Seminario 12: Condensadores.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Seminario 12: Condensadores."

Transcripción

1 Seminario 2: Conensaores. Fabián Anrés Torres Ruiz Departamento e Física, Universia e Concepción, Chile 30 e Mayo e Problemas. (Desarrollo) Deucción el tiempo e escarga e un conensaor 2. (Problema 0, capitulo 26, Física, Raymon A. Serway, V2, cuarta eición) Un capacitaor e placas paralelas lleno e aire va a tener una capacitancia e F. Si la istancia entre las placas es e mm, calcule el área e la superficie reria e caa placa. 3. (Problema 3, capitulo 26, Física, Raymon A. Serway, V2, cuarta eición) Cuano se aplica una iferencia e potencial e 50V a las placas e un capacitaor e placas paralelas, las placas tienen una ensia e carga superficial e 30nC/cm 2 Cuál es el espaciamiento entre las placas? 4. (Problema 5, capitulo 26, Física, Raymon A. Serway, V2, cuarta eición) Un capacitor lleno e aire está compuesto e os placas paralelas, caa una con un área e 7.6cm 2, separaas por una istancia e.8mm. Si se aplica una iferencia e potencial e 20V a estas placas, calcule a) el campo eléctrico entre las mismas, b) la ensia e carga superficial, c) la capacitancia, y ) la carga sobre caa placa. 5. (Problema 29, capitulo 26, Física, Raymon A. Serway, V2, cuarta eición) a) Determine la capacitancia equivalente para la re e capacitores se muestra en la figura. b) Si la re se conecta a una batería e 2V, calcule la iferencia e potencial a través e caa capacitor y la carga en caa capacitor. Figura : Circuito e conensaores

2 Departamento e Física Universia e Concepción Soluciones Deucción pregunta De la efinición e capacitancia e un conensaor sabemos C Q V V Q C. La ley e Ohm ice la corriente e un sistema es proporcional al voltaje e inversamente proporcional a la resistencia eléctrica e los materiales, e moo I V R La corriente eléctrica correspone a la cantia e carga por unia e tiempo circula en un circuito, esto se puee escribir como I Q t () Consieremos lo siguiente, si conectamos un conensaor cargao con carga Q(t 0) a una resistencia e valor R, entonces el conensaor se escargara lentamente provocano una corriente en la resistencia. En este proceso, tanto la resistencia como el conensaor están a la misma iferencia e potencial, ya sus terminales están conectaos entre si. De esta forma se puee escribir V c V R Q C IR De acá poemos escribir (consierano la efinición e corriente ) Qt Q t Q Q Q t Q Q t t 0 t la integral e la izquiera correspone a la función logaritmo natural, mientras los términos e la integral e la erecha son constantes, luego se tiene Ln (Q) Qt (t t 0) Ln (Q t ) Ln ( ) (t t 0) ( ) Qt Ln (t t 0) Q t e (t t 0 ) Q t e (t t 0 ) Electricia, Magnetismo y Óptica De esta forma se obtiene la expresión e como cambia la carga en función el tiempo. SI tomamos la erivaa con respecto al tiempo se tiene Q t I t e (t t 0 ) I(t) Q (t t 0 0 ) e I V 0 ) R e (t t Ie (t t 0 ) Así, vemos el conensaor se escarga exponencialmente en el tiempo. Esto también es valio para la carga e este mismo. Problema 2 En este caso, poemos utilizar la ecuación para la capacitancia e un conensaor e placas paralelas, es ecir C ǫ 0A e moo si la capacitancia es e F, entonces se tiene A ǫ 0 A ǫ A m 2 Es ecir se necesitaría un cuarao e 0.6km e lao para una capacitancia e F. Problema 3 En este caso, la iferencia e potencial es e 50V. La ensia e carga superficial correspone al cuociente entre la carga y el área, por lo se tiene σ Q A De esta forma, la carga almacenaa es La capacitancia es Q A C Q V ǫ 0A luego ánonos con la última iguala se tiene Q V A 50 ǫ 0A ǫ 0A 50ǫ cm /05/ F. A. Torres-Ruiz

3 Departamento e Física Universia e Concepción la separación e las placas es e 4.43cm. Problema 4 Para un sistema e placas paralelas, la epenencia e la iferencia e potencial es lineal con el campo y a la istancia, es ecir, V Er En este caso, como el campo es perpenicular a las placas, la istancia ebemos utilizar correspone a la separación e las placas, así se tiene E V r N C Electricia, Magnetismo y Óptica y para una re e conensaores en serie se tiene el conensaor equivalente se puee escribir como C eq n i C i C + C C n Ahora, si nos vamos al circuito, vemos los os conensaores superiores 2 están en serie (uno e los laos el conensaor se conecta al lao el otro conensaor), por lo la capacitancia equivalente será La expresión 2 es vália solo para campos eléctricos homogéneos y constantes. Ahora, la ensia e carga superficial será σ Q A (2) Como vemos, necesitamos eterminar la carga eléctrica en caa placa para resolver el problema. Para esto, poemos utilizar la efinición e capacitancia para un conensaor e placas paralelas e one se obtiene C ǫ 0 A ( 0 2 ) Con esto, poemos ahora utilizar la efinición e capacitancia general C Q V e one se obtiene Q CV C De one finalmente obtenemos la ensia e carga superficial 2 es Figura 2: Sección en serie el circuito consierao. C eq C eq F 2µF De esta forma, el circuito equivalente se muestra en la σ Q A ( 0 2 ) C m 2 Con esto se obtienen toos los resultaos necesarios. Problema 5 Los circuitos e conensaores se pueen clasificar en os tipos, serie y paralelo (existen conexiones híbrias entre estos pero son e una complejia mayor) Para el caso e conensaores en paralelo, se puee obtener un conensaor equivalente e moo C eq n C i C + C C n i Figura 3: Circuito reucio. figura 3, one se tienen solo os conensaores conectaos en paralelo (en paralelo ya caa terminal e los 30/05/ F. A. Torres-Ruiz

4 Departamento e Física Universia e Concepción Electricia, Magnetismo y Óptica conensaores está irectamente conectao a los terminales e la fuente) Con esto, la capacitancia equivalente será C eq2 C eq + 2µF µF Es ecir, la capacitancia equivalente el circuito es e 4µF. Ahora, como conocemos la capacitancia equivalente el sistema, y aplicamos un voltaje e 2V, poemos calcular la cantia e carga almacenaa por el circuito Q total CV C Si ahora nos rearmamos el circuito como en la figura 3, entonces, como la conexión es en paralelo, se conserva el voltaje, aemás ambas capacitancias son iguales por lo almacenan la misma carga, por lo caa una conserva la mita e la carga total, e one se tiene y Q 2µF C Q Ceq C Ahora, ya eterminamos la carga, la capacitancia y el voltaje para el conensaor inferior, e moo solo nos faltan los mismo items para los conensaores superiores (los e la figura 2). En serie, lo se conserva es la carga (ambos conensaores en serie poseen la misma carga almacenaa, inepeniente e sus capacitancias), por lo tanto, la carga almacenaa en el conensaor equivalente es la carga e los os conensaores componentes, e moo Q Ceq C Q Q C 24µC Esta carga es la tiene caa conensaor, e moo los voltajes para caa uno son V 3µF Q V C y para el otro conensaor se tiene V 6µF Q C V Vemos realmente la suma e los voltajes nos entrega el valor e la fuente lo nos ratifica el resultao. En resumen se tiene Capacitancia (µf) Carga (µc) Voltaje (V ) /05/ F. A. Torres-Ruiz

5 Departamento e Física Universia e Concepción Electricia, Magnetismo y Óptica Apénice Cuaro : Formulas para Fuerza eléctrica. Ley e Coulomb (escalar) F 4πǫ 0 q q 2 r 2 Ley e Coulomb (Vectorial) F 4πǫ 0 q q 2 x x 2 3 ( x x 2 ) F: Magnitu e la fuerza q i : Carga i ǫ 0 :Permitivia el vacío r: Distancia entre las cargas F: Vector e fuerza eléctrica ǫ 0 :Permitivia el vacío q i : Carga i x i : Vector e posición e la carga i Campo eléctrico E F q 0 q 0 : carga puntual e prueba en el punto one se quiere meir F: Fuerza electrostática el campo eléctrico Campo eléctrico e una carga puntual Capacitancia Conensaor e placas paralelas Conensaores en paralelo Conensaores en serie Densiaes e carga lineal, superficial y volumetrica Eq k q r r 3 C Q v C κ ǫ0a F: Fuerza electrostática q 0 : carga puntual e prueba en el punto one se quiere meir el campo eléctrico C: Capacitancia e un conensaor Q: Carga entro el conensaor V : Diferencia e potencial en las placas el conensaor κ: Constante ieléctrica ( para el vacio) ǫ 0 : Permitivia el vacío A: Área el conensaor : Separación e las placas C eq n i C C i C + C C eq : Capacitancia equivalente n C i : capacitancia iniviual. C eq : Capacitancia equivalente C eq n i C i C + C C n λ Q L, σ Q A ρ Q V C i : capacitancia iniviual. λ: Densia e carga lineal σ: Densia e carga superficial ρ: Densia e carga volumetrica Q: Carga total L: Largo A: Área V: volumen 30/05/ F. A. Torres-Ruiz

La capacitancia tiene la unidad del SI coulomb por volt. La unidad de capacitancia del SI es el farad (F), en honor a Michael Faraday.

La capacitancia tiene la unidad del SI coulomb por volt. La unidad de capacitancia del SI es el farad (F), en honor a Michael Faraday. 1. Qué es capacitancia? Se efine como la razón entre la magnitu e la carga e cualquiera e los conuctores y la magnitu e la iferencia e potencial entre ellos. La capacitancia siempre es una cantia positiva

Más detalles

Electromagnetismo Pedagogía en Física R. Lagos. PROBLEMAS RESUELTOS

Electromagnetismo Pedagogía en Física R. Lagos. PROBLEMAS RESUELTOS PROBLEMAS RESUELTOS. Un capacitor e lleno e aire está compuesto e os placas paralela, caa una con un área e 7 6 [ 2 ], separaas por una istancia e,8 [mm]. Si se aplica una iferencia e potencial e 20 [V]

Más detalles

TEMA 9 Electrostática

TEMA 9 Electrostática Bases Físicas y Químicas el Meio Ambiente TMA 9 lectrostática Cargas eléctricas ntre os cuerpos hay siempre fuerzas atractivas ebio a sus respectivas masas y pueen existir otras fuerzas entre ellos si

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS Unia os Geometría Trigonometría 8. FUNCIONES TRIGONOMÉTRICAS 8. El círculo trigonométrico o unitario En temas anteriores, las funciones trigonométricas se asociaron con razones, es ecir con cocientes e

Más detalles

XXII OLIMPIADA NACIONAL DE FÍSICA Guadalajara, Jal de noviembre de 2011 Prueba teórica

XXII OLIMPIADA NACIONAL DE FÍSICA Guadalajara, Jal de noviembre de 2011 Prueba teórica XXII OLIMPI NIONL E FÍSI Guaalajara, Jal. 0-4 e noviembre e 011 Prueba teórica 1. PROLEM olisión e pieras (8 puntos) Una piera esférica se eja caer ese un eificio alto e altura h (ese la calle) al tiempo

Más detalles

A) ELECTROSTÁTICA: Concepto B) ELECTRODINÁMICA: Concepto - CONCEPTO - FORMAS - CLASES - CONSTITUCIÓN - APLICACIONES - CONSECUENCIAS

A) ELECTROSTÁTICA: Concepto B) ELECTRODINÁMICA: Concepto - CONCEPTO - FORMAS - CLASES - CONSTITUCIÓN - APLICACIONES - CONSECUENCIAS L A - ESTRUCTURA DEL ÁTOMO - ELECTRICIDAD - CONCEPTO CLASES - ELECTRIZACIÓN A) ELECTROSTÁTICA: Concepto B) ELECTRODINÁMICA: Concepto - CONCEPTO - FORMAS - CLASES E L E C - PÉNDULO ELÉCTRÍCO ELECTROSCOPIO

Más detalles

TERCER TALLER DE REPASO EJERCICIOS DE CAPACITANCIA

TERCER TALLER DE REPASO EJERCICIOS DE CAPACITANCIA TERCER TALLER DE REPASO EJERCICIOS DE CAPACITANCIA 1. Un conductor esférico de radio a y carga Q es concéntrico con un cascaron esférico más grande de radio b y carga Q, como se muestra en la figura. Encuentre

Más detalles

Tema 2: Resolución de los ejercicios 6, 7, 8, 10 y 14 del tema 2 del libro Fonaments físics de la Informàtica

Tema 2: Resolución de los ejercicios 6, 7, 8, 10 y 14 del tema 2 del libro Fonaments físics de la Informàtica Tema : Resolución e los ejercicios 6, 7, 8, y 4 el tema el libro Fonaments físics e la Informàtica 6. Un conensaor e capacia, cargao con carga, se conecta con otro e capacia, inicialmente escargao, tal

Más detalles

FUNCIONES IMPLÍCITAS. y= e tanx cos x. ln x. y= x x CAPÍTULO 10. 10.1 FUNCIONES IMPLÍCITAS (Áreas 1, 2 y 3)

FUNCIONES IMPLÍCITAS. y= e tanx cos x. ln x. y= x x CAPÍTULO 10. 10.1 FUNCIONES IMPLÍCITAS (Áreas 1, 2 y 3) CAPÍTULO 10 FUNCIONES IMPLÍCITAS 10.1 FUNCIONES IMPLÍCITAS (Áreas 1, 3) En el curso e Precálculo el 4º semestre se vieron iferentes clasificaciones e las funciones, entre ellas las funciones eplícitas

Más detalles

(f + g) (x) = f (x) + g (x) (α f) (x) = α f (x) (f g) (x) = f (x) g(x) + f(x) g (x) (x) = f (x) g(x) f(x) g (x) g. [g(x)] 2 (f g) (x) = f (g(x)) g (x)

(f + g) (x) = f (x) + g (x) (α f) (x) = α f (x) (f g) (x) = f (x) g(x) + f(x) g (x) (x) = f (x) g(x) f(x) g (x) g. [g(x)] 2 (f g) (x) = f (g(x)) g (x) Derivaa e una función en un punto: El concepto e erivaa e una función matemática se halla íntimamente relacionao con la noción e límite. Así, la erivaa se entiene como la variación que experimenta la función

Más detalles

2.5 Derivación implícita

2.5 Derivación implícita SECCIÓN.5 Derivación implícita 4.5 Derivación implícita Distinguir entre funciones eplícitas e implícitas. Hallar la erivaa e una función por erivación implícita. E X P L O R A C I Ó N Representación gráfica

Más detalles

Primer examen parcial del curso Física II, M

Primer examen parcial del curso Física II, M Primer examen parcial del curso Física II, 106015M Prof. Beatriz Londoño 11 de octubre de 2013 Tenga en cuenta: Escriba en todas las hojas adicionales su nombre! Hojas sin nombre no serán corregidas El

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

2.3 Reglas del producto, del cociente y derivadas de orden superior

2.3 Reglas del producto, del cociente y derivadas de orden superior SECCIÓN 2.3 Reglas el proucto, el cociente y erivaas e oren superior 119 2.3 Reglas el proucto, el cociente y erivaas e oren superior Encontrar la erivaa e una función por la regla el proucto. Encontrar

Más detalles

Campo Eléctrico en el vacío

Campo Eléctrico en el vacío Campo Eléctrico en el vacío Electrostática: Interacción entre partículas cargadas q1 q2 Ley de Coulomb En el vacío: K = 8.99 109 N m2/c2 0 = 8.85 10 12 C2/N m2 Balanza de torsión Electrostática: Interacción

Más detalles

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III HERMOSILLO, SONORA, OCTUBRE DEL 2005 NOMBRE: FISICA III CON LABORATORIO UNIDAD REGIONAL: CENTRO EJE BÁSICO DE

Más detalles

Tema 7. Propagación por onda de superficie

Tema 7. Propagación por onda de superficie Tema 7. Propagación por ona e superficie 1 Introucción...2 1.1 Características e la propagación...2 2 Antena monopolo corto...2 2.1 Ganancia respecto a la antena isótropa y al ipolo...3 2.2 Campo raiao

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO 1. Un condensador se carga aplicando una diferencia de potencial entre sus placas de 5 V. Las placas son circulares de diámetro cm y están separadas

Más detalles

Ejercicios resueltos de Corriente Eléctrica. Ley de Ohm

Ejercicios resueltos de Corriente Eléctrica. Ley de Ohm Ejercicios resueltos de Corriente Eléctrica. Ley de Ohm Ejercicio resuelto nº 1 Una estufa está aplicada a una diferencia de potencial de 250 V. Por ella circula una intensidad de corriente de 5 A. Determinar

Más detalles

[b] Aunque se puede calcular los índices de refracción, vamos a utilizar la expresión de la ley de

[b] Aunque se puede calcular los índices de refracción, vamos a utilizar la expresión de la ley de Opción A. Ejercicio [a] En qué consiste el fenómeno e la reflexión total e una ona? Qué circunstancias eben cumplirse para que ocurra? Defina el concepto e ángulo límite. ( punto) [b] Una ona sonora que

Más detalles

Capítulo 16. Electricidad

Capítulo 16. Electricidad Capítulo 16 Electricidad 1 Carga eléctrica. Ley de Coulomb La carga se mide en culombios (C). La del electrón vale e = 1.6021 10 19 C. La fuerza eléctrica que una partícula con carga Q ejerce sobre otra

Más detalles

Ejercicio resuelto Nº 1 Determinar la resistencia equivalente para la asociación:

Ejercicio resuelto Nº 1 Determinar la resistencia equivalente para la asociación: Ejercicio resuelto Nº 1 Determinar la resistencia equivalente para la asociación: R 1 = 2 Ω R 2 = 3 Ω R 4 = 3 Ω A R 3 = 2 Ω B Resolución R7 = 4 Ω R 6 = 4 Ω R 5 = 3 Ω Para llegar a la resistencia equivalente

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 4109 Sevilla Examen de Campos electromagnéticos. o Curso de Ingeniería Industrial. Septiembre de 011

Más detalles

Ejemplo 2. Velocidad de arrastre en un alambre de cobre

Ejemplo 2. Velocidad de arrastre en un alambre de cobre Ejemplo 1 Cual es la velocidad de desplazamiento de los electrones en un alambre de cobre típico de radio 0,815mm que transporta una corriente de 1 A? Si admitimos que existe un electrón libre por átomo

Más detalles

Problemas de Potencial Eléctrico. Boletín 2 Tema 2

Problemas de Potencial Eléctrico. Boletín 2 Tema 2 1/22 Problemas de Potencial Eléctrico Boletín 2 Tema 2 Fátima Masot Conde Ing. Industrial 21/11 Problema 1 Ocho partículas con una carga de 2 nc cada una están uniformemente distribuidas sobre el perímetro

Más detalles

4. Mecánica en la Medicina Derivar e Integrar

4. Mecánica en la Medicina Derivar e Integrar 4. Mecánica en la Meicina Derivar e Integrar Teoría Dr. Willy H. Gerber Instituto e Ciencias Físicas y Matemáticas, Universia Austral, Valivia, Chile 17.04.2011 W. Gerber 4. Mecánica en la Meicina - Matemática

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Activiaes el final e la unia 1. Calcula el flujo magnético a través e una espira cuaraa e 10 cm e lao situaa en un campo magnético e valor 0,2 T cuano la normal a la espira forma con la irección el campo

Más detalles

Potencial eléctrico (V)

Potencial eléctrico (V) Activia 1 [a] xplica el concepto e potencial electrostático en un punto. [b] Dibuja aproximaamente en un sistema e coorenaas el gráfico ue relaciona el potencial creao por una carga puntual positiva (eje

Más detalles

3.1. DERIVADAS DE SEGUNDO ORDEN

3.1. DERIVADAS DE SEGUNDO ORDEN .. DERIVADAS DE SEGUNDO ORDEN La erivaa y ' f ' es la primera erivaa e y con respecto a, pero igualmente es posible realizar la erivaa e la erivaa, y y '' f ''. Lo que se conoce como la seguna erivaa e

Más detalles

Información importante

Información importante Departamento e Matemática Coorinación e Matemática I (MAT01) 1 er Semestre e 010 Semana 1: Lunes 07 viernes 11 e Junio Información importante Durante esta semana se publicarán las notas el Certamen en

Más detalles

DEFINICIONES DE HUMEDAD Y SU EQUIVALENCIA

DEFINICIONES DE HUMEDAD Y SU EQUIVALENCIA ENME007 DEFINICIONES DE HUMEDAD Y SU EQUIVALENCIA Enrique Martines L. Centro Nacional e Metrología División e Termometría km 45 Carretera a Los Cués El Marquez Qro. México 110500 ext. 340emartine@cenam.mx

Más detalles

LABORATORIO DE ELECTROMAGNETISMO SUPERFICIES EQUIPOTENCIALES

LABORATORIO DE ELECTROMAGNETISMO SUPERFICIES EQUIPOTENCIALES No 3 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Dibujar líneas de campo a través del mapeo de líneas equipotenciales.

Más detalles

CALCULO DIFERENCIAL Escuela Colombiana de Ingeniería 5.1. DERIVADA DE LA FUNCIÓN EXPONENCIAL ( ) f ( x) = a Enunciado. x h x. x h.

CALCULO DIFERENCIAL Escuela Colombiana de Ingeniería 5.1. DERIVADA DE LA FUNCIÓN EXPONENCIAL ( ) f ( x) = a Enunciado. x h x. x h. Escela Colombiana e Ingeniería.. DERIVADA DE LA FUNCIÓN EXPONENCIAL Aplicano la efinición e la erivaa se tiene: f a Ennciao. + f + f a a f ' Lim Lim Aplicano la efinición e la erivaa. 0 0 a a a a ( a f

Más detalles

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a

Más detalles

Guía de Física II. Ciclo escolar febrero-julio Definición y estudio de la rama de la física llamada óptica

Guía de Física II. Ciclo escolar febrero-julio Definición y estudio de la rama de la física llamada óptica Guía de Física II Examen Semestral 4º Semestre Ciclo escolar febrero-julio 2016 Unidad III: Óptica 1. Definición y estudio de la rama de la física llamada óptica 2. Historia de la velocidad de la luz,

Más detalles

Departamento de Tecnología I.E.S. Mendiño. Electricidad 3º E.S.O. Alumna/o :...

Departamento de Tecnología I.E.S. Mendiño. Electricidad 3º E.S.O. Alumna/o :... Departamento de Tecnología I.E.S. Mendiño Electricidad 3º E.S.O. Alumna/o :... Electricidad.- Magnitudes fundamentales. Tensión o Voltaje: Indica la diferencia de potencial entre 2 puntos de un circuito.

Más detalles

MATERIALES DIELÉCTRICOS

MATERIALES DIELÉCTRICOS MATERIALES DIELÉCTRICOS PREGUNTAS 1. Qué le ocurre a una placa sólida, dieléctrica, cuando se coloca en un campo eléctrico uniforme?. Qué es un material dieléctrico?, argumente. 3. Hay dieléctricos polar

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: FI120: FÍICA GENERAL II GUÍA#5: Conducción eléctrica y circuitos. Objetivos de aprendizaje Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Conocer y analizar la corriente

Más detalles

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( )

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( ) Derivaa e una Función Ínice.. Introucción.. Peniente e una recta tangente.. Derivaa e una función. 4. Derivaas laterales. 5. Derivaa e una función compuesta (Regla e la Caena). 6. Tabla e erivaas usuales.

Más detalles

Ley de Ohm y dependencia de la resistencia con las dimensiones del conductor

Ley de Ohm y dependencia de la resistencia con las dimensiones del conductor ey de Ohm y dependencia de la resistencia con las dimensiones del conductor Ana María Gervasi y Viviana Seino Escuela Normal Superior N 5, Buenos Aires, anamcg@ciudad.com.ar Instituto Privado Argentino

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

Estática de Fluidos Parte III. Vasos comunicantes. Prensa Hidráulica Manómetro

Estática de Fluidos Parte III. Vasos comunicantes. Prensa Hidráulica Manómetro Estática e Fluios arte III Vasos comunicantes. rensa Hiráulica Manómetro rofesor Juan anmartín - Física y Química Curso 2012/2013 Fluios Hirostática Vasos comunicantes es el nombre que recibe un conjunto

Más detalles

INSTITUTO POLITÉCNICO NACIONAL CECyT 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA GENERAL II LEY DE OHM. Nombre: Grupo Calif.

INSTITUTO POLITÉCNICO NACIONAL CECyT 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA GENERAL II LEY DE OHM. Nombre: Grupo Calif. INSTITUTO POLITÉCNICO NACIONAL CECyT 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA GENERAL II Práctica N º 12 LEY DE OHM Nombre: Grupo Calif. OBJETIVO El alumno comprobara la relación que existe entre

Más detalles

Física III. Carrera: Ingeniería Naval NAT Participantes. Comité de Consolidación de la carrera de Ingeniería Mecánica.

Física III. Carrera: Ingeniería Naval NAT Participantes. Comité de Consolidación de la carrera de Ingeniería Mecánica. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Física III Ingeniería Naval NAT - 0618 2-3-7 2.- HISTORIA DEL PROGRAMA Lugar y

Más detalles

UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG)

UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) PAEG Junio 03 Propuesta B Matemáticas aplicaas a las CCSS II º Bachillerato UCLM - Pruebas e Acceso a Enseñanzas Universitarias Oiciales e Grao (PAEG) Matemáticas aplicaas a las Ciencias Sociales II Junio

Más detalles

Departamento de Electrónica y Sistemas PARTE II) ELECTROSTÁTICA. CAMPO ELÉCTRICO

Departamento de Electrónica y Sistemas PARTE II) ELECTROSTÁTICA. CAMPO ELÉCTRICO Departamento de Electrónica y Sistemas PARTE II) ELECTROSTÁTICA. CAMPO ELÉCTRICO 1. Carga eléctrica y materia. Distribuciones de carga 2. Ley de Coulomb 3. Campo eléctrico Departamento de Electrónica y

Más detalles

EQUILIBRIO QUÍMICO. Un sistema químico está en equilibrio heterogéneo cuando las sustancias presentes en él no están en la misma fase.

EQUILIBRIO QUÍMICO. Un sistema químico está en equilibrio heterogéneo cuando las sustancias presentes en él no están en la misma fase. EQUILIBRIO QUÍMICO ESTADO DE EQUILIBRIO e una reacción reversile es el estao final el sistema en el que las velociaes e reacción irecta e inversa son iguales ( NO las constantes cinéticas e velocia) y

Más detalles

INSTRUCTIVO PARA TUTORÍAS

INSTRUCTIVO PARA TUTORÍAS INSTRUCTIVO PARA TUTORÍAS Las tutorías corresponen a los espacios acaémicos en los que el estuiante el Politécnico Los Alpes puee profunizar y reforzar sus conocimientos en iferentes temas e cara al eamen

Más detalles

3 DERIVADAS ALGEBRAICAS

3 DERIVADAS ALGEBRAICAS DERIVADAS ALGEBRAICAS DERIVADAS ALGEBRAICAS Entiénase la erivaa como la peniente e la recta tangente a la función en un punto ao, lo anterior implica que la función ebe eistir en ese punto para poer trazar

Más detalles

Regla de la cadena. f (x) 1 x 3. d dx x3 1 x 3. (3x 2 ) 3 x. f(x) 3 d dx ln x 3. 1 x. para x70, d dx ln x 1. para x60, d dx ln( x) 1x.

Regla de la cadena. f (x) 1 x 3. d dx x3 1 x 3. (3x 2 ) 3 x. f(x) 3 d dx ln x 3. 1 x. para x70, d dx ln x 1. para x60, d dx ln( x) 1x. 74 CAPÍTULO 3 La erivaa EJEMPLO 4 Diferencie f ()=ln 3. Regla e la caena Solución Debio a que 3 ebe ser positiva, se entiene que 70. Así, por (3), con u= 3, tenemos Solución alterna: Por iii) e las lees

Más detalles

EJERCICIOS DE POTENCIAL ELECTRICO

EJERCICIOS DE POTENCIAL ELECTRICO EJERCICIOS DE POTENCIAL ELECTRICO 1. Determinar el valor del potencial eléctrico creado por una carga puntual q 1 =12 x 10-9 C en un punto ubicado a 10 cm. del mismo como indica la figura 2. Dos cargas

Más detalles

= (55 10 15 F)(5,3V) 1,60 10 19 C N = 1,8 10 6 electrones. N = q e = CV e. q = CV (1)

= (55 10 15 F)(5,3V) 1,60 10 19 C N = 1,8 10 6 electrones. N = q e = CV e. q = CV (1) 1 La capacitancia Un capacitor consiste de dos conductores a y b llamados placas. Se supone ue están completamente aislados y ue se encuentran en el vacío. Se dice ue un capacitor está cargado si sus placas

Más detalles

8. POTENCIA Y ENERGÍA. CÁLCULO DEL CONSUMO ENERGÉTICO Y DE SU COSTE.

8. POTENCIA Y ENERGÍA. CÁLCULO DEL CONSUMO ENERGÉTICO Y DE SU COSTE. 8. POTENCIA Y ENERGÍA. CÁLCULO DEL CONSUMO ENERGÉTICO Y DE SU COSTE. Cuando compramos un electrodoméstico o una simple bombilla, siempre vemos que nos da la potencia de consumo. Habrás visto bombillas

Más detalles

Interacciones Eléctricas La Ley de Coulomb

Interacciones Eléctricas La Ley de Coulomb Interacciones Eléctricas La Ley de Coulomb 1. Introducción La Electrostática se ocupa del estudio de las interacciones entre cargas eléctricas en reposo. Las primeras experiencias relativas a los fenómenos

Más detalles

LEY DE COULOMB E INTENSIDAD DE CAMPO ELECTRICO

LEY DE COULOMB E INTENSIDAD DE CAMPO ELECTRICO INDICE Prefacio XIV Visita Guiada 1 Análisis Vectorial 1 2 Ley Coulomb e Intensidad de Campo Eléctrico 26 3 Densidad de Flujo Eléctrico, Ley de Gauss y Divergencia 51 4 Energía y Potencial 80 5 Corriente

Más detalles

La regla de la constante. DEMOSTRACIÓN Sea ƒ(x) c. Entonces, por la definición de derivada mediante el proceso de límite, se deduce que.

La regla de la constante. DEMOSTRACIÓN Sea ƒ(x) c. Entonces, por la definición de derivada mediante el proceso de límite, se deduce que. SECCIÓN. Reglas básicas e erivación razón e cambio 07. Reglas básicas e erivación razón e cambio Encontrar la erivaa e una función por la regla e la constante. Encontrar la erivaa e una función por la

Más detalles

CAMPO ELÉCTRICO ÍNDICE

CAMPO ELÉCTRICO ÍNDICE CAMPO ELÉCTRICO ÍNDICE 1. Introducción 2. Ley de Coulomb 3. Campo eléctrico 4. Líneas de campo eléctrico 5. Distribuciones continuas de carga eléctrica 6. Flujo del campo eléctrico. Ley de Gauss 7. Potencial

Más detalles

VECTORES: RECTAS Y PLANOS

VECTORES: RECTAS Y PLANOS ECTORES: RECTAS Y LANOS Determinar la ecuación e la recta que pasa por los puntos (3, 1, 0) y (1, 1, 2). Solución: I.T.I. 93, I.T.T. 04 Sea un punto A genérico e la recta e coorenaas ( x, y, z), los vectores

Más detalles

Boletín audioprotésico número 35

Boletín audioprotésico número 35 Boletín auioprotésico número 35 Cómo asegurar la ganancia in-situ correcta Noveaes el epartamento e Investigación auioprotésica y comunicación 9 502 1041 004 / 06-07 Introucción Normalmente, los auífonos

Más detalles

Page 1 of 5 Departamento: Dpto Ing. Electrica y Electro Nombre del curso: ELECTROMAGNETISMO CON LABORATORIO Clave: 003880 Academia a la que pertenece: Electromagnetismo Requisitos: Ninguno Horas Clase:

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Segunda evaluación SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Segunda evaluación SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO 2012-2013 FÍSICA C Segunda evaluación SOLUCIÓN Pregunta 1 (3 puntos) Un globo de caucho tiene en su interior una carga puntual.

Más detalles

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA Este documento enuncia de forma más detallada la formulación matemática que permite el estudio de campos eléctricos debido a distribuciones

Más detalles

SOLUCION DE UN ERROR CON OTRO ERROR

SOLUCION DE UN ERROR CON OTRO ERROR SOLUCION DE UN ERROR CON OTRO ERROR El matemático, al igual que too ser humano, puee incurrir en errores; en algunos casos sucee que el error no ha sio cometio por el creaor e la obra sino por los encargaos

Más detalles

Física III. Carrera: MCT Participantes Representantes de las academias de Ingeniería Mecánica de. Academia de Ingeniería Mecánica.

Física III. Carrera: MCT Participantes Representantes de las academias de Ingeniería Mecánica de. Academia de Ingeniería Mecánica. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Física III Ingeniería Mecánica MCT - 0514 2 3 7 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

Repaso de Vectores. Autor: Dra. Estela González. flecha. La longitud de la línea indica la magnitud del vector, y su

Repaso de Vectores. Autor: Dra. Estela González. flecha. La longitud de la línea indica la magnitud del vector, y su Autor: Dra. Estela González Algunas cantidades físicas como tiempo, temperatura, masa, densidad y carga eléctrica se pueden describir plenamente con un número y una unidad, pero otras cantidades (también

Más detalles

Física para todos 1 Carlos Jiménez Huaranga MOVIMIENTO PARABÓLICO. a) Aplicamos la ecuación: ttotal. b) Para calcular la máxima altura, utilizamos la

Física para todos 1 Carlos Jiménez Huaranga MOVIMIENTO PARABÓLICO. a) Aplicamos la ecuación: ttotal. b) Para calcular la máxima altura, utilizamos la Física para toos 1 Carlos Jiménez Huarana MOVIMIENTO PARABÓLICO Es un movimiento compuesto por: Un movimiento orizontal rectilíneo uniforme one la componente orizontal e la velocia permanece constante

Más detalles

LA EQUIVALENCIA DE LAS REPRESENTACIONES DE LA SOLUCIÓN PARTICULAR POR LOS MÉTODOS DE REDUCCIÓN DE ORDEN Y VARIACIÓN DE PARÁMETROS

LA EQUIVALENCIA DE LAS REPRESENTACIONES DE LA SOLUCIÓN PARTICULAR POR LOS MÉTODOS DE REDUCCIÓN DE ORDEN Y VARIACIÓN DE PARÁMETROS Faculta e Ingeniería - Universia Rafael Lanívar Boletín Electrónico No. 06 LA EQUIVALENCIA DE LAS REPRESENTACIONES DE LA SOLUCIÓN PARTICULAR POR LOS MÉTODOS DE REDUCCIÓN DE ORDEN Y VARIACIÓN DE PARÁMETS

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 2: CAMPO Y POTENCIAL ELÉCTRICO Determinar la relación entre la

Más detalles

Ejercicios Propuestos Transporte eléctrico.

Ejercicios Propuestos Transporte eléctrico. Ejercicios Propuestos Transporte eléctrico. 1. La cantidad de carga que pasa a través de una superficie de área 1[ 2 ] varía con el tiempo de acuerdo con la expresión () =4 3 6 2 +6. (a) Cuál es la intensidad

Más detalles

PROGRAMA INSTRUCCIONAL FÍSICA II

PROGRAMA INSTRUCCIONAL FÍSICA II UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA ESCUELA DE MANTENIMIENTO MECÁNICO PROGRAMA INSTRUCCIONAL FÍSICA II CÓDIGO ASIGNADO SEMESTRE U. C DENSIDAD HORARIA H.T H.P/H.L H.A

Más detalles

Capítulo 1 Matriz Admitancia de Barra

Capítulo 1 Matriz Admitancia de Barra ELC-05 Sistemas de Potencia Capítulo Matriz Admitancia de Barra Prof. Francisco M. González-Longatt fglongatt@ieee.org http://www.giaelec.org/fglongatt/sp.htm SSTEMAS DE POTENCA Copright 007 . La inección

Más detalles

ESCUELA: UNIVERSIDAD DEL ISTMO

ESCUELA: UNIVERSIDAD DEL ISTMO 1.-IDENTIFICACIÓN ESCUELA: UNIVERSIDAD DEL ISTMO CLAVE: 3034 GRADO: ING. EN COMPUTACIÓN, TERCER SEMESTRE TIPO DE TEÓRICA / PRÁCTICA ANTECEDENTE CURRICULAR: 304.- OBJETIVO GENERAL Proporcionar al alumno

Más detalles

Campos Electromagnéticos Estáticos

Campos Electromagnéticos Estáticos Capítulo 3: Campos Electromagnéticos Estáticos Flujo de un campo vectorial Superficie cerrada Ley de Gauss Karl Friedrich Gauss (1777-1855) Flujo de E generado por una carga puntual Superficie arbitraria

Más detalles

Efecto del dieléctrico en un capacitor

Efecto del dieléctrico en un capacitor Efecto del dieléctrico en un capacitor La mayor parte de los capacitores llevan entre sus placas conductoras una sustancia no conductora o dieléctrica. Efecto del dieléctrico en un capacitor Un capacitor

Más detalles

Parciales Matemática CBC Parciales Resueltos - Exapuni.

Parciales Matemática CBC Parciales Resueltos - Exapuni. Parciales Matemática CBC 2012 Parciales Resueltos - Exapuni www.exapuni.com.ar Compilado de primeros parciales del 2012 Parcial 1 1) Sea. Hallar todos los puntos de la forma, tales que la distancia entre

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 3 Cálculo Diferencial en una variable 3.1 Introucción Analizaremos en este Tema los conceptos funamentales acerca e las erivaas e las funciones reales e variable real. En el tema siguiente estuiaremos

Más detalles

GUIA DE ESTUDIO FÍSICA 4 COMÚN PREPARACIÓN PRUEBA COEFICIENTE DOS Nombre: Curso: Fecha:

GUIA DE ESTUDIO FÍSICA 4 COMÚN PREPARACIÓN PRUEBA COEFICIENTE DOS Nombre: Curso: Fecha: I.MUNICIPALIDAD DE PROVIDENCIA CORPORACIÓN DE DESARROLLO SOCIAL LICEO POLIVALENTE ARTURO ALESSANDRI PALMA DEPARTAMENTO DE FÍSICA PROF.: Nelly Troncoso Rojas. GUIA DE ESTUDIO FÍSICA 4 COMÚN PREPARACIÓN

Más detalles

Tema 9. Cargas y Fuerzas Eléctricas

Tema 9. Cargas y Fuerzas Eléctricas Ejercicios repaso Tema Tema. argas y Fuerzas Eléctricas 1. La carga eléctrica y su meia. 1 Qué os procesos se representan en los siguientes ibujos? El ibujo a) representa la carga el un electroscopio,

Más detalles

DEFINICION DE DERIVADA Sea una función definida en un intervalo abierto que contiene a a Diremos que f es Derivable en a si: si este límite existe

DEFINICION DE DERIVADA Sea una función definida en un intervalo abierto que contiene a a Diremos que f es Derivable en a si: si este límite existe DERIVADA DEFINICION DE DERIVADA Sea una función efinia en un intervalo abierto que contiene a a Diremos que f es Derivable en a si: si este límite eiste Dicho límite, cuano eiste, se llama DERIVADA e f

Más detalles

M A Y O A C T U A L I Z A D A

M A Y O A C T U A L I Z A D A U N I V E R S I D A D N A C I O N A L E X P E R I M E N T A L F R A N C I S C O D E M I R A N D A C O M P L E J O A C A D É M I C O E L S A B I N O Á R E A D E T E C N O L O G Í A D E P A R T A M E N T

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 3: CAMPO ELÉCTRICO Y POTENCIAL ELÉCTRICO Determinar la relación

Más detalles

Circuitos con fuentes independientes de corriente y resistencias, circuitos R, I

Circuitos con fuentes independientes de corriente y resistencias, circuitos R, I MÉTODO DE LOS NUDOS Es un método general de análisis de circuitos que se basa en determinar los voltajes de todos los nodos del circuito respecto a un nodo de referencia. Conocidos estos voltajes se pueden

Más detalles

SOLUCIÓN: Sea x la distancia entre A y C. Por el Teorema del coseno tenemos:

SOLUCIÓN: Sea x la distancia entre A y C. Por el Teorema del coseno tenemos: EJERCICIO 30 Dese un punto A se ivisan otros os puntos B y C bajo un ángulo e 5º 9. Se sabe que B y C istan 450 m y que A y B istan 500 m. Averigua la istancia entre A y C. Sea la istancia entre A y C.

Más detalles

5692 Electrotecnia para Ingeniería I. Horas trabajo adicional estudiante. Totales teoría 16 práctica IEA IM IMA IME IMT CB CB CB

5692 Electrotecnia para Ingeniería I. Horas trabajo adicional estudiante. Totales teoría 16 práctica IEA IM IMA IME IMT CB CB CB A) CURSO Clave Asignatura 5692 Electrotecnia para Ingeniería I Horas de teoría por semana Horas de práctica por semana Horas trabajo adicional estudiante Créditos Horas Totales 4 1 4 9 64 teoría 16 práctica

Más detalles

Leyes de Kirchoff El puente de Wheatstone

Leyes de Kirchoff El puente de Wheatstone Leyes de Kirchoff El puente de Wheatstone 30 de marzo de 2007 Objetivos Aprender el manejo de un multímetro para medir resistencias, voltajes, y corrientes. Comprobar las leyes de Kirchoff. Medir el valor

Más detalles

SOLUCIONARIO GUÍAS ELECTIVO

SOLUCIONARIO GUÍAS ELECTIVO SOLUCIONIO GUÍS ELECTIO Electricidad II: circuitos eléctricos SGUICEL00FS11-161 Solucionario guía Electricidad II: circuitos eléctricos Ítem lternativa Habilidad 1 C econocimiento B plicación 3 C plicación

Más detalles

1.-LEY DE OHM: VOLTAJE, CORRIENTE Y RESISTENCIA

1.-LEY DE OHM: VOLTAJE, CORRIENTE Y RESISTENCIA Área : Tecnología Asignatura : Tecnología e Informática Grado : 7 Nombre del docente: Jorge Enrique Giraldo Valencia 1.-LEY DE OHM: VOLTAJE, CORRIENTE Y RESISTENCIA La ley de Ohm expresa la relación que

Más detalles

Anteriores. EL alumno comprende y aplica las leyes y principios fundamentales de la electricidad y el magnetismo y la termodinámica.

Anteriores. EL alumno comprende y aplica las leyes y principios fundamentales de la electricidad y el magnetismo y la termodinámica. INSTITUTO TECNOLÓGICO DE SALTILLO 1.- Nombre de la asignatura: Física II Carrera: Ingeniería Industrial Clave de la asignatura: INC - 0402 Horas teoría-horas práctica-créditos 4-2-10 2.- HISTORIA DEL PROGRAMA

Más detalles

Flujo Eléctrico. Hemos aprendido a calcular el E establecido por un sistema de cargas puntuales o una distribución de carga uniforme o continua.

Flujo Eléctrico. Hemos aprendido a calcular el E establecido por un sistema de cargas puntuales o una distribución de carga uniforme o continua. Ley de Gauss Presentación basada en el material contenido en: R. Serway,; Physics for Scientists and Engineers, Saunders College Publishers, 3 rd edition. Flujo Eléctrico Hemos aprendido a calcular el

Más detalles

E 4.0. EJERCICIOS DE EXAMEN

E 4.0. EJERCICIOS DE EXAMEN E 4.0. EJERCICIOS DE EXAMEN E 4.0.01. El campo eléctrico producido por un anillo circular uniformemente cargado, en un punto cualquiera sobre su eje es (ver figura 1 Qz izquierda) E = k [N/C]. A 2 2 3

Más detalles

DERIVADAS DE LAS FUNCIONES ELEMENTALES

DERIVADAS DE LAS FUNCIONES ELEMENTALES Universia Metropolitana Dpto. e Matemáticas Para Ingeniería Cálculo I (FBMI0) Proesora Aia Montezuma Revisión: Proesora Ana María Roríguez Semestre 08-09A DERIVADAS DE LAS FUNCIONES ELEMENTALES DERIVADAS

Más detalles

MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS x = x - x y2 = f(x2) y = y - y y = f(x )

MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS x = x - x y2 = f(x2) y = y - y y = f(x ) Faculta e Contauría Aministración. UNAM Derivaa Autor: Dr. José Manuel Becerra Espinosa MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS Se eine como incremento e la variable al aumento o isminución que eperimenta,

Más detalles

Tema 6: Derivadas, Técnicas de Derivación

Tema 6: Derivadas, Técnicas de Derivación Matemáticas º Bacillerato CCNN Tema 6: Derivaas, Técnicas e Derivación.- Introucción.- Tasa e Variación Meia.- Derivaa e una unción en un punto..- Derivaas Laterales...- Interpretación geométrica e la

Más detalles

Cuál es el resto? Números en columnas. Con la planilla de cálculo: b) Se escriben los números

Cuál es el resto? Números en columnas. Con la planilla de cálculo: b) Se escriben los números Números en columnas a) Se escriben los números en tres columnas: Encuentra en qué columna se ubican los números: 24; 141; 814; 1721; 10001. b) Se escriben los números en cinco colum- 0 1 2 3 4 5 6 7 8

Más detalles

LEY DE OHM Y PUENTE DE WHEATSTONE

LEY DE OHM Y PUENTE DE WHEATSTONE uned de Consorci Centre Associat la UNED de Terrassa Laboratori d Electricitat i Magnetisme (UPC) LEY DE OHM Y PUENTE DE WHEATSTONE Objetivo Comprobar experimentalmente la ley de Ohm. Determinar el valor

Más detalles

ELECTRODINAMICA. Nombre: Curso:

ELECTRODINAMICA. Nombre: Curso: 1 ELECTRODINAMICA Nombre: Curso: Introducción: En esta sesión se estudiara los efectos de las cargas eléctricas en movimiento en diferentes tipos de conductores, dando origen al concepto de resistencia

Más detalles

U(r, θ) = 1. 2.1. Conjunto completo de operadores del dipolo puntual. Si usamos el operador asociado a la componente z del momento angular

U(r, θ) = 1. 2.1. Conjunto completo de operadores del dipolo puntual. Si usamos el operador asociado a la componente z del momento angular Capítulo Dipolo puntual. Como vimos en la introucción al primer capítulo, la energía potencial que aquiere una partícula e carga eléctrica e cuano interacciona con un ipolo puntual es Ur, θ) = 4πϵ ep cos

Más detalles

I N S T I T U T O P O L I T É C N I C O N A C I O N A L GUÍA DE ESTUDIO FÍSICA III

I N S T I T U T O P O L I T É C N I C O N A C I O N A L GUÍA DE ESTUDIO FÍSICA III I N S T I T U T O P O L I T É C N I C O N A C I O N A L Centro de Estudios Científicos y Tecnológicos No. 11 Wilfrido Massieu Pérez GUÍA DE ESTUDIO FÍSICA III PROF. ING. JOSÉ ANTONIO SAN MARTÍN 1 Competencia

Más detalles

Electricidad y Magnetismo. Ley de Coulomb.

Electricidad y Magnetismo. Ley de Coulomb. Electricidad y Magnetismo. Ley de Coulomb. Electricidad y Magnetismo. 2 Electricidad y Magnetismo. 3 Electricidad y Magnetismo. 4 Electricidad y Magnetismo. 5 Electricidad y Magnetismo. Electrización es

Más detalles

Electromagnetismo I. Semestre: TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado

Electromagnetismo I. Semestre: TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Electromagnetismo I Semestre: 01- TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Solución por Carlos Andrés Escobar Ruí 1.- Problema: (5pts) (a) Doce cargas iguales q se encuentran localiadas en los vérices

Más detalles