Tema 1: Números reales.
|
|
- Miguel Ángel Adolfo Cano Soriano
- hace 5 años
- Vistas:
Transcripción
1 Tem : Números reles. REALES se utiliz pr Medir mgitudes se obtiee Ctiddes todos so Números Errores viee fectds de errores Aproximcioes clses se represet Rect rel Aproximcioes decimles Redodeos Trucmieto subcojutos importtes Itervlos Etoros Repso Potecis y ríces Notció cietífic Logritmos El cojuto de los úmeros reles Cojutos e l rect rel Aproximcioes Errores
2 Repso Potecis y ríces Propieddes de ls potecis: b c = b+c b c =b c ( b ) c = b c c b c =(b) c c b ( = c b) c b = b ( c b ) =( b c ) Propieddes de los rdicles: b = b / ( b ) c = b c =b b = p = p b = b b = / c b/c b= b b = b Rciolizció: = = + b = + b b b = b b + b = + b b b = b 2 b b = b b = b b b = b + b + b = + b b b = b + b + b = + b 2 b 2
3 Notció cietífic 0, co R, <0 y N Opercioes: 0 +b 0 c 0 =(+b c) 0 ; ( 0 ) (b 0 p ) c 0 q = ( b c ) 0+ p q ; ( 0 ) p = p 0 p Logritmos log b =c b c = log =c 0 c = l =c e c = log b c=log b +log b c log b c =log b log b c log b = log b El cojuto de los úmeros reles. Los úmeros turles sirve pr cotr los elemetos de u cojuto y orderlos. Represetmos el cojuto de todos los úmeros turles por N : N={0,,2,3,4,5,...} El cojuto de los úmeros eteros ( Z opuestos: Z={0,±,±2,±3,±4,... } ) está formdo por los úmeros turles y por sus Los úmeros que se puede expresr e form de frcció so los úmeros rcioles ( ). Cudo os los ecotrmos e su form deciml puede ser decimles exctos o decimles periódicos (puros o mixtos): Q= { b ;,b Z,b 0 } Decimos que el cojuto de los úmeros rcioles es deso porque etre dos úmeros rcioles hy ifiitos úmeros ricoles. Aquellos úmeros que o puede expresrse e form de frcció so los irrcioles ( I ). Éstos so úmeros co ifiits cifrs decimles o periódics. Q 3
4 El cojuto de los úmeros reles se represet por R, y está formdo por los úmeros rcioles ( Q ) y los irrcioles ( I ): R=Q I. Los úmeros reles permite resolver lguos problems que o teí solució etre los úmeros rcioles, como el cálculo de l superficie y el volume de u esfer. Los úmeros reles puede represetrse sobre u rect: L Rect Rel. Ddos u Orige y u Uidd, cd puto de l rect le correspode u úmero y cd úmero le correspode u puto e l rect. A cd puto de est rect le correspode u úmero rciol o irrciol. Decimos que los úmeros reles complet l rect. Podemos represetr todos los cojutos uméricos e el siguiete esquem: Q R N Z N Z Q R Al operr co úmeros reles podemos hcerlo de dos forms: de form exct, pr lo cul tedremos que trbjr co rdicles simplificádolos lo más posible; de form proximd, e ese cso es ecesrio coocer el error cometido. Cojutos e l rect rel. Detro de l rect rel podemos defiir u serie de subcojutos etre los que está los itervlos. Su defiició está bsd e l relció de orde de los úmeros reles: U úmero rel es meor o igul que otro úmero rel b si e l represetció sobre l rect rel el úmero está l izquierd o superpuesto l úmero b: b o 4
5 Itervlo bierto de extremos y b: cojuto de úmeros reles compredidos etre y b. (, b)= {x R /< x< b } Itervlo cerrdo de extremos y b: cojuto de úmeros reles compredidos etre y b e icluídos estos. [, b]= {x R / x b } Podemos ecotrros itervlos semibiertos o semicerrdos, e ese cso sólo uo de los extremos estrá icluído detro del cojuto: [, b]= {x R /< x b } [, b]= {x R / x< b } Otro tipo de subcojutos que podemos ecotrr e l rect rel so los etoros. Pr defiirlos debemos especificr u cetro y u rdio. El rdio del etoro es l distci desde el cetro cd uo de los extremos del mismo (recordmos que l distci etre dos úmeros reles es el vlor bsoluto de su difereci: d(,b)= b ). U etoro de cetro y rdio r es el cojuto de úmeros reles cuy distci l cetro es meor que el rdio r: E (, r)={x R:d (, x)< r }={x R : x < r }=( r,+ r) U etoro reducido de cetro y rdio r es u etoro l que se le h quitdo el cetro: E (,r)=e(,r) { }=( r,+ r) { }=( r,) (,+ r) 5
6 Aproximcioes Los úmeros irrcioles y los úmeros decimles periódicos tiee ifiits cifrs decimles por ello deberemos trbjr co proximcioes de los mismos. El orde de u proximció es el úmero de cifrs que tommos del úmero origil. Podemos ecotrros co dos tipos de proximcioes: Aproximció deciml de orde por defecto: úmero deciml co cifrs de form que coicide co ls primers cifrs del úmero origil. Aproximció deciml de orde por exceso: úmero deciml co cifrs de form que ls - primers cifrs coicide co ls del úmero origil y l últim cifr es u uidd myor. Por ejemplo: Aproximció deciml de orde 5 por defecto del úmero π : 3.45 Aproximció deciml de orde 5 por exceso del úmero π : 3.46 Ls proximcioes de u úmero se puede relizr de diferetes forms: L proximció por redodeo de orde de u úmero es l mejor proximció deciml de orde que se puede hcer de ese úmero. Pr redoder os teemos que fijr e l cifr siguiete l que d el orde de proximció, si est cifr es meor que 5, l proximció será por defecto, y si ést es myor o igul 5, l proximció deciml será por exceso. El trucmieto de orde de u úmero es su proximció deciml por defecto de orde. Errores Al hcer proximcioes (y se por exceso o por defecto) estmos cometiedo errores. Es ecesrio ser coscietes de este hecho y coocer cuál es el error cometido. 6
7 Decimos que el error bsoluto ( E A )de u proximció es l difereci e vlor bsoluto etre el vlor rel ( V R )y el vlor proximdo ( V A ). E A = V R V A L cot de error bsoluto es u úmero que verific: V R V A < cot de error L cot de error de u proximció deciml de orde es u uidd de ese orde. L cot de error de u redodeo de orde es medi uidd de ese orde. Por ejemplo: ϕ= Trucmieto:.6 Error bsoluto: Cot de error: 0.0 Redodeo décims:.6 Error bsoluto: Cot de error: =0.005 El error bsoluto e ocsioes o os d suficiete iformció sobre si u proximció es bue (o es lo mismo cometer u error de cm e l medid de u pred o e l de u hoj de ppel). U ide de l bodd de u proximció viee dd por el error reltivo ( E R ) que es l relció eetre el error bsoluto y el vlor rel del úmero. E R = E A V R 7
Matemáticas B 4º E.S.O. Tema 1 Los números Reales 1 3º ESQUEMA DE CLASIFICACIÓN DE LOS NÚMEROS. Simplificar la fracción, si es posible N = 50
Mtemátics B º E.S.O. Tem 1 Los úmeros Reles 1 TEMA 1 LOS NÚMEROS REALES 1.0 INTRODUCCIÓN º 1.0.1 ESQUEMA DE CLASIFICACIÓN DE LOS NÚMEROS º RACIONALES(Q)???????? NO RACIONALES NATURALES(N) 0 ; ; ; 81...
Enteros (Z) Son todos los números que puede expresarse como el cociente de dos nº enteros, siendo el denominador distinto de cero
www.clseslcrt.co Clsificció de Núeros Reles Te.- Núeros Reles Reles R Rcioles Q Irrcioles Ι Eteros Z Nturles N Negtivos Deciles Exctos Frcciorios Deciles Periódicos Puros Deciles Periódicos Mixtos Rcioles
POTENCIACIÓN Y RADICACIÓN EN. Recordemos en primer lugar algunas definiciones y propiedades de la potenciación y de la radicación de números reales:
POTENCIACIÓN Y RADICACIÓN EN Recordemos e primer lugr lgus defiicioes y propieddes de l potecició y de l rdicció de úmeros reles: PROPIEDADES DE LA POTENCIACIÓN Poteci de expoete cero : 0 = por defiició,
Tema 1 Los números reales Matemáticas CCSS1 1º Bachillerato 1
Tem 1 Los úmeros reles Mtemátics CCSS1 1º Bchillerto 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros rcioles: Se crcteriz porque puede expresrse: E form de frcció,
Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre
Escuel Púlic Experimetl Descocetrd Nº Dr. Crlos Ju Rodríguez Mtemátic º Año Ciclo Básico de Secudri Teorí Nº Primer Trimestre Cojuto de los úmeros rcioles Los úmeros rcioles so quellos que puede ser expresdos
1.3.6 Fracciones y porcentaje
Ejemplo : Se hor u situció e l que ecesitmos clculr l frcció de otr frcció. Por ejemplo de. Pr u mejor iterpretció de l regl terior, recurrimos l represetció gráfic. Represetemos l frcció de Es decir:
TEMA 1 LOS NÚMEROS REALES
TEMA 1 LOS NÚMEROS REALES 1.1. Números rcioles. Los úmeros reles. 1.1.1. Sucesivs mlicioes el cmo umérico. LOS NÚMEROS NATURALES. N= {1,2,,4,...} LOS NÚMEROS ENTEROS. Z ={...,-4,-,-2,-1,0,1,2,,4,...} LOS
Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1
Tem Sucesioes Mtemátics I º Bchillerto. TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN Se llm sucesió u cojuto de úmeros ddos ordedmete de modo que se pued umerr: primero, segudo, tercero,...
1º Bachillerato Capítulo 1: Números reales
Mtemátics Aplicds ls Ciecis Sociles I º Bchillerto Cpítulo : Ídice. NÚMEROS REALES.. NÚMEROS RACIONALES Y NÚMEROS IRRACIONALES.. LA RECTA REAL.. VALOR ABSOLUTO. DISTANCIA EN LA RECTA REAL.. INTERVALOS
Tema 1. Números Reales. Intervalos y Radicales
Tem. Números Reles. Itervlos y Rdicles. El cojuto de úmeros reles.... Cojutos de l rect rel. Itervlos y etoros..... Opercioes co cojutos, uió e itersecció..... Notció cietífic.... Potecis y Rdicles...
Z={...,-4,-3,-2,-1,0,1,2,3,4,...}
TEMA Prelimires: Números y cojutos P- Números eteros: Se deomi úmeros turles (tmbié llmdos eteros positivos) los úmeros que os sirve pr cotr objetos:,,,4,5,... El cojuto de los úmeros turles se desig por
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas
Números turles. Sistem de umerció deciml Como y sbes, el sistem de umerció deciml utiliz diez cifrs o dígitos distitos:,,,, 4, 5, 6, 7, 8 y 9. Además, es u sistem posiciol porque cd cifr o dígito tiee
UNIDAD 1: NÚMEROS RACIONALES E
Colegio Vizcy º Bchiller UNIDAD : NÚMEROS RACIONALES E IRRACIONALES Colegio Vizcy º Bchiller NÚMEROS RACIONALES E IRRACIONALES. INTRODUCCIÓN Los cojutos de úmeros v mpliádose históricmete medid que surge
16/11/2015. Tema 1: Números reales REALES. Racionales (Q) Irracionales (I) Naturales (N) REALES (I) (Q) (Z) (N)
rrcioles () //0 Te : úeros reles úeros reles (rcioles e irrcioles) Aproxició de úeros reles L rect rel Vlor soluto tervlo y seirrects Potecis de expoete etero otció cietífic dicles Potecis de expoete frcciorio
EXPRESIÓN DECIMAL DE LOS NÚMEROS RACIONALES ABSOLUTOS:
Mtemátic II do Mgisterio IFD Celoes XPRSIÓN DCIMAL D LOS NÚMROS RACIONALS ABSOLUTOS: Vmos clsificr los úmeros rcioles solutos e dos cojutos disjutos D y D P ( D D φ ). P D Q D P Se / el represette cóico
Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo.
III. LOGARITMACION A) Defiició d e l og ri to : Se deoi logrito de u úero l expoete l que h que elevr u úero, lldo se, pr oteer u úero ddo. Siólicete: log x x 0 De l defiició de logrito podeos deducir:
Sucesiones de funciones
Tem 7 Sucesioes de fucioes Defiició 7. Se A IR y F A, IR el cojuto de ls fucioes de A e IR. Llmremos sucesió de fucioes de A culquier plicció de IN F A, IR, y l deotremos por f } = ó f } =. 7. Covergeci
LÍMITES DE SUCESIONES. EL NÚMERO e
www.mtesxrod.et José A. Jiméez Nieto LÍMITES DE SUCESIONES. EL NÚMERO e. LÍMITE DE UNA SUCESIÓN... Aproximció l cocepto de límite. Vmos cercros l cocepto de límite hlldo lguos térmios de distits sucesioes
El conjunto de los Números Reales
El cojuto de los Números Reles Al cojuto de los úmeros reles se lleg por sucesivs mplicioes del cmpo umérico prtir de los úmeros turles. E cd u de ls mplicioes se vz y se logr mejorr respecto de l terior.
FASE COGNITIVA. LOS NUMEROS REALES Los números reales se conforman por los decimales finitos, decimales infinitos periódicos e infinitos no periódicos
Vlorr l iportci de coocer el siste de los úeros reles eplicr ls crcterístics de ls diferetes clses de úeros reles 1. Pr qué sirve los úeros reles? Qué clse de úeros reles cooces? Cuáles so ls crcterístics
Ejercicios: 1. Coloca donde corresponda los siguientes números: N Z Q FRACCIONARIOS I
TEMA : LOS NÚMEROS REALES LOS NÚMEROS REALES. CLASIFICACIÓN. Detro del cojuto de los úeros reles distiguios: NATURALES. Se desig co l letr N y so los úeros si deciles y positivos 0,,,,. ENTEROS. Se desig
Integral Definida. Aplicaciones
Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució
Capítulo 7. Series Numéricas y Series de Potencias.
Cpítulo Series Numérics y Series de Potecis.. Itroducció. E este cpítulo le dremos setido l cocepto de sum ifiit de úmeros ó serie uméric, es decir, diremos que sigific sumr u ifiidd de úmeros... 4 El
NATURALES: surgen de la necesidad de contar o de ordenar. Se denotan con la letra N. N={1,2,3,4, }
1. CONJUNTOS NUMÉRICOS NATURALES: surge de l ecesidd de cotr o de order. Se deot co l letr N. N{1,,3,4, } L su de dos úeros turles es siepre otro úero turl. Pero co l rest o ps lo iso. Eje.: 6-8 ENTEROS:
UNIDAD 1 NÚMEROS REALES. es el sucesor de n. 4) Todo número natural tiene antecesor excepto el 1:, donde n 1
Uiversidd Nciol de Slt Fcultd de Igeierí Aputes de Curso Me prepro pr estudir Igeierí UNIDAD 1 NÚMEROS REALES CONJUNTOS NUMÉRICOS El cojuto de los Núeros Nturles ( N ) Los úeros que se eple pr cotr 1,2,3,4,...
Tema 2. Operaciones con Números Reales
Te. Opercioes co úeros reles Te. Opercioes co Núeros Reles. Opercioes co frccioes.. Itroducció.. Su y difereci.. Producto y divisió.. Opercioes cobids. Potecis.. Expoete turl.. Expoete etero (egtivo).
Definición: Llamamos función exponencial a una función que se expresa de la forma: x. ( x)
FUNCIÓN EXPONENCIAL Defiició: Llmmos fució epoecil u fució que se epres de l form: f = = co > 0 ( ), dode f ( ) : R R > 0 Ates de trbjr específicmete, co ls fucioes epoeciles, recordemos lguos coceptos
CAPÍTULO 2: POTENCIAS Y RAÍCES 1. POTENCIAS DE EXPONENTE ENTERO. PROPIEDADES
CAPÍTULO : POTENCIAS Y RAÍCES. POTENCIAS DE EXPONENTE ENTERO. PROPIEDADES.. Potecis de epoete turl. Recuerd que: Ddo, u úmero culquier, y, u úmero turl, l poteci es el producto del úmero por sí mismo veces
Tema 1 Los números reales Matemáticas I 1º Bachillerato 1
Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma
En este capítulo expondremos brevemente (a modo de repaso) conceptos básicos sobre los sistemas de numeración.
Arquitectur del Computdor ots de Teórico SISTEMAS DE UMERACIÓ. Itroducció E este cpítulo expodremos brevemete ( modo de repso) coceptos básicos sobre los sistems de umerció. o por secillo el tem dej de
Potencias y radicales
Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5.
Itroducció º ESO º ESO Pr operr co frccioes se sigue el mismo método que pr operr co úmeros eteros. Es decir, hy que respetr u jerrquí. Recordémosl: 1. Corchetes y prétesis.. Multipliccioes y divisioes..
Algunas funciones elementales
Apédice B Algus fucioes eleetles B Fució poteci -ési U fució poteci -ési es u fució de l for f ( ) dode l se es u vrile y el epoete u úero turl Es l for ás secill de ls fucioes polióics f ( ) Ls fucioes
Matemáticas 1 EJERCICIOS RESUELTOS:
Mtemátics EJERCICIOS RESUELTOS: Series umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Series umérics Clculr l
LOS NÚMEROS REALES. La estructura del conjunto de los números reales es: Naturales Enteros { } { }
LOS NÚMEROS RELES L estructur del cojuto de los úeros reles es: Nturles N Eteros ( ) ( ) ( Z) : Rcioles Q : Núeros Reles R : Negtivos Frccioes Irrcioles() I N Eteros positivos ás el cero 0,1, 2, 3,...
1. Aplicar la definición para hallar, sin calculadora, el valor de las siguientes potencias:
EJERCICIOS de POTENCIAS º ESO FICHA : Potecis de expoete IN RECORDAR:... Defiició de poteci ( veces). Aplicr l defiició pr hllr, si clculdor, el vlor de ls siguietes potecis: ) b) ( ) c) d) ( ) e) f) (
TEMA 1 EL NÚMERO REAL
Tem El número rel Ejercicios resueltos Mtemátics B º ESO TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN DE NÚMEROS REALES EJERCICIO : Clsific los siguientes números como 0 ; ;,...; 7; ; ; ; 7, = 0,8
Progresiones aritméticas y geométricas
Progresioes ritmétics y geométrics Progresioes ritmétics y geométrics. Esquem de l uidd PROGRESIONES Progresioes Aritmétics Progresioes Geométrics Iterés compuesto Sum de térmios Sum de térmios Producto
TEMA 1. FUNCIONES REALES. DEFINICIÓN Y LÍMITES
Uidd. Fucioes. Defiició y Líites TEMA. FUNCIONES REALES. DEFINICIÓN Y LÍMITES. Fucioes reles de vrible rel. Doiio de u fució.. Doiios de ls fucioes ás hbitules. Coposició de fucioes. Propieddes. Fució
Matemáticas 1 1 EJERCICIOS RESUELTOS: Sucesiones numéricas. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria
Mtemátics EJERCICIOS RESUELTOS: Sucesioes umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Sucesioes umérics Sucesioes
Tema 7: Series Funcionales
I.T.Telecomuiccioes Curso 99/ Tem 7: Series Fucioles Al estudir el teorem de Tylor se oservó l posiilidd de epresr u fució f ifiitmete derivle como u sum ifiit de fucioes moomiles, lgo sí como u poliomio
1 Los números reales VAMOS A CONOCER QUÉ NECESITAS SABER? Los números racionales. Los números irracionales. Los números reales y su representación
Los úmeros reles VAMOS A CONOCER Los úmeros rcioles Los úmeros irrcioles Los úmeros reles y su represetció Itervlos Ríces y sus propiees Rciolizció Aproximció e úmeros y su error Notció cietífic QUÉ NECESITAS
Los números racionales:
El número rel MATEMÁTICAS I 1 1. EL CONJUNTO DE LOS NÚMEROS REALES. LA RECTA REAL 1.1. El conjunto de los números reles. Como y sbes los números nturles surgen de l necesidd de contr, expresr medids, pr
Las reglas de divisibilidad Por: Enrique Díaz González
Uiversidd Itermeric de Puerto Rico - Recito de Poce Ls regls de divisibilidd Por: Erique Díz Gozález Itroducció Desde l escuel elemetl los estudites se les eseñ cudo u etero es divisible, por ejemplo,
Matemáticas aplicadas a las Ciencias Sociales
Mtemátics plicds ls Ciecis Sociles SERIE RESUELVE El liro Mtemátics plicds ls Ciecis Sociles I pr. er curso de Bchillerto, es u or colectiv coceid, diseñd y cred e el Deprtmeto de Edicioes Eductivs de
( ) ( ) 10. 18 = y el número 12 también es múltiplo del 3 ya que. 6 = y el número 8 también es múltiplo del 2 ya que. 3.
Pági del Colegio de Mtemátics de l ENP-UNAM El cmpo de los úmeros reles Autor: Dr. José Muel Becerr Espios EL CAMPO DE LOS NÚMEOS EALES UNIDAD III III. NÚMEOS NATUALES Los úmeros turles so quellos que
TRABAJO PRÁCTICO TEMA: SUCESIONES Y SERIES
TRABAJO PRÁCTICO TEMA: SUCESIONES Y SERIES SUCESIÓN NUMÉRICA: es u fució cuyo domiio es el cojuto de los úmeros turles (o u subcojuto de él) y l imge está icluid e el cojuto de los Reles ( ) SUCESIÓN ARITMÉTICA:
POTENCIAS.- a determina la potencia de base a y exponente n, significa que hemos de multiplicar a por si mismo n veces.
POTENCIAS.- determi l oteci de se y exoete, sigific ue hemos de multilicr or si mismo veces. Defiició: L otció Bse Exoet El exoete,, idic ls veces ue se reite l se e el roducto de ést or si mism. L se,,
3 Potencias y raíces de números
Potecis y ríces de úeros reles. Potecis de expoete turl. Defiició. El producto tiee sus siete fctores igules. Este producto se puede idicr de for brevid coo. se ll poteci, y l fctor, bse. El úero de veces
Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino
i quieres que lgo se hg, ecárgselo u perso ocupd Proverbio chio hht ttpp: ://ppeer rssoo..wddoooo..eess/ /ti iimoomt tee Noviembre 006 PROGREIONE DEFINICIÓN DE UCEIÓN NUMÉRICA U sucesió uméric es u cojuto
FUNDAMENTOS DE MATEMÁTICA MATERIAL CON FINES DIDÁCTICOS UNEFA NÚCLEO TÁCHIRA PRODUCTOS NOTABLES.
PRODUCTOS NOTABLES. Productos Notbles: So poliomios que se obtiee de l multiplicció etre dos o más poliomios que posee crcterístics especiles o expresioes prticulres, cumple cierts regls fijs; es decir,
C0MPLEJO EDUCATIVO Dr. OSCAR ABDALA ÁREA DE MATEMÁTICA. CONTENIDOS DE REVISIÓN PARA 3º AÑO Prof. Patricia Cardona
C0MPLEJO EDUCATIVO Dr. OSCAR ABDALA ÁREA DE MATEMÁTICA CONTENIDOS DE REVISIÓN PARA 3º AÑO Prof. Ptrici Crdo COMPLEJO EDUCATIVO Dr. OSCAR ABDALA CONTENIDOS DE REVISIÓN CONJUTOS NUMÉRICOS Nturles: N = 1
Liceo Marta Donoso Espejo Raíces para Terceros
. Ríces cudrds y cúics Liceo Mrt Dooso Espejo Ríces pr Terceros Coeceos el estudio de ls ríces hciédoos l siguiete pregut: Si el áre de u cudrdo es 64 c 2, cuál es l edid de su ldo? Pr respoder esto deeos
Base positiva: resultado siempre positivo. Base negativa y exponente par: resultado positivo. Base negativa y exponente impar: resultado negativo
CAPÍTULO : POTENCIAS Y RAÍCES. Mteátics ºB ESO. POTENCIAS DE EXPONENTE ENTERO. PROPIEDADES.. Potecis de eoete turl. Recuerd que: Ddo, u úero culquier, y, u úero turl, l oteci es el roducto del úero or
Potencias y Radicales
Potecis y Rdicles Potecis de expoete turl ( Se R~{ 0 } N Defiimos...... 8, ( ) ( )( )( )( )( ) Propieddes: ) m + m ) m m ( ) ) ) () ) m m Por coveio: ) 0 Potecis de expoete egtivo Se R~0 N. Defiimos 8
REALES EALES. DEFINICIÓN Y LÍMITES
Uidd. Fucioes. Defiició y Líites TEMA. FUNCIONES REALES EALES. DEFINICIÓN Y LÍMITES. Fucioes reles de vrile rel. Doiio de u fució.. Doiios de ls fucioes ás hitules. Coposició de fucioes. Propieddes. Fució
Potencias, Raíces y logaritmos
Potecis, Ríces y logritmos El ivetor del jedrez, le preseto su ovedos creció l rey de Dirhm, e l idi, este quedo t fscido por el juego que le ofreció culquier cos que el deser como recompes. Ate este
TEMA 1. INTRODUCCIÓN A LAS FUNCIONES REALES DE VARIABLE REAL
TEMA. INTRODUCCIÓN A LAS FUNCIONES REALES DE VARIABLE REAL . UN REPASO DE LOS NÚMEROS REALES CONJUNTOS NUMÉRICOS Los úmeros turles (tmbié llmdos eteros positivos) IN {,, 3, 4, 5,...}. L sum + b y el producto
LOS NÚMEROS REALES. n, se llaman números irracionales. Una diferencia entre los
LOS NÚMEROS REALES Los úmeros,, so usdos pr cotr Normlmete se los cooce como el cojuto de los úmeros turles, dicho cojuto se lo deot ormlmete co l letr N, sí N {,,K } Si se sum dos úmeros turles el resultdo
TEMA 1. LOS NÚMEROS REALES.
TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones
Anillos de Newton Fundamento
Aillos de Newto Fudmeto Los illos de Newto so producidos por itererecis cudo dos hces de luz, procedetes de l mism uete, recorre cmios ópticos dieretes. Eiste distitos modos de logrr este eómeo, el que
Licenciatura en Electrónica y Computación: Métodos Numéricos
CIICp VLORES Y VECTORES PROPIOS Los vlores y vectores propios se cooce tmié como eigevlores y eigevectores. Estos vlores y vectores propios se utiliz geerlmete e sistems lieles de ecucioes homogéeos que
Álgebra para ingenieros de la Universidad Alfonso X
Crrer: UAX Asigtur: temátics Fech: Pági de 9 Álger pr igeieros de l Uiversidd Alfoso X -trices y sistems de ecucioes lieles Opercioes co mtrices: A= m m B= m p p q q pq Sum: - s mtrices sumr tiee que teer
La integral de Riemann
Cpítulo 6 L itegrl de Riem Vmos dr u defiició precis de l itegrl de u fució defiid e u itervlo. Este tiee que ser u itervlo cerrdo y cotdo, es decir [,b] co < b R, y l defiició que dremos de itegrl solo
UNIDAD I. Números Reales
UNIDAD I Números Reles CONJUNTOS Defiició: U cojuto es u colecció ie defiid de ojetos. Deotremos los cojutos co letrs myúsculs A, B, C, etc. Los ojetos que compoe el cojuto recie el omre de elemetos o
COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti
COLEGIO SAN FRANCISCO DE SALES - 0 - Prof. Cecili Glimerti MATEMÁTICA AÑO B GUÍA N - NÚMEROS IRRACIONALES NUMEROS IRRACIONALES Conocemos hst hor distintos Conjuntos Numéricos: - Los n nturles: (, 8,.8),
PROBLEMAS Y EJERCICIOS RESUELTOS
PROGRESIONES 3º ESO PÁGINA EJERCICIOS RESUELTOS DE PROGRESIONES ARITMÉTICAS Y GEOMÉTRICAS UN POCO DE HISTORIA: UN NIÑO LLAMADO GAUSS Hce poco más de dos siglos, u mestro lemá que querí pz y trquilidd e
Unidad 7: Sucesiones. Solución a los ejercicios
Mtemátics º Uidd 7: Sucesioes Uidd 7: Sucesioes. Solució los ejercicios Ejercicio Ecuetr el térmio geerl de ls siguietes sucesioes: ),,,,,... 5 6 7 b ) 0,, 8,5,, 5... b 5 6 c ) 0,,,,,,... 5 6 7 c Ejercicio
Los números enteros y racionales
Los números enteros y rcionles Objetivos En est quincen prenderás : Representr y ordenr números enteros Operr con números enteros Aplicr los conceptos reltivos los números enteros en problems reles Reconocer
TEMA 2 ECUACIONES, INECUACIONES Y SISTEMAS
TEMA ECUACIONES INECUACIONES Y SISTEMAS CURSO CERO MATEMÁTICAS:. ECUACIONES INECUACIONES Y SISTEMAS.. ECUACIONES DE PRIMER GRADO... Método geerl de resolució de ecucioes EJEMPLO: Resolver 4 5 6 (+7) =
COMBINATORIA. Las variaciones ordinarias se representan por el símbolo Vm,n o por V
COMBINATORIA Por Aálisis Cobitorio o Cobitori, se etiede quell prte del álgebr que se ocup del estudio y propieddes de los grupos que puede forrse co eleetos ddos, distiguiédose etre sí: por el úero de
PROCESOS INFINITOS Y LA NOCIÓN DE LÍMITE
UNIDAD PROCEO INFINITO Y LA NOCIÓN DE LÍMITE Propósitos Explorr diversos problems que ivolucre procesos ifiitos trvés de l mipulció tbulr, gráfic y simbólic pr propicir u cercmieto l cocepto de límite
DELTA MASTER FORMACIÓN UNIVERSTARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID
/ Grl. Ampudi, 6 Teléf.: 9 5-9 55 9 ADRID FBRRO 5 UNIVRSIDAD PONTIFIIA D SALAANA ATÁTIAS DISRTAS FBRRO 5 (TARD) PROBLA : Se cooce el siguiete comportmieto de Luis e u resturte l que v comer: - No es verdd
FACULTAD DE INGENIERIA Y CIENCIAS BASICAS LOGICA Y PENSAMIENTO MATEMATICO GUIA DE POTENCIACIÓN Y RADICACIÓN DOCENTE: IDALY MONTOYA A.
. POTENCIACIÓN FACULTAD DE INGENIERIA Y CIENCIAS BASICAS Llos poteci de u úero reltivo, l producto de torlo coo fctor tts veces coo se quier. Si es u úero reltivo culquier es u úero turl, tedreos l otció,
TEMA1: MATRICES Y DETERMINANTES:
TEM: MTRICES Y DETERMINNTES: MTRICES: U triz de diesió, es u tbl ford por fils y colus. j i siedo ij,.,,., ) ( Por ejeplo: Se ll Mtriz Fil l que tiee u sol fil, ejeplo: Se ll Mtriz Colu l que tiee u sol
Ecuaciones de recurrencia
Ecucioes de recurreci Itroducció Comecemos co u ejemplo: Sucesió de Fibocci: ( ) = (,,,3,5,8,3,... ) Cd térmio, prtir del tercero, se obtiee sumdo los dos teriores, o se: 3 = + ( ) U expresió de este tipo,
EXPONENTES Y RADICALES
EXPONENTES Y RADICALES L potecició o otció epoecil es u otció pr revir u ultiplicció: Notció: L, pr u etero positivo 0. veces Se lee coo elevdo l o ás revido: l. es lld l se el epoete o poteci e idic el
CURSO DE INGRESO 2010 CUADERNILLO DE MATEMÁTICAS
UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO FACULTAD DE AGRONOMIA Y AGROINDUSTRIAS CURSO DE INGRESO 00 CUADERNILLO DE MATEMÁTICAS Autor: Dr. Lucreci L. Chillou Fcultd de Agroomí Agroidustris Mtemátics
UNIVERSIDAD AMERICANA. Curso BAN-03: Matemática I ( Jueves- Noche ) Prof. Edwin Gerardo Acuña Acuña PRÁCTICA DE FACTORIZACIÓN
UNIVERSIDAD AMERICANA Escuel de Mteátic, I C-12. Curso BAN-03: Mteátic I ( Jueves- Noche ) Prof. Edwi Gerrdo Acuñ Acuñ PRÁCTICA DE FACTORIZACIÓN L fctorizció es epresr e for teátic u polioio o úero coo
SUBSECRETARÍA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN GENERAL DEL BACHILLERATO CENTRO DE ESTUDIOS DE BACHILLERATO 4/2 LIC: JESÚS REYES HEROLES
SUBSECRETARÍA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN GENERAL DEL BACHILLERATO CENTRO DE ESTUDIOS DE BACHILLERATO 4/ LIC: JESÚS REYES HEROLES GUÍA PARA EL EXAMEN EXTRAORDINARIO DE MATEMÁTICAS IV: FUNCIONES
A modo de repaso. Preliminares
UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos
FÓRMULA DE TAYLOR 1. Introducción formula de Taylor Brook Taylor 2. Objetivos Aproximación de funciones por polinomios f(x) P(x) f(x)
FÓRMULA DE TAYLOR. Itroducció Los poliomios igur etre ls ucioes más secills que se estudi e Aálisis. So decuds pr trjr e cálculos uméricos por que sus vlores se puede oteer eectudo u úmero iito de multipliccioes
El conjunto de los números reales se forma mediante la unión del conjunto de los números racionales y el conjunto de los números irracionales.
El conjunto de los números reles (R) El conjunto de los números reles se form medinte l unión del conjunto de los números rcionles y el conjunto de los números irrcionles. Propieddes del conjunto R R =
DEFINICIONES BÁSICAS, EXPONENTES Y RADICALES
. TERMINOLOGÍA Y NOTACIÓN A prtir de los coociietos de ritétic, se desrrollrá u leguje edite síolos térios, pr elorr u serie de técics de cálculo; el leguje ls técics, costitue u r iportte de l teátic,
TEMA 1. NÚMEROS REALES
TEMA. NÚMEROS REALES. El número que indic los dís del ño es un número muy curioso. Es el único número que es sum de los cudrdos de tres números nturles consecutivos y que demás es sum de los cudrdos de
GESTIÓN FINANCIERA. 1. Por qué se caracteriza una operación financiera? (1,5 puntos)
Escuel Técic Superior de Iformátic Covoctori de Juio - Primer Sem Mteril Auxilir: Clculdor ficier GESTIÓN FINANCIERA 27 de Myo de 2-8, hors Durció: 2 hors. Por qué se crcteriz u operció ficier? (, putos)
S U C E S I O N E S N U M É R I C A S
S U C E S I O N E S N U M É R I C A S. S U C E S I O N E S D E N Ú M E R O S R E A L E S Se llm sucesió u cojuto de úmeros ddos ordedmete de modo que se pued umerr: primero, segudo, tercero,... Los elemetos
Resumen: Límites de funciones. Asíntotas
Resue: Líites de ucioes. Asítots epre que se pued sustituir probles e l epreó de Los csos e los que o se pued sustituir es: k cudo tegos Es ideterido el go del y depede de l regl de los gos. Ejeplos: *?
CAPÍTULO 3 Función Exponencial y Función Logarítmica. Por su uso e importancia, es necesario revisar las propiedades de las potencias, que se resumen
CAPÍTULO 3 Fució Epoecil Fució Logrític 3.1) Repso de propieddes de ls potecis Por su uso e iportci, es ecesrio revisr ls propieddes de ls potecis, que se resue cotiució. ( ) 1 1 0 3.) Fució Epoecil Defiició
La integral. 1.5 Definición de la integral. Sumas de Riemann Aproximación del área de una región
APÍTULO L itegrl.5 efiició de l itegrl. Sums de Riem.5. Aproimció del áre de u regió E est secció precismos lgus ides epuests previmete, co respecto l problem de ecotrr el áre de l regió bjo l gráfic de
4ºB ESO Capítulo 2: Potencias y raíces
ºB ESO Cpítulo : Potecis y ríces LirosMreVerde.tk www.putesmreverde.org.es Autor: JOSE ANTONIO ENCABO DE LUCAS Revisor: Nieves Zusti Ilustrcioes: Bco de Imágees de INTEF Potecis y ríces. ºB de ESO Ídice.
Números reales. unidad 1. contenidos
coteidos uidd. Núeros turles y eteros. Núeros rcioles. Potecis. Relcioes etre los úeros rcioles y deciles 4. Núeros irrcioles. Núeros reles. Represetció 6. Cojutos e l rect rel 7. Aproxicioes deciles 8.
ECUACIONES DE SEGUNDO GRADO. Resolver la ecuación de segundo grado aplicando propiedades de la
ECUACIONES DE SEGUNDO GRADO Ojetivos: Defiir ecució de segudo grdo. Resolver l ecució de segudo grdo plicdo propieddes de l iguldd. Resolver l ecució de segudo grdo plicdo fctorizcioes. Resolver l ecució
Sucesiones numéricas.
SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El
TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES
TEM. VECTORES Y MTRICES.. PLICCIONES . VECTORES Y MTRICES.. PLICCIONES... Cálculo del rgo de u mtri.... Cálculo de l ivers de u mtri.... Resolució de ecucioes mtriciles.... Discusió resolució de sistems
1. Discutir según los valores del parámetro k el sistema
. Discutir segú los vlores del práetro el siste C Si, el (º de icógits) S. C. D. Teiedo e cut lo terior se discute el tipo de solució del siste pr los vlores del práetro que ulr el deterite de l tri de
3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m
LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener
Recuerda: a 0 = 1 1 m = 1 ( 1) m = 1 m par ( 1) n = 1 n impar 0 n = 0
CAPÍTULO : POTENCIAS Y RAÍCES: º de ESO. OPERACIONES CON POTENCIAS Recuerd que l poteci de se u úero turl epoete turl es u producto de fctores igules l se: =... fctores... > 0) El fctor que se repite es
SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que
SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso
9 Proieddes del roducto de úmeros or mtrices: b y M m. socitiv: b b Distributiv e : b b Distributiv e M m : Elemeto eutro: =.. Producto de mtrices Pr
. OPERIONES ON MRIES.. Sum de mtrices Pr oder sumr dos mtrices ésts debe teer l mism dimesió. Etoces se sum térmio térmio: b b m m m Proieddes de l sum de mtrices: socitiv: omuttiv: Elemeto eutro: L mtriz