personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12
|
|
- Manuel Montes Quintana
- hace 6 años
- Vistas:
Transcripción
1 Teoría de conjuntos. Teoría de Conjuntos. personal.us.es/elisacamol Curso 2011/12 Teoría de Conjuntos.
2 Teoría de conjuntos. Noción intuitiva de conjunto. Propiedades. Un conjunto es la reunión en un todo de objetos bien definidos y diferenciables entre sí, que se llaman elementos del mismo. Un conjunto lo podemos definir por extensión, encerrando todos sus elementos entre llaves, por ejemplo, A = {2,4,6,8}, o por comprensión, es decir, caracterizando los elementos que forman dicho conjunto, por ejemplo, A = {números pares y positivos menores que 9}. Teoría de Conjuntos.
3 Teoría de conjuntos. Propiedades y Definiciones. Propiedades. Si a es un elemento del conjunto A se denota con la relación de pertenencia a A. En caso contrario, si a no es un elemento de A se denota a / A. Ejemplos:, el conjunto vacío, que carece de elementos. N, el conjunto de los números naturales. Z, el conjunto de los números enteros. Q, el conjunto de los números racionales. R, el conjunto de los números reales. C, el conjunto de los números complejos. Teoría de Conjuntos.
4 Teoría de conjuntos. Propiedades y Definiciones. Propiedades. Al número de elementos de un conjunto se le denomina cardinal del conjunto A y se denota por A. El cardinal del conjunto es el cero. Se dice que dos conjuntos A y B son iguales (o idénticos) si constan exactamente de los mismos elementos, en cuyo caso escribiremos A = B. Ejemplos: A = {2,4,6,8}, B = {2,8,4,6} y C = {2,2,4,4,6,8}. A = B = C. Teoría de Conjuntos.
5 Teoría de conjuntos. Propiedades y Definiciones. Propiedades. Se dice que un conjunto A es un subconjunto de B y se escribe A B si todo elemento de A es de B. Esta relación entre conjuntos se llama relación de inclusión. Si A B no excluye la posibilidad de que B A. A B y B A si y sólo si A = B. Teoría de Conjuntos.
6 Teoría de conjuntos. Propiedades. Unión. Dados dos conjuntos A y B, se define la unión de A y B, y se denota por A B, al conjunto de todos los elementos que pertenecen a A o a B. Intersección. Dados dos conjuntos A y B, se define la intersección de A y B, y se denota por A B, al conjunto de todos los elementos que pertenecen a A y a B. Teoría de Conjuntos.
7 Teoría de conjuntos. Propiedades de la unión. Propiedades. Propiedad asociativa: Propiedad conmutativa: Propiedad idempotente: (A B) C = A (B C) A B = B A A A = A Elemento ínfimo y elemento universal: Para cualquier conjunto A se verifica que A = A. Si todos los conjuntos considerados son partes de un conjunto U, se tiene que A U = U. Teoría de Conjuntos.
8 Teoría de conjuntos. Propiedades de la intersección. Propiedades. Propiedad asociativa: Propiedad conmutativa: Propiedad idempotente: (A B) C = A (B C) A B = B A A A = A Elemento ínfimo y elemento universal: Para cualquier conjunto A se verifica que A = A. Si todos los conjuntos considerados son partes de un conjunto U, se tiene que A U = A. Teoría de Conjuntos.
9 Teoría de conjuntos. Notas. Propiedades. Si A B = se dice que A y B son conjuntos disjuntos. Sea A 1,A 2,...,A n una colección finita de conjuntos, se define la unión de todos los conjuntos y se representa por n A i = A 1 A n, como el conjunto de todos los i=1 elementos que pertenecen por lo menos a uno de los conjuntos A i. Sea A 1,A 2,...,A n una colección finita de conjuntos, se define la intersección de todos los conjuntos y se representa n por A i = A 1 A n, como el conjunto de todos los i=1 elementos que pertenecen a cada uno de los conjuntos A i. Teoría de Conjuntos.
10 Teoría de conjuntos. Notas. Propiedades. Ambas operaciones entre conjuntos verifican las siguientes propiedades: Ley de simplificación: Propiedad distributiva: (A B) A = A (A B) A = A A (B C) = (A B) (A C) A (B C) = (A B) (A C) Teoría de Conjuntos.
11 Teoría de conjuntos. Conjunto Complementario. Propiedades. Si A X, se llama complementario de A con respecto a X, al conjunto de todos los elementos de X que no pertenecen a A, y se denota por A. Propiedades: El complementario verifica las siguientes propiedades: = X y X =. A = A. A B = A B. A B = A B. Si A B, entonces B A. A A = X y A A =. Teoría de Conjuntos.
12 Lenguaje formal. Teoría de conjuntos. Lógica proposicional. Tablas de Verdad Una proposición simple es una afirmación simple a la que se le pueda asignar un valor de verdad (V) o falsedad (F). Ejemplos: x+3 es un entero positivo NO ES UNA PROPOSICIÓN. 15 es un número entero SÍ ES UNA PROPOSICIÓN y tiene el valor V. 15 es un número par SÍ ES UNA PROPOSICIÓN y tiene el valor F. Las proposiciones las representamos con las letras p, q, r, etc... Asignamos p a la siguiente proposición hoy es lunes, por q la proposición el cielo está despejado por r hoy hay luna llena. 2 Teoría de Conjuntos.
13 Conectores lógicos. Teoría de conjuntos. Lógica proposicional. Tablas de Verdad Las proposiciones simples pueden combinarse mediante las llamadas conectores lógicos para formar proposiciones compuestas. Los conectores lógicos son: La negación. Por ejemplo, p significa que hoy no es lunes. La disyunción. También se le denomina o inclusivo. Por ejemplo, p q significa que pueden ser ciertas las dos proposiciones hoy puede serl lunes y/o el cielo puede estar despejado. En el lenguaje cotidiano el o es exclusivo. La conjunción. Corresponde al y de nuestro lenguaje cotidiano. Por ejemplo, p q significa que hoy es lunes y el cielo está despejado. Teoría de Conjuntos.
14 Conectores lógicos. Teoría de conjuntos. Lógica proposicional. Tablas de Verdad La implicación. También llamada condicional. Por ejemplo, p q significa que si hoy es lunes entonces el cielo está despejado. La equivalencia. Por ejemplo, p q significa que hoy es lunes si y sólo si el cielo está despejado. Otros elementos que suelen aparecer son los paréntesis. Por ejemplo, no es lo mismo esta proposición compuesta p (q r) que esta otra (p q) r Teoría de Conjuntos.
15 Tablas de Verdad. Teoría de conjuntos. Lógica proposicional. Tablas de Verdad p tomará el valor verdad (V) si p toma el valor falso (F) y tomará el valor falso (F) si p toma el valor verdad (V). p q tomará el valor verdad (V) si al menos uno de entre p y q toma el valor verdad (V) y tomará el valor falso (F) si tanto p como q toma el valor falso (F). p q tomará el valor verdad (V) si p y q toman el valor verdad (V) y tomará el valor falso (F) si uno de entre p y q toma el valor falso (F). Teoría de Conjuntos.
16 Tablas de Verdad. Teoría de conjuntos. Lógica proposicional. Tablas de Verdad p q tomará el valor verdad (V) si p y q toman el valor verdad (V) y tomará el valor falso (F) si uno de entre p y q toma el valor falso (F). p q tomará el valor verdad (V) si p y q toman el valor verdad (V) o si p toma el valor falso (F) independientemente del valor que toma q y tomará el valor falso (F) en los demás casos. p q tomará el valor verdad (V) si p y q toman el mismo valor y tomará el valor falso (F) en los demás casos. Teoría de Conjuntos.
17 Tablas de Verdad. Teoría de conjuntos. Lógica proposicional. Tablas de Verdad Una proposición se dice que es una tautología si toma el valor verdad independientemente de los valores de las proposiciones que la componen. Una proposición se dice que es una contradicción si toma el valor falso independientemente de los valores de las proposiciones que lo componen. Una proposición se dice que es una contingencia si no es ni una tautología ni una contradicción. Teoría de Conjuntos.
18 Teoría de conjuntos. Axiomas y Propiedades. El álgebra de Boole es un conjunto de elementos, B, dos operaciones binarias: +, denominada suma o adición y, llamada producto o multiplicación, que satisfacen los siguientes axiomas: Axioma 1: Las operaciones + y son conmutativas: a+b = b+a a b = b a Axioma 2: Las operaciones + y son asociativas: (a+b)+c = a+(b+c) (a b) c = a (b c) Teoría de Conjuntos.
19 Axiomas. Teoría de conjuntos. Axiomas y Propiedades. Axioma 3: Las operaciones + y son distributivas: a+(b c) = (a+b) (a+c) a (b+c) = (a b)+(a c) Axioma 4: Las operaciones + y tienen elemento identidad 0 y 1, respectivamente: a+0 = a a 1 = a Axioma 5: Cada elemento a B tiene un complementario que se denota por a : (Operación unitaria) a+a = 0 a a = 1 Teoría de Conjuntos.
20 Ejemplos. Teoría de conjuntos. Axiomas y Propiedades. Ejemplo 1: El álgebra de conjuntos es un álgebra de Boole. El conjunto de elementos, las dos operaciones binarias, la unión y la intersección, siendo sus elementos identidad el conjunto universal (el total X) y el conjunto vacío ( ). La operación unitaria el complementario: A = A, A X = A. A A = X = 1, A = = 0. Teoría de Conjuntos.
21 Ejemplos. Teoría de conjuntos. Axiomas y Propiedades. Ejemplo 2: Álgebra Proposicional. El conjunto B está formado por dos elementos V y F; las dos operaciones (disyunción) y (conjunción) cuyos elementos identidad son F y V respectivamente. La operación unitaria es la negación,. V F = V, F F = F, (suma) V V = V, F V = F, (producto) V V = V = 1, V V = F = 0, (complementario) Teoría de Conjuntos.
22 Ejemplos. Teoría de conjuntos. Axiomas y Propiedades. Ejemplo 3: Álgebra de conmutación. Este álgebra es importante en el análisis de circuitos. El conjunto de elementos, B = {0,1} las dos operaciones (+) y y la operación unitaria vienen dadas por: x x Aplicación inportante: Circuitos eléctricos Teoría de Conjuntos.
Liceo Nº 35, "Instituto Dr. Alfredo Vázquez Acevedo". Nocturno. Matemática. 5º B1 - B2 y 5ª H3. Profesora. María del Rosario Quintans 1
Liceo Nº 35, "Instituto Dr. Alfredo Vázquez Acevedo". Nocturno. Matemática. 5º B1 - B2 y 5ª H3. Profesora. María del Rosario Quintans 1 TEORÍA DE CONJUNTOS CONOCIMIENTOS BÁSICOS Cuando decimos: "un elemento
Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios }
La Teoría de Conjuntos es una teoría matemática, que estudia básicamente a un cierto tipo de objetos llamados conjuntos y algunas veces, a otros objetos denominados no conjuntos, así como a los problemas
Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones:
2. Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma informal,
Tema 1: Teoría de Conjuntos. Logica proposicional y Algebras de Boole.
Tema 1: Teoría de Conjuntos. Logica proposicional y lgebras de oole. 1.1 Teoria de conjuntos Objetivo específico: Operar con conjuntos y aplicar sus propiedades para resolver problemas reales. Piensa Elabora
Números Reales. MathCon c 2007-2009
Números Reales z x y MathCon c 2007-2009 Contenido 1. Introducción 2 1.1. Propiedades básicas de los números naturales....................... 2 1.2. Propiedades básicas de los números enteros........................
Conjuntos Numéricos. Las dos operaciones en que se basan los axiomas son la Adición y la Multiplicación.
Conjuntos Numéricos Axiomas de los números La matemática se rige por ciertas bases, en la que descansa toda la matemática, estas bases se llaman axiomas. Cuántas operaciones numéricas conocen? La suma
Tema 3 : Algebra de Boole
Tema 3 : Algebra de Boole Objetivo: Introducción al Algebra de Boole 1 INTRODUCCIÓN George Boole creó el álgebra que lleva su nombre en el primer cuarto del siglo XIX. Pretendía explicar las leyes fundamentales
UNIDAD I: LÓGICA PROPOSICIONAL
UNIDAD I: LÓGICA PROPOSICIONAL ASIGNATURA: INTRODUCCIÓN A LA COMPUTACIÓN CARRERAS: LICENCIATURA Y PROFESORADO EN CIENCIAS DE LA COMPUTACIÓN DEPARTAMENTO DE INFORMÁTICA FACULTAD DE CIENCIAS FÍSICO MATEMÁTICA
Álgebras de Boole. Juan Medina Molina. 25 de noviembre de 2003
Álgebras de Boole Juan Medina Molina 25 de noviembre de 2003 Introducción Abordamos en este tema el estudio de las álgebras de Boole. Este tema tiene una aplicación directa a la electrónica digital ya
Lógica. Lógica Proposicional. Cuáles de las siguientes frases son proposiciones? Proposición
Lógica Lógica Proposicional Escuela de Ingeniería Industrial Pontificia Universidad Católica de Valparaíso, Chile rgatica@ucv.cl Proposición Definición: Una proposición o enunciado es una frase que a la
NÚMERO REAL. 1. Axiomas de cuerpo y propiedades operatorias. Axioma 2 La suma es asociativa:
NÚMERO REAL El conjunto de los números racionales se nos hace insuficiente a la hora de representar con exactitud magnitudes tan reales como la diagonal de un cuadrado cuyo lado mida 1, por ejemplo, o
CONJUNTOS Y RELACIONES BINARIAS
UNIVERSIDAD CATÓLICA ANDRÉS BELLO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA INFORMÁTICA CÁTEDRA DE LÓGICA COMPUTACIONAL CONJUNTOS Y RELACIONES BINARIAS INTRODUCCIÓN Intuitivamente, un conjunto es una
Módulo 9 Sistema matemático y operaciones binarias
Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional
INSTITUTO SUPERIOR TECNOLÓGICO NORBERT WIENER
INSTITUTO SUPERIOR TECNOLÓGICO NORBERT WIENER Manual del Alumno ASIGNATURA: Matemática I PROGRAMA: S3C Lima-Perú SESION 1 SISTEMAS DE NUMERACION DEFINICION : Es un conjunto de reglas y principios que nos
ESTRUCTURAS ALGEBRAICAS
ESTRUCTURAS ALGEBRAICAS Se ha trabajado con números complejos, polinomio y matrices y hemos efectuado con ellos ciertas operaciones: sin embargo no todas las operaciones se comportan de la misma manera,
Guía de conjuntos. 1ero A y B La importancia del lenguaje.
Guía de conjuntos. 1ero A y B La importancia del lenguaje. El lenguaje nos permite salir de nosotros mismos y comunicarnos con el mundo; a veces un gesto nos transmite un pensamiento o un sentimiento.
NÚMEROS NATURALES Y NÚMEROS ENTEROS
NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de
ESTRUCTURAS ALGEBRAICAS. Parte 1
ESTRUCTURAS ALGEBRAICAS Parte 1 ESTRUCTURAS ALGEBRAICAS Una estructura algebraica es una n-tupla (a 1,a 2,...,a n ), donde a 1 es un conjunto dado no vacío, y {a 2,...,a n } un conjunto de operaciones
Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos
Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 1 Conjuntos y Subconjuntos
LENGUAJES FORMALES Y AUTÓMATAS. álgebra computacional LENGUAJES FORMALES Y AUTÓMATAS. álgebra computacional LENGUAJES FORMALES Y AUTÓMATAS
6. bibliografía CONTENIDO Definición de [G8.1]. Estructuras algebraicas: monoides, semigrupos, grupos, [G8.1], anillos, cuerpos [H10.1]. Subgrupos, isomorfismo entre grupos [G8.1]. Álgebras concretas y
Estructuras algebraicas
Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota
Sistemas de numeración, operaciones y códigos.
Tema : Sistemas de numeración, operaciones y códigos. Para representar ideas, los seres humanos (al menos los occidentales) utilizamos cadenas de símbolos alfanuméricos de un alfabeto definido. En el mundo
Universidad de Puerto Rico Departamento de Matemáticas MATE 3023 Repaso 2(Lógica)
Universidad de Puerto Rico Departamento de Matemáticas MATE 3023 Repaso 2(Lógica) Apellidos: No. Estudiante: Nombre: Sección: Conceptos Básicos de Lógica: Lógica es el estudio de como razonar correctamente.
Operaciones Booleanas y Compuertas Básicas
Álgebra de Boole El álgebra booleana es la teoría matemática que se aplica en la lógica combinatoria. Las variables booleanas son símbolos utilizados para representar magnitudes lógicas y pueden tener
LÓGICA MATEMÁTICA. Álgebra de Boole Guía de trabajo
LÓGICA MATEMÁTICA Álgebra de Boole Guía de trabajo Favián Arenas A. y Amaury Camargo Universidad de Córdoba Facultad de Ciencias Básicas e Ingenierías Departamento de Matemáticas 4.15 Objetivos Lógica
Relaciones binarias. ( a, b) = ( c, d) si y solamente si a = c y b = d
Relaciones binarias En esta sección estudiaremos formalmente las parejas de objetos que comparten algunas características o propiedades en común. La estructura matemática para agrupar estas parejas en
{} representa al conjunto vacío, es decir, aquel que no contiene elementos. También se representa por.
2. Nociones sobre Teoría de Conjuntos y Lógica Para llevar a cabo nuestro propósito de especificar formalmente los problemas y demostrar rigurosamente la correctitud de nuestro programas, introduciremos
OR (+) AND( ). AND AND
Algebra de Boole 2.1.Introducción 2.1. Introducción El Algebra de Boole es un sistema matemático que utiliza variables y operadores lógicos. Las variables pueden valer 0 o 1. Y las operaciones básicas
Estructuras algebraicas
Tema 1 Estructuras algebraicas 1.1 Álgebras binarias Sea A un conjunto no vacío, una operación binaria (u operación interna) en A es una aplicación *: A A A (x, y) x * y es decir, una regla que a cada
I. ALGEBRA DE BOOLE. c) Cada operación es distributiva con respecto a la otra: a. ( b + c) = a. b + a. c a + ( b. c ) = ( a + b ).
I. I.1 DEFINICION. El Algebra de Boole es toda clase o conjunto de elementos que pueden tomar dos valores perfectamente diferenciados, que designaremos por 0 y 1 y que están relacionados por dos operaciones
1. Números Reales 1.1 Clasificación y propiedades
1. Números Reales 1.1 Clasificación y propiedades 1.1.1 Definición Número real, cualquier número racional o irracional. Los números reales pueden expresarse en forma decimal mediante un número entero,
Matemáticas Discretas
Matemáticas Discretas Conjuntos (11) Curso Propedéutico 2009 Maestría en Ciencias Computacionales, INAOE Conjuntos (2) Dr Luis Enrique Sucar Succar esucar@inaoep.mx Dra Angélica Muñoz Meléndez munoz@inaoep.mx
VII. Estructuras Algebraicas
VII. Estructuras Algebraicas Objetivo Se analizarán las operaciones binarias y sus propiedades dentro de una estructura algebraica. Definición de operación binaria Operaciones como la suma, resta, multiplicación
Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria.
Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria. Operación Binaria Se conoce una operación binaria
Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.
Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una
CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1
Tecnología 4º ESO Tema 5: Lógica binaria Página 1 4º ESO TEMA 5: Lógica binaria Tecnología 4º ESO Tema 5: Lógica binaria Página 2 Índice de contenido 1. Señales analógicas y digitales...3 2. Código binario,
A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales:
ADICIÓN Y RESTA DE NUMEROS REALES ADICIÓN L a adición o suma de números reales se representa mediante el símbolo más (+) y es considerada una operación binaria porque se aplica a una pareja de números,
Guía de estudio. Para la primera evaluación de álgebra octavo 2015
Guía de estudio Para la primera evaluación de álgebra octavo 2015 Encontrará una serie de ejercicios que tienen como finalidad hacer un breve repaso sobre lo abordado durante este periodo en clase de álgebra,
MLM 1000 - Matemática Discreta
MLM 1000 - Matemática Discreta L. Dissett Clase 04 Resolución. Lógica de predicados c Luis Dissett V. P.U.C. Chile, 2003 Aspectos administrativos Sobre el tema vacantes: 26 personas solicitaron ingreso
Capítulo 1 Lenguajes formales 6
Capítulo 1 Lenguajes formales 6 1.8. Operaciones entre lenguajes Puesto que los lenguajes sobre Σ son subconjuntos de Σ, las operaciones usuales entre conjuntos son también operaciones válidas entre lenguajes.
EJERCICIOS DEL CAPÍTULO I
EJERCICIOS DEL CAPÍTULO I 1. Un grupo es una tipo particular de Ω estructura cuando Ω es el tipo Ω = { } siendo una operación de aridad dos. Pero un grupo también es una Ω -estructura siendo Ω = {e, i,
Tarea 4 Soluciones. la parte literal es x3 y 4
Tarea 4 Soluciones Extracto del libro Baldor. Definición. Término.-es una expresión algebraica que consta de un solo símbolo o de varios símbolos no separados entre sí por el signo + o -. Así, a, 3b, 2xy,
Apuntes de Matemática Discreta 9. Funciones
Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y
a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)
Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,
ESTRUCTURAS ALGEBRAICAS 1
ESTRUCTURAS ALGEBRAICAS Se da la relación entre dos conjuntos mediante el siguiente diagrama: (, ) (2, 3) (, 4) (, 2) (7, 8) (, ) (3, 3) (5, ) (6, ) (, 6)........ 5 6......... 2 5 i) Observa la correspondencia
Relaciones entre conjuntos
Relaciones entre conjuntos Parejas ordenadas El orden de los elementos en un conjunto de dos elementos no interesa, por ejemplo: {3, 5} = {5, 3} Por otra parte, una pareja ordenada consiste en dos elementos,
GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO OCTAVO
GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO OCTAVO IDENTIFICACIÓN AREA: Matemáticas. ASIGNATURA: Matemáticas. DOCENTE. Juan Gabriel Chacón c. GRADO. Octavo. PERIODO: Segundo UNIDAD: Polinomios TEMA: Expresiones
TEMA II: CONJUNTOS Y RELACIONES DE ORDEN. Álgebra II García Muñoz, M.A.
TEMA II: CONJUNTOS Y RELACIONES DE ORDEN OBJETIVOS GENERALES 1. Hacer que el alumno asimile el concepto de conjunto como la estructura algebraica más simple en la que se ambientarán el resto de las estructuras
ELEMENTOS DE LÓGICA Y TEORÍA DE CONJUNTOS. Dra. Patricia Kisbye Dr. Alejandro L. Tiraboschi
ELEMENTOS DE LÓGICA Y TEORÍA DE CONJUNTOS Dra. Patricia Kisbye Dr. Alejandro L. Tiraboschi 3 INTRODUCCIÓN Estas notas han sido elaboradas con el objetivo de ofrecer al ingresante a las carreras de la
circuitos digitales Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007
Oliverio J. Santana Jaria Sistemas Digitales 8. Análisis lógico l de los circuitos digitales Ingeniería Técnica en Informática de Sistemas Los Curso 26 27 El conjunto circuitos de puertas digitales lógicas
Semana 08 [1/15] Axioma del Supremo. April 18, 2007. Axioma del Supremo
Semana 08 [1/15] April 18, 2007 Acotamiento de conjuntos Semana 08 [2/15] Cota Superior e Inferior Antes de presentarles el axioma del supremo, axioma de los números reales, debemos estudiar una serie
Introducción. Lógica de proposiciones: introducción. Lógica de proposiciones. P (a) x. Conceptos
Introducción César Ignacio García Osorio Lógica y sistemas axiomáticos 1 La lógica ha sido históricamente uno de los primeros lenguajes utilizados para representar el conocimiento. Además es frecuente
Tema 3. Espacios vectoriales
Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición
Capítulo 1: Sistemas de representación numérica Introducción. Dpto. de ATC, Universidad de Sevilla - Página 1 de 8
Dpto. de ATC, Universidad de Sevilla - Página de Capítulo : INTRODUCCIÓN SISTEMAS DE REPRESENTACIÓN NUMÉRICA Introducción Bases de numeración Sistema decimal Sistema binario Sistema hexadecimal REPRESENTACIÓN
Ahora podemos comparar fácilmente las cantidades de cada tamaño que se vende. Estos valores de la matriz se denominan elementos.
Materia: Matemática de 5to Tema: Definición y Operaciones con Matrices 1) Definición Marco Teórico Una matriz consta de datos que se organizan en filas y columnas para formar un rectángulo. Por ejemplo,
x : N Q 1 x(1) = x 1 2 x(2) = x 2 3 x(3) = x 3
3 Sucesiones - Fernando Sánchez - - Cálculo I de números racionales 03 10 2015 Los números reales son aproximaciones que se van haciendo con números racionales. Estas aproximaciones se llaman sucesiones
ESTRUCTURAS ALGEBRAICAS
Fundamentos de la Matemática 1 Operaciones Binarias Dado un conjunto A, A, decimos que es una operación binaria en A si, y sólo si, : A A A es una función. Investigar si los siguientes son ejemplos de
Haydee Jiménez Tafur Grupo de Algebra. Universidad Pedagógica Nacional Estudiante de maestría en Matemáticas. Universidad Nacional de Colombia.
"Otras Alternativas Para La Definición De Relación En Teoría De Conjuntos" Carlos Julio Luque Arias Profesor Universidad Pedagógica Nacional Grupo de Algebra. Universidad Pedagógica Nacional Haydee Jiménez
INTRODUCCION A LA LÓGICA DE ENUNCIADOS
INTRODUCCION A LA LÓGICA DE ENUNCIADOS Carlos S. Chinea 0. Enunciados: Lo fundamental en el lenguaje ordinario, la herramienta para manifestar las ideas, sentimientos, descripción de situaciones diversas,
Fundamentos de los Computadores. Álgebra de Boole. 1 3. ÁLGEBRA DE BOOLE
Fundamentos de los Computadores. Álgebra de oole. 1 3. ÁLGER DE OOLE Un sistema de elementos y dos operaciones binarias cerradas ( ) y (+) se denomina LGER de OOLE siempre y cuando se cumplan las siguientes
Universidad Católica del Maule. Fundamentos de Computación Especificación de tipos de datos ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS
Especificación algebraica ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS Un tipo abstracto de datos se determina por las operaciones asociadas, incluyendo constantes que se consideran como operaciones sin
Índice Introducción Números Polinomios Funciones y su Representación. Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones
Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones Leandro Marín Dpto. de Matemática Aplicada Universidad de Murcia 2012 1 Números 2 Polinomios 3 Funciones y su Representación
CONJUNTO, RELACIONES, FUNCIONES Y LÓGICA
CONJUNTO, RELACIONES, FUNCIONES Y LÓGICA Fundamentos de la Matemática 2010 Introducción Cuando decimos: un elemento pertenece a un conjunto, estamos utilizando nada menos que tres conceptos primitivos
José de Jesús Ángel Ángel, c 2010. Factorización
José de Jesús Ángel Ángel, c 2010. Factorización Contenido 1. Introducción 2 1.1. Notación.................................. 2 2. Factor común 4 2.1. Ejercicios: factor común......................... 4
Grupos. Subgrupos. Teorema de Lagrange. Operaciones.
1 Tema 1.-. Grupos. Subgrupos. Teorema de Lagrange. Operaciones. 1.1. Primeras definiciones Definición 1.1.1. Una operación binaria en un conjunto A es una aplicación α : A A A. En un lenguaje más coloquial
Naturaleza binaria. Conversión decimal a binario
Naturaleza binaria En los circuitos digitales sólo hay 2 voltajes. Esto significa que al utilizar 2 estados lógicos se puede asociar cada uno con un nivel de tensión, así se puede codificar cualquier número,
Ejercicios de álgebra 1 Cuarto curso (2003/04)
Departamento de Álgebra, Geometría y Toplogía. Universidad de Málaga Ejercicios de álgebra 1 Cuarto curso (2003/04) Relación 1. Ideales primos y maximales. Nilradical y radical de Jacobson Profesor de
Introducción a la Matemática Discreta
Introducción a la Matemática Discreta Teoría de Conjuntos Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 20 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos.
UNIDAD 2: ELECTRÓNICA DIGITAL
UNIDAD 2: ELECTRÓNICA DIGITAL 2.1. Señales analógicas y digitales Señales analógicas son aquellas que pueden variar de una forma progresiva o gradual sobre un intervalo continuo: Ejemplo: luz, temperatura,
APLICACIONES DE LA MATEMATICA INTRODUCCION AL CALCULO AXIOMATICA DE LOS NUMEROS REALES
APLICACIONES DE LA MATEMATICA INTRODUCCION AL CALCULO AXIOMATICA DE LOS NUMEROS REALES PROFESOR: CHRISTIAN CORTES D. I) LOS NUMEROS REALES. Designaremos por R, al conjunto de los números reales. En R existen
IIC 2252 - Matemática Discreta
IIC 2252 - Matemática Discreta L. Dissett Clase 04 Lógica de predicados. Reglas de inferencia en lógica de predicados. Lógica de predicados Definiciones básicas: Un predicado es una afirmación que depende
DE SISTEMAS: ANALÓGICOS:
Fundamentos de Electrónica 1 Sistema Digital Paso de mundo analógico a digital Tipos de Sistemas Digitales Representación de la información Sistemas de Numeración Cambios de Base Sistema Binario, hexadecimal
TEMA II: ÁLGEBRA DE CONMUTACIÓN
TEMA II: ÁLGEBRA DE CONMUTACIÓN En este capítulo veremos los métodos matemáticos que se disponen para las operaciones relacionadas con los circuitos digitales, así como las funciones más básicas de la
Definición 2.1.1. Se llama suceso aleatorio a cualquier subconjunto del espacio muestral.
Capítulo 2 Probabilidades 2. Definición y propiedades Al realizar un experimento aleatorio nuestro interés es obtener información sobre las leyes que rigen el fenómeno sometido a estudio. El punto de partida
ESCUELA MILITAR DE INGENIERIA ALGEBRA I Misceláneas de problemas 2014 Tema: Estructuras Algebraicas.
ESCUELA MILITAR DE INGENIERIA ALGEBRA I Misceláneas de problemas 2014 Tema: Estructuras Algebraicas. Estructuras Algebraicas. Para cada operación binaria definida en el conjunto señalado dígase cuándo
3.1 DEFINICIÓN. Figura Nº 1. Vector
3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado
9.1 Primeras definiciones
Tema 9- Grupos Subgrupos Teorema de Lagrange Operaciones 91 Primeras definiciones Definición 911 Una operación binaria en un conjunto A es una aplicación α : A A A En un lenguaje más coloquial una operación
INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN
I. P. N. ESIME Unidad Culhuacan INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN LABORATORIO
1 El espacio vectorial R n.
Manuel Gutiérrez Departamento de Álgebra, Geometría y Topología Universidad de Málaga February 26, 2009 1 El espacio vectorial R n. La estructura de espacio vectorial es posiblemente la estructura más
RELACIÓN DE PROBLEMAS Nº 2 CONJUNTOS Y APLICACIONES
UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Dpto. de Matemáticas (Área de Álgebra) 1. Sean X e Y conjuntos. Demostrar: a) X = X Y Y X. b) X = X Y X Y. RELACIÓN DE PROBLEMAS Nº 2 CONJUNTOS Y APLICACIONES
Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones
Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces
Matemáticas Básicas para Computación. Sesión 7: Compuertas Lógicas
Matemáticas Básicas para Computación Sesión 7: Compuertas Lógicas Contextualización En esta sesión lograremos identificar y comprobar el funcionamiento de las compuertas lógicas básicas, además podremos
Lógica, conjuntos, relaciones y funciones
Lógica, conjuntos, relaciones y funciones Álvaro Pérez Raposo Universidad Autónoma de San Luis Potosí Universidad Politécnica de Madrid Publicaciones Electrónicas Sociedad Matemática Mexicana A la memoria
Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca
ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES Ana Morata Gasca 1 DEFINICIÓN DE VECTOR Un vector es todo segmento de recta dirigido en el espacio. CARACTERÍSTICAS DE UN VECTOR Origen o Punto de aplicación:
VECTORES EN EL ESPACIO. 1. Determina el valor de t para que los vectores de coordenadas sean linealmente dependientes.
VECTORES EN EL ESPACIO. Determina el valor de t para que los vectores de coordenadas (,, t), 0, t, t) y(, 2, t) sean linealmente dependientes. Si son linealmente dependientes, uno de ellos, se podrá expresar
INSTITUTO VALLADOLID PREPARATORIA página 37
INSTITUTO VALLADOLID PREPARATORIA página 37 página 38 SUMA DE FRACCIONES CONCEPTO Las cuatro operaciones fundamentales, suma, resta, multiplicación y división, con fracciones algebraicas se realizan bajo
Fundamentos algebraicos
Fundamentos algebraicos 1. Grupos Sea S un conjunto. Se denota con S S el conjunto de los pares ordenados (s, t) con s, t en S. Un mapeo de S S en S se llama operación binaria en S. Esta definición requiere
Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior.
Capítulo 2 Matrices En el capítulo anterior hemos utilizado matrices para la resolución de sistemas de ecuaciones lineales y hemos visto que, para n, m N, el conjunto de las matrices de n filas y m columnas
Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO)
Vectores Tema. VECTORES (EN EL PLANO Y EN EL ESPACIO Definición de espacio vectorial Un conjunto E es un espacio vectorial si en él se definen dos operaciones, una interna (suma y otra externa (producto
Material N 15 GUÍA TEÓRICO PRÁCTICA Nº 12
C u r s o : Matemática Material N 5 GUÍA TEÓRICO PRÁCTICA Nº UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS EVALUACIÓN DE EXPRESIONES ALGEBRAICAS Evaluar una epresión algebraica consiste en sustituir
1. Se establecen los conceptos fundamentales (símbolos o términos no definidos).
1. ÁLGEBRA DE BOOLE. El álgebra de Boole se llama así debido a George Boole, quien la desarrolló a mediados del siglo XIX. El álgebra de Boole denominada también álgebra de la lógica, permite prescindir
Funciones Reales en una Variable
Funciones Reales en una Variable Contenidos Concepto función Grafica de una función Dominio y Recorrido de una función Clasificación de la funciones Función Inversa Paridad de las Funciones Operaciones
MATEMÁTICA DISCRETA: Conjuntos, combinatoria y grafos. Roberto J. de la Fuente López. Versión 20110923. (corrección de erratas a versión 20100712)
MATEMÁTICA DISCRETA: Conjuntos, combinatoria y grafos Roberto J. de la Fuente López Versión 20110923 (corrección de erratas a versión 20100712) Índice general PRESENTACIÓN... 5 AVISO DE DERECHOS DE AUTOR...
Conjuntos, Relaciones y Grupos. Problemas de examen.
Conjuntos, Relaciones y Grupos. Problemas de examen. Mayo 2006 1. La función f es definida por (a) Halle el recorrido exacto, A, de f. f : R R donde f(x) = e senx 1. (b) (i) Explique por qué f no es inyectiva.
ELO211: Sistemas Digitales. Tomás Arredondo Vidal 1er Semestre 2009
ELO211: Sistemas Digitales Tomás Arredondo Vidal 1er Semestre 2009 Este material está basado en: textos y material de apoyo: Contemporary Logic Design 1 st / 2 nd edition. Gaetano Borriello and Randy Katz.
Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx
Matrices Definiciones básicas de matrices wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2008 Contenido 1 Matrices 2 11 Matrices cuadradas 3 12 Matriz transpuesta 4 13 Matriz identidad
Seminario: Expresividad semántica y lógica de segundo orden:
Seminario: Expresividad semántica y lógica de segundo orden: Eduardo Barrio Javier Castro Albano UBA 1er cuatrimestre de 2008 1.- Definiciones: L: Lenguaje: conjunto de expresiones. LP: Lenguaje de primer
UNIVERSIDAD POPULAR DEL CESAR DEPATAMENTO DE MATEMATICA Y ESTADISTICA ALGEBRA DE BOOLE
UNIVERSIDAD POPULAR DEL CESAR DEPATAMENTO DE MATEMATICA Y ESTADISTICA ALGEBRA DE BOOLE GERMAN ISAAC SOSA MONTENEGRO EJERCICIOS 3. Escriba en notación expandida los siguientes numerales : a) 2375 b) 110111
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 7 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
1. Teoría de Conjuntos
1. Teoría de Conjuntos 1.1. CONJUNTOS Considere las siguientes expresiones: 1. Los estudiantes de la Facultad de Matemática y Computación de la Universidad de La Habana del curso 2001-2002. 2. Los tomos