo: Las razones trigonométricas de un triángulo rectángulo son las siguientes funciones:

A.1 Razones trigonométricas de un triángulo rectángulo: Las razones trigonométricas de un triángulo rectángulo son las siguientes funciones: MATEMÁTICAS EJERCICIOS RESUELTOS DE TRIGONOMETRÍA Juan Jesús Pascual TRIGONOMETRÍA A. Introducción teórica A. Razones trigonométricas de un triángulo rectángulo. A.. Valores del seno, coseno tangente para

Más detalles

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia

Más detalles

CÁLCULO INTEGRAL TEMARIO

CÁLCULO INTEGRAL TEMARIO CÁLCULO INTEGRAL TEMARIO 1. LA INTEGRAL 1.1 La integral indefinida Antiderivadas o primitivas. Funciones con la misma derivada. Antiderivada general. Antiderivada particular. Integral indefinida. Elementos

Más detalles

Prof. J. Contreras S. Prof. C. del Pino O. U de Talca

Prof. J. Contreras S. Prof. C. del Pino O. U de Talca Sesión 7 Regla de L Hopital Temas Regla de L Hopital. Aplicaciones de la Regla de L Hopital a otras formas indeterminadas. 7. Introducción Johann Bernoulli Suizo. (667-748) Capacidades Conocer y comprender

Más detalles

EXPRESIONES RACIONALES

EXPRESIONES RACIONALES EXPRESIONES RACIONALES a El conjunto de las fracciones b, donde a b son enteros (0, ±1, ±, ±, ) b 0, se le conoce como los números racionales. En matemática, la palabra racional se asocia a epresiones

Más detalles

SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS

SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS I. CONTENIDOS: 1. Función inversa, conceptos y definiciones 2. Derivación de funciones trigonométricas inversas 3. Ejercicios resueltos 4. Estrategias

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones CONCEPTOS ECUACIONES Una ecuación es una igualdad entre dos epresiones en las que aparece una o varias incógnitas. En

Más detalles

Sesión del día 11 de Marzo del 2011 y tutoría del día 12 de Marzo del 2011

Sesión del día 11 de Marzo del 2011 y tutoría del día 12 de Marzo del 2011 Especialidad La enseñanza de las matemáticas en secundaria Grupo B: Celaya Sesión del día 11 de Marzo del 2011 y tutoría del día 12 de Marzo del 2011 Álgebra Resumen de la sesión anterior. Se añadió que

Más detalles

GUÍAS DE ESTUDIO PROGRAMA DE ALFABETIZACIÓN, EDUCACIÓN BÁSICA Y MEDIA PARA JÓVENES Y ADULTOS

GUÍAS DE ESTUDIO PROGRAMA DE ALFABETIZACIÓN, EDUCACIÓN BÁSICA Y MEDIA PARA JÓVENES Y ADULTOS GUÍAS DE ESTUDIO Código PGA-0-R0 1 INSTITUCIÓN EDUCATIVA CASD PROGRAMA DE ALFABETIZACIÓN, EDUCACIÓN BÁSICA Y MEDIA PARA JÓVENES Y ADULTOS UNIDAD DE TRABAJO Nº PERIODO 1 ÁREA INTEGRADA: MATEMÁTICAS. ASIGNATURA:

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos Coordinación de Matemática I (MAT01) 1 er Semestre de 013 Semana 7: Lunes - Viernes 7 de Abril Cálculo Contenidos Clase 1: Álgebra de límites. Teorema del Sandwich. Cálculo de límites. Límites trigonométricos.

Más detalles

El dominio de la función logaritmo natural es el conjunto todos los reales positivos. Gráfica de la función logarítmica.

El dominio de la función logaritmo natural es el conjunto todos los reales positivos. Gráfica de la función logarítmica. . Funciones trascendentes..función logaritmo natural. Definición de la función logaritmo natural. La función logaritmo natural se define como ln dt, 0 t. El dominio de la función logaritmo natural es el

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

UD Trigonometría Ejercicios Resueltos y Propuestos Col La Presentación

UD Trigonometría Ejercicios Resueltos y Propuestos Col La Presentación En este documento se da una relación de los tipos de ejercicios que nos podemos encontrar en el tema de Trigonometría de º de Bachillerato. En todo el documento se sigue el mismo esquema: Enunciado tipo

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del examen final del curso Cálculo de una variable Grupo: Once Período: Inicial del año Prof: Rubén D. Nieto C. PUNTO. (x ) sen(x )

Más detalles

Matemática II Clase Nº 14-15

Matemática II Clase Nº 14-15 LA DERIVADA La derivación es una de las operaciones que el Análisis Matemático efectúa con las funciones, permite resolver numerosos problemas de Geometría, Economía, Física otras disciplinas. En matemáticas,

Más detalles

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 TEMA 3 ÁLGEBRA 3.1 FACTORIZACIÓN DE POLINOMIOS LA DIVISIBILIDAD EN LOS POLINOMIOS Un polinomio P(x) es divisible por otro polinomio Q(x) cuando el cociente

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y). TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:

Más detalles

Áreas entre curvas. Ejercicios resueltos

Áreas entre curvas. Ejercicios resueltos Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio

Más detalles

Métodos de solución de ED de primer orden

Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de E de primer orden. Ecuaciones diferenciales de variables separables El primer tipo de E que presentamos es el de variables separables, porque con frecuencia se intenta separar

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

MAT-207 ECUACIONES DIFERENCIALES Ing. Magalí Cascales CONTENIDO UNIDAD #2 ECUACIONES DIFERENCIALES DE PRIMER ORDEN

MAT-207 ECUACIONES DIFERENCIALES Ing. Magalí Cascales CONTENIDO UNIDAD #2 ECUACIONES DIFERENCIALES DE PRIMER ORDEN MAT-07 ECUACIONES DIFERENCIALES Ing. Magalí Cascales CONTENIDO UNIDAD #1 ECUACIONES DIFERENCIALES 1. Definición. Solución de una Ecuación Diferencial. Clasificación UNIDAD # ECUACIONES DIFERENCIALES DE

Más detalles

Regla de la Potencia para la Integración

Regla de la Potencia para la Integración Regla de la Potencia para la Integración Ejercicios. Calcule cada integral y compruebe los resultados derivando 1. Si comparamos con la definición entonces y Si derivamos obtenemos 2. Para que tenga la

Más detalles

INTEGRACIÓN NUMÉRICA

INTEGRACIÓN NUMÉRICA INTEGRACIÓN NUMÉRICA En los cursos de Cálculo Integral, nos enseñan como calcular una integral definida de una función contínua mediante una aplicación del Teorema Fundamental del Cálculo: Teorema Fundamental

Más detalles

Tema 2 Polinomios y fracciones algebraicas 1

Tema 2 Polinomios y fracciones algebraicas 1 Tema Polinomios y fracciones algebraicas 1 TEMA POLINOMIOS Y FRACCIONES ALGEBRAICAS EJERCICIO 1 : Desarrolla y simplifica: b) 4 1 a) 1 5 5 4 c) 1 4 1 d) 1 6 1 1 5 4 4 5 4 a) 1 5 1 5 5 6 5 4 4 5 4 4 b)

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuaciones con valor absoluto El valor absoluto de un número real a se denota por a y está definido por: Propiedades a a si a si a 0 a < 0 i a y b son números reales y n es un número entero, entonces:

Más detalles

2 Métodos de solución de ED de primer orden

2 Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de ED de primer orden.4 Ecuaciones diferenciales de Bernoulli Una ecuación diferencial ordinaria de primer orden de la forma a 0.x/y 0 C a.x/y D f.x/y r ; con r 0; : se denomina

Más detalles

TEMA 4: ECUACIONES Y SISTEMAS DE ECUACIONES

TEMA 4: ECUACIONES Y SISTEMAS DE ECUACIONES TEMA 4: ECUACIONES Y SISTEMAS DE ECUACIONES 1. ECUACIONES. Una ecuación es una igualdad entre dos expresiones algebraicas. Las variables en este caso se denominan incógnitas. Las soluciones de una ecuación

Más detalles

UNIDAD III Artificios de Integración

UNIDAD III Artificios de Integración UNIDAD III Artificios de Integración 8 UNIDAD III ARTIFICIOS DE INTEGRACIÓN La integración depende, en última instancia, del empleo adecuado de las formas básicas de integración. Cuando en un caso no sucede

Más detalles

UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES

UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES Temario: Definición de epresiones algebraicas y clasificación. Polinomio, grado. Operaciones. Regla de Ruffini. Factorización de Polinomios.

Más detalles

1. dejar a una lado de la igualdad la expresión que contenga una raíz.

1. dejar a una lado de la igualdad la expresión que contenga una raíz. 1. Resuelve las siguientes ecuaciones reales: Solución x 1 + x = 0 ; 3 x = 3 ; ln(x 1) + 4 = ln 3 Ecuaciones con raíces: No todas las ecuaciones de este tipo son sencillas de resolver, pero podemos intentar

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bac TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación

Más detalles

Capítulo 4: Derivada de una función

Capítulo 4: Derivada de una función Capítulo 4: Derivada de una función Geovany Sanabria Contenido Razones de cambio 57 Definición de derivada 59 3 Cálculo de derivadas 64 3. Propiedadesdederivadas... 64 3.. Ejercicios... 68 3. Derivadasdefuncionestrigonométricas...

Más detalles

Unidad 3: Razones trigonométricas.

Unidad 3: Razones trigonométricas. Unidad 3: Razones trigonométricas 1 Unidad 3: Razones trigonométricas. 1.- Medida de ángulos: grados y radianes. Las unidades de medida de ángulos más usuales son el grado sexagesimal y el radián. Se define

Más detalles

Información importante

Información importante Coordinación de Matemática I (MAT01) 1 er Semestre de 010 Semana 7: Lunes 3 viernes 7 de Mayo Información importante El proceso de apelación del primer certamen comienza esta semana. Los cuadernillos los

Más detalles

La antiderivada Una forma de ver la operación inversa de la derivación, clásicamente, se realiza de la siguiente forma:

La antiderivada Una forma de ver la operación inversa de la derivación, clásicamente, se realiza de la siguiente forma: La antiderivada Una forma de ver la operación inversa de la derivación, clásicamente, se realiza de la siguiente forma: Encontrar la función f(x) de la cual derivada es conocida. Dada la diferencial de

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del primer eamen parcial del curso Cálculo de una variable Grupos: Uno y Cinco Período: Inicial del año 00 Prof: Rubén D. Nieto C. PUNTO.

Más detalles

9.Método de integración por partes.-

9.Método de integración por partes.- Matemáticas de º de bachillerato página 6 Integral indefinida P P P Se trata de otro método que permite resolver cierto tipo de integrales. Veamos: Sea u() una función. Para abreviar la epresaremos por

Más detalles

ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA

ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA Recordar: Una ecuación es una igualdad algebraica en la que aparecen letras (incógnitas) con valor desconocido. El grado de una ecuación viene dado por el eponente

Más detalles

IDENTIDADES TRIGONOMETRICAS

IDENTIDADES TRIGONOMETRICAS IDENTIDADES TRIGONOMETRICAS. ESTANDARES Modelar situaciones de variaciones de variación periódicas con funciones trigonométricas.. LOGROS.. Deducir las identidades trigonométricas fundamentales.. Demostrar

Más detalles

27/01/2011 TRIGONOMETRÍA Página 1 de 7

27/01/2011 TRIGONOMETRÍA Página 1 de 7 β 27/01/2011 TRIGONOMETRÍA Página 1 de 7 Notación en un triángulo: En un triángulo cualquiera llamaremos a, b y c a sus lados y A, B y C a sus vértices de forma que A sea el vértice formado por los lados

Más detalles

Instituto Tecnológico Autónomo de México. Departamento de Matemáticas Cálculo Diferencial e Integral I (MAT14100) Lista de Ejercicios.

Instituto Tecnológico Autónomo de México. Departamento de Matemáticas Cálculo Diferencial e Integral I (MAT14100) Lista de Ejercicios. Instituto Tecnológico Autónomo de Méico Departamento de Matemáticas Cálculo Diferencial e Integral I (MAT400) Lista de Ejercicios La derivada Cálculo Diferencial e Integral I La derivada La derivada Antes

Más detalles

Matemáticas TRABAJO. Funciones Trigonométricas

Matemáticas TRABAJO. Funciones Trigonométricas Matemáticas TRABAJO Funciones Trigonométricas 2 En este trabajo trataremos de mostrar de una forma práctica las funciones trigonométricas, con sus formas de presentación, origen y manejos. También se incluirán

Más detalles

MATEMÁTICAS II CC III PARCIAL

MATEMÁTICAS II CC III PARCIAL UNIDAD DIDÁCTICA #3 CONTENIDO ECUACIONES LINEALES CON UNA INCOGNITA TIPOS DE ECUACIONES RESOLUCION DE ECUACIONES LINEALES INECUACIONES LINEALES 1 ECUACIONES LINEALES CON UNA INCOGNITA Una ecuación es una

Más detalles

Luis Zegarra A. Sucesiones, inducción y sumatorias 97

Luis Zegarra A. Sucesiones, inducción y sumatorias 97 Luis Zegarra A. Sucesiones, inducción y sumatorias 97 Note que a i representa a una suma desde el primer término de la sucesión i a para i hasta el último término que en este caso es a n para i n. Es decir,

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Ángulos complementarios Un par de ángulos son complementarios si la suma resultante de sus medidas es.

Ángulos complementarios Un par de ángulos son complementarios si la suma resultante de sus medidas es. Materia: Matemática de Séptimo Tema: Ángulos y pares de ángulos Objetivos de aprendizaje Entender e identificar ángulos complementarios. Entender e identificar ángulos suplementarios. Entender y utilizar

Más detalles

Analicemos ahora el siguiente ejemplo: (2x 4y) dx + (12y - 6x + 1) dy = 0. Será ésta una ecuación diferencial reducible a homogénea?

Analicemos ahora el siguiente ejemplo: (2x 4y) dx + (12y - 6x + 1) dy = 0. Será ésta una ecuación diferencial reducible a homogénea? 82 Analicemos ahora el siguiente ejemplo: (2x 4y) dx + (2y - 6x + ) dy = 0 Será ésta una ecuación diferencial reducible a homogénea? Si observamos la ecuación diferencial, tenemos que 2x 4y = 0 2y 6x +

Más detalles

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que

Más detalles

Operaciones con monomios y polinomios

Operaciones con monomios y polinomios Operaciones con monomios y polinomios Para las operaciones algebraicas se debe de tener en cuenta que existen dos formas para representar cantidades las cuales son números o letras. Al representar una

Más detalles

TEMA 2 POTENCIAS NOMBRE Y APELLIDOS... HOJA 1 - FECHA...

TEMA 2 POTENCIAS NOMBRE Y APELLIDOS... HOJA 1 - FECHA... Nueva del Carmen,. 011 Valladolid. Tel: 1 Fax: 1 Matemáticas º ESO TEMA POTENCIAS NOMBRE Y APELLIDOS... HOJA 1 - FECHA... Comenzamos a trabajar con potencias. Son muy fáciles si las cogemos el tranquillo

Más detalles

Manual de teoría: Funciones Matemática Bachillerato

Manual de teoría: Funciones Matemática Bachillerato Manual de teoría: Funciones Matemática Bachillerato Realizado por José Pablo Flores Zúñiga Funciones: José Pablo Flores Zúñiga Página 1 Contenido: ) Funciones.1 Conceptos Básicos de Funciones. Función

Más detalles

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto.

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. DERIVADAS Tema: La derivada como pendiente de una curva Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. La pendiente de la curva en el punto

Más detalles

Evidentemente, la superficie es un triángulo rectángulo de base 1 y altura también la unidad, por tanto su área es 1/2.

Evidentemente, la superficie es un triángulo rectángulo de base 1 y altura también la unidad, por tanto su área es 1/2. LA INTEGRAL DEFINIDA En los dos temas anteriores se ha hecho el estudio de las primitivas de una función, descubriendo distintos procedimientos para el cálculo de primitivas, es decir, se han encontrado

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Cuadernillo de apuntes Cálculo Integral

Cuadernillo de apuntes Cálculo Integral TECNOLÓGICO DE ESTUDIOS SUPERIORES DEL ORIENTE DEL ESTADO DE MÉXICO Cuadernillo de apuntes Cálculo Integral M. en C. Luis Ignacio Sandoval Paéz La Paz, estado de México. Diciembre 2011. 1 Índice Página

Más detalles

CAPÍTULO. Conceptos básicos

CAPÍTULO. Conceptos básicos CAPÍTULO 1 Conceptos básicos 1.3 Soluciones de ecuaciones diferenciales 1.3.1 Soluciones de una ecuación Ejemplo 1.3.1 Resolver la ecuación: D 0. H Resolver esta ecuación significa encontrar todos los

Más detalles