Distribuciones Paramétricas
|
|
- María Luisa Domínguez Quintana
- hace 5 años
- Vistas:
Transcripción
1 Distribuciones Paramétricas Objetivo: Estudiar el uso de formas matemáticas particulares, llamadas distribuciones paramétricas, para representar las variaciones en los datos. Una distribución paramétrica es una forma matemática abstracta que representa de manera concisa las variaciones en un conjunto de datos. Dist. Normal o Gaussiana La naturaleza específica de una distribución paramétrica está determinada por valores particulares de los parámetros de la distribución.
2 Los parámetros de una distribución son características abstractas de una distribución particular. Un estadístico es cualquier cantidad calculada a partir de la muestra de datos. Para algunas distribuciones paramétricas comunes, ciertos estadísticos muestrales son buenos estimadores de los parámetros de la distribución. Estadísticos letras romanas Parámetros letras griegas s σ, x µ
3 Ventajas Compactación: Una distribución paramétrica bien ajustada reduce el número de cantidades requeridas para caracterizar las propiedades de los datos a unos cuantos parámetros de la distribución. Suavizado: Las distribuciones paramétricas son representaciones suavizadas de las distribuciones empíricas, las cuales pueden tener huecos o cambios bruscos. Interpolación: La imposición de una distribución paramétrica representa la posibilidad de que ocurran todos los valores posibles de la variable, así como la estimación de sus probabilidades de ocurrencia. Extrapolación: Las distribuciones paramétricas nos permiten estimar probabilidades de eventos fuera del rango del conjunto de datos.
4 Pasos a seguir cuando se trabaja con distribuciones paramétricas a) Escoger entre las distintas distribuciones paramétricas disponibles con base en la información de la muestra y en el tipo de problema que se está abordando. b) Ajustar los parámetros de la distribución elegida. c) Checar que la distribución proporciona un ajuste razonable.
5 Variables aleatorias El resultado de un experimento no necesariamente es un número, p.e., cuando lanzamos una moneda el resultado puede ser cara o cruz. Sin embargo, con frecuencia queremos representar los resultados como números. Una variable aleatoria (v.a.) es una función que asocia un valor numérico único a cada resultado de un experimento. El valor de la v.a. cambiará de una prueba a otra conforme el experimento se repita. P. ej.: 1) Se lanza una moneda 10 veces. La v.a. X puede ser el número de caras que se obtienen. 2) Un foco se mantiene encendido hasta que se funde. La v.a. Y puede ser el tiempo de vida en horas. Discretas sólo puede tomar un número contable de valores distintos como 0, 1, 2, Generalmente las v.a. discretas son conteos. Continuas puede tomar un número infinito de valores posibles. Generalmente las v.a. continuas son mediciones.
6 Clasificación de las distribuciones paramétricas Según el tipo de datos o variables aleatorias, las distribuciones paramétricas se clasifican en: Discretas: describen variables que pueden tomar solamente valores particulares (un número finito o infinito contable). Continuas: describen variables que pueden tomar cualquier valor dentro de un rango especificado de números reales. Generalmente trabajamos con variables conceptualmente continuas pero que se reportan en forma discreta.
7 Distribuciones discretas Si una variable aleatoria X puede asumir los valores discretos x0, x 1, x 2,..., x k con sus respectivas probabilidades p 0, p 1, p 2,..., p k, las cuales satisfacen: p i 0 para toda i y k i=0 p i = 1 entonces las probabilidades p(x i ) = p i caracterizan una distribución probabilística discreta para X. Función de distribución de probabilidad acumulada: P{X x i } = i j=0 p j Ejercicio: Trazar las distribuciones probabilísticas simple y acumulada para la variable aleatoria definida como la suma de los puntos que se obtienen al tirar dos dados. En este caso se conoce la probabilidad a priori. En la mayoría de los casos no se conoce la distribución probabilística de la v.a. y se debe emplear la información contenida en los datos.
8 Ejemplos de distribuciones discretas: Distribución Binomial Se aplica en situaciones en las que en un cierto número de ensayos o pruebas ocurre uno u otro de dos eventos MECE (p.ej.: par o impar, cara o cruz, posesión o no de cierta característica). La variable aleatoria de interés, X, es el número de ocurrencias del evento en un número dado N de ensayos o pruebas. Cuando ocurre el evento lo denominamos éxito (1) y cuando no ocurre lo denominamos fracaso (0). X puede tomar valores enteros no negativos entre 0 y N. La distribución binomial se usa para calcular las probabilidades de los N+1 valores posibles de X si se cumplen dos condiciones: (1) la probabilidad de ocurrencia del evento es la misma en cada ensayo, y (2) los resultados en cada uno de los ensayos son independientes.
9 Consideremos N ensayos independientes, en cada uno de los cuales la probabilidad de obtener éxito es p. La probabilidad de fracaso es 1 p = q. La probabilidad de 1 éxito en 1 ensayo es p. La probabilidad de 2 éxitos en 2 ensayos es: pxp = p 2 La probabilidad de r éxitos en r ensayos es p r y la de tener (N r) fracasos subsecuentes en N r ensayos es: (1 p) N r = q N r Por lo tanto la probabilidad de tener r éxitos seguidos de (N r) fracasos es: p r (1 p) N r De cuántas maneras distintas podemos tener r éxitos y N r fracasos en N ensayos? r r r
10 La función de distribución de probabilidad Binomial está dada por: Tiene dos parámetros: N y p, donde p es la probabilidad de ocurrencia del evento de interés (éxito) en cualquiera de los N ensayos independientes. Para cada pareja de los parámetros N y p la ecuación asocia una probabilidad a cada valor discreto de X y es tal que El caso especial de la distribución Binomial con N = 1 es conocido como la distribución de Bernoulli.
11 Distribución Geométrica La v.a. X representa el número de ensayos Hay dos posibilidades en cada ensayo: éxito o fracaso La probabilidad de éxito, p, es la misma en cada ensayo Los ensayos son independientes La distribución geométrica especifica las probabilidades para el número de ensayos que se requerirán hasta observar el próximo éxito
12 Distribución Binomial Negativa (Pascal o Polya) Si x es el número de fracasos hasta obtener el k ésimo éxito, entonces x + k es el tiempo de espera total requerido para observar el k ésimo éxito. Definida de la manera anterior, su función de distribución de probabilidades está dada por:
13 Distribución de Poisson La distribución de Poisson representa la probabilidad de que un evento aislado ocurra un número específico de veces en un intervalo de tiempo (o un espacio) dado, conociendo su tasa o razón promedio de ocurrencia en el tiempo (o espacio). Se aplica a fenómenos de naturaleza discreta en los que la variable medida es el conteo de eventos, por lo que únicamente puede tomar valores enteros no negativos. Los eventos distribuidos de esta manera deben ser lo suficientemente raros de modo que la probabilidad de que ocurran más de uno simultáneamente es muy pequeña. Ejemplos: El número de veces que se accede a un servidor web por minuto. El número de autos que pasan por cierto punto de un camino durante un periodo de tiempo dado. La ocurrencia de huracanes en el Atlántico durante una temporada particular. La distribución de granizo en un área determinada.
14 Los eventos individuales que se cuentan son independientes en el sentido de que no dependen de si han ocurrido o cuántas veces han ocurrido otros eventos en la secuencia. Los eventos ocurren aleatoriamente, pero con una tasa promedio de ocurrencia constante. Matemáticamente la distribución de Poisson es el caso límite de la distribución Binomial cuando p 0 y N. La función de distribución de probabilidad para la distribución de Poisson es: donde e = La suma de las probabilidades desde 0 hasta infinito debe converger a 1. Las probabilidades asociadas con números muy grandes de conteos tiende a 0. La distribución de Poisson tiene un sólo parámetro, μ, que especifica la tasa promedio de ocurrencia del evento por unidad de tiempo.
15 Ejercicio: Determinar la distribución de Poisson para la ocurrencia anual de tornados en el estado de N.Y.
Teorema Central del Límite (1)
Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico
Tema 5 Algunas distribuciones importantes
Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos
INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)
INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que
DISTRIBUCIÓN N BINOMIAL
DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina
Distribuciones de probabilidad
Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir
T1. Distribuciones de probabilidad discretas
Estadística T1. Distribuciones de probabilidad discretas Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir de
Variables aleatorias
Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando
Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos
Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,
Tema 4 Variables Aleatorias
Tema 4 Variables Aleatorias 1 Introducción En Estadística Descriptiva, se estudiaron las distribuciones de frecuencias de conjuntos de datos y posteriormente se vimos los fundamentos de la teoría de probabilidades.
Curso de nivelación Estadística y Matemática
Curso de nivelación Estadística y Matemática Tercera clase: Introducción al concepto de probabilidad y Distribuciones de probablidad discretas Programa Técnico en Riesgo, 2014 Agenda 1 Concepto de probabilidad
Probabilidad y Estadística
Probabilidad y Estadística Probabilidad Conceptos como probabilidad, azar, aleatorio son tan viejos como la misma civilización. Y es que a diario utilizamos el concepto de probabilidad: Quizá llueva mañana
Conceptos básicos estadísticos
Conceptos básicos estadísticos Población Población, en estadística, también llamada universo o colectivo, es el conjunto de elementos de referencia sobre el que se realizan las observaciones. El concepto
Distribuciones de probabilidad más usuales
Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y
6. VARIABLES ALEATORIAS
6. VARIABLES ALEATORIAS Objetivo Introducir la idea de una variable aleatoria y su distribución y características como media, varianza etc. Bibliografía recomendada Peña y Romo (1997), Capítulo 15. Hasta
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
Indicaciones para el lector... xv Prólogo... xvii
ÍNDICE Indicaciones para el lector... xv Prólogo... xvii 1. INTRODUCCIÓN Qué es la estadística?... 3 Por qué estudiar estadística?... 5 Empleo de modelos en estadística... 6 Perspectiva hacia el futuro...
Distribuciones de probabilidad discretas
Lind, Douglas; William G. Marchal y Samuel A. Wathen (2012). Estadística aplicada a los negocios y la economía, 15 ed., McGraw Hill, China. Distribuciones de probabilidad discretas Capítulo 6 FVela/ McGraw-Hill/Irwin
ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua
ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:
CUÁL SERIA LA PREDICCION OPTIMA DEL ESTADO DEL TIEMPO AL DIA SIGUIENTE?
TEOREMA DE BAYES Explica como considerar matemáticamente la nueva información en la toma de decisiones. P( AΙB) = P( A B) P( B) = P( A) P( BΙA) P( B) PROBLEMA: En cierto lugar llueve el 40% de los días
Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid
Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X
DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM
UNIDAD I: NÚMEROS (6 Horas) 1.- Repasar el cálculo con números racionales y potencias de exponente entero. 2.- Resolver problemas de la vida cotidiana en los que intervengan los números racionales. 1.-
Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12
Simulación I Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Modelos de simulación y el método de Montecarlo Ejemplo: estimación de un área Ejemplo: estimación
Capítulo 3: Técnicas de Conteo Clase 2: Permutaciones y Combinaciones, Coeficientes Binomiales y Aplicaciones a Probabilidad Discreta
Capítulo 3: Técnicas de Conteo Clase 2: Permutaciones y Combinaciones, Coeficientes Binomiales y Aplicaciones a Probabilidad Discreta Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática
Conceptos Básicos de Inferencia
Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos
Distribuciones de Probabilidad para Variables Aleatorias Discretas 1
Distribuciones de Probabilidad para Variables Aleatorias Discretas Apellidos, nombre Martínez Gómez, Mónica (momargo@eio.upv.es) Marí Benlloch, Manuel (mamaben@eio.upv.es) Departamento Centro Estadística,
ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ
ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ Probabilidad - Período de retorno y riesgo La probabilidad de ocurrencia de un fenómeno en hidrología puede citarse de varias Formas: El
5. MODELOS PROBABILISTICOS.
5. MODELOS PROBABILISTICOS. 5.1 Experimento de Bernoulli Un modelo probabilístico, es la forma que pueden tomar un conjunto de datos obtenidos aleatoriamente. Pueden ser modelos probabilísticos discretos
VARIABLES ALEATORIAS DISCRETAS
VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:
FACULTAD DE INGENIERÍA UNAM PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@servidor.unam.m T E M A S DEL CURSO. Análisis Estadístico de datos muestrales.. Fundamentos de la Teoría de
Probabilidad. La probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento.
Matemáticas segundo medio COLEGIO SSCC CONCEPCION NOMBRE: Clase Teórica Práctica Nº 30 Probabilidad Probabilidad: Introducción La probabilidad mide la frecuencia con la que aparece un resultado determinado
Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua.
Unidad IV Distribuciones de Probabilidad Continuas 4.1. Definición de variable aleatoria continúa. Una variable aleatoria X es continua si su función de distribución es una función continua. En la práctica,
Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis
Matemáticas 2.º Bachillerato Intervalos de confianza. Contraste de hipótesis Depto. Matemáticas IES Elaios Tema: Estadística Inferencial 1. MUESTREO ALEATORIO Presentación elaborada por el profesor José
UNIVERSIDAD DEL NORTE
UNIVERSIDAD DEL NORTE 1. IDENTIFICACIÓN DIVISIÓN ACADÉMICA DIVISIÓN DE CIENCIAS BÁSICAS DEPARTAMENTO MATEMÁTICAS Y ESATADÍSTICA. PROGRAMA ACADÉMICO ESTADÍSTICA I-AD CÓDIGO DE LA ASIGNATURA EST 1022 PRE-REQUISITO
CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS
CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS 1 POR QUÉ SE LLAMAN CONTRASTES NO PARAMÉTRICOS? A diferencia de lo que ocurría en la inferencia paramétrica, ahora, el desconocimiento de la población que vamos
Teorema de Bayes. mientras que B tiene una tasa de defectos del 4%.
Teorema de Bayes Ejemplo: En una empresa manufacturera, una máquina A produce el 60% de la producción total, mientras que una máquina B el restante 40%. 71 El 2% de las unidades producidas por A son defectuosas,
MEDIDAS DE TENDENCIA CENTRAL
MEDIDAS DE TENDENCIA CENTRAL Al describir grupos de observaciones, con frecuencia es conveniente resumir la información con un solo número. Este número que, para tal fin, suele situarse hacia el centro
INFERENCIA ESTADISTICA
1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,
Ing. Eduardo Cruz Romero w w w. tics-tlapa. c o m
Ing. Eduardo Cruz Romero eduar14_cr@hotmail.com w w w. tics-tlapa. c o m La estadística es tan vieja como la historia registrada. En la antigüedad los egipcios hacían censos de las personas y de los bienes
Variables aleatorias
Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales,
III Verano de Probabilidad y Estadística Curso de Procesos de Poisson (Víctor Pérez Abreu) Lista de Ejercicios
III Verano de Probabilidad y Estadística Curso de Procesos de Poisson (Víctor Pérez Abreu) Lista de Ejercicios Esta lista contiene ejercicios y problemas tanto teóricos como de modelación. El objetivo
PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES. Prof. Johnny Montenegro 1 M.
PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES Prof. Johnny Montenegro 1 M. PROBABILIDADES 2 Una variable es aleatoria si toma los valores de los resultados de un experimento aleatorio. Esta
Técnicas Cuantitativas para el Management y los Negocios I
Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:
INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016
ANEXO ESTADÍSTICO 1 : COEFICIENTES DE VARIACIÓN Y ERROR ASOCIADO AL ESTIMADOR ENCUESTA NACIONAL DE EMPLEO (ENE) INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 9 de Abril de 016 1 Este anexo estadístico es una
8.2.5. Intervalos para la diferencia de medias de dos poblaciones
8.. INTERVALOS DE CONFIANZA PARA LA DISTRIBUCIÓN NORMAL 89 distribuye de modo gaussiana. Para ello se tomó una muestra de 5 individuos (que podemos considerar piloto), que ofreció los siguientes resultados:
Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste
1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y
2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...
Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................
Tema 5. Contraste de hipótesis (I)
Tema 5. Contraste de hipótesis (I) CA UNED de Huelva, "Profesor Dr. José Carlos Vílchez Martín" Introducción Bienvenida Objetivos pedagógicos: Conocer el concepto de hipótesis estadística Conocer y estimar
Modelos de PERT/CPM: Probabilístico
INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO Modelos de PERT/CPM: Probabilístico M. En C. Eduardo Bustos Farías 1 Existen proyectos con actividades que tienen tiempos inciertos, es decir,
Probabilidad 3/1/2010. EVSC 5020: Bioestadística. Qué es probabilidad? Prof. Rafael R. Canales-Pastrana. EVSC 5020: Bioestadística
Probabilidad Prof. Rafael R. Canales-Pastrana 2 Qué es probabilidad? 3 1 Definiciones de Probabilidad La medida del grado de confianza que uno tiene, en que ocurra el acontecimiento. Método axiomático:
CAPÍTULO 4 TÉCNICA PERT
54 CAPÍTULO 4 TÉCNICA PERT Como ya se mencionó en capítulos anteriores, la técnica CPM considera las duraciones de las actividades como determinísticas, esto es, hay el supuesto de que se realizarán con
13. Utilizar la fórmula del término general y de la suma de n términos consecutivos
Contenidos mínimos 3º ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Utilizar las reglas de jerarquía de paréntesis y operaciones, para efectuar cálculos con números racionales, expresados en forma
Tema 4. Probabilidad Condicionada
Tema 4. Probabilidad Condicionada Presentación y Objetivos. En este tema se dan reglas para actualizar una probabilidad determinada en situaciones en las que se dispone de información adicional. Para ello
EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I.
EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO 2013-2014. Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. UNIDAD 3: POLINOMIOS Y FRACCIONES ALGEBRAICAS Operaciones
4. NÚMEROS PSEUDOALEATORIOS.
4. NÚMEROS PSEUDOALEATORIOS. En los experimentos de simulación es necesario generar valores para las variables aleatorias representadas estas por medio de distribuciones de probabilidad. Para poder generar
SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS
SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS I. CONTENIDOS: 1. Función inversa, conceptos y definiciones 2. Derivación de funciones trigonométricas inversas 3. Ejercicios resueltos 4. Estrategias
1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA
MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse
Polinomios y Estadística
Funciones polinomiales Universidad de Concepción, Chile Departamento de Geofísica Programación Científica con Software libre Primavera, 2011 Universidad de Concepción Contenidos Funciones polinomiales
Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda
RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO
RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre
CONTENIDOS MÍNIMOS BLOQUE 2. NÚMEROS
CONTENIDOS Y CRITERIOS DE EVALUACIÓN DE MATEMÁTICAS 1º DE ESO. Bloque 1: Contenidos Comunes Este bloque de contenidos será desarrollado junto con los otros bloques a lo largo de todas y cada una de las
UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro)
UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) 1. ESTADÍSTICA: CLASES Y CONCEPTOS BÁSICOS En sus orígenes históricos, la Estadística estuvo ligada a cuestiones de Estado (recuentos, censos,
MEDIDAS DE TENDENCIA CENTRAL
MEDIDAS DE TENDENCIA CENTRAL Son valores numéricos que localizan e informan sobre los valores medios de una serie o conjunto de datos, se les considera como indicadores debido a que resumen la información
Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s).
VARIABLE ALEATORIA Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). X : S S s s X () s X(s) Rx Rx es el recorrido
ESTADÍSTICA INFERENCIAL
ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 2 Nombre: Probabilidad Contextualización En la sesión anterior analizamos cómo a largo plazo un fenómeno aleatorio o probabilístico posee un
Probabilidades. Universidad de las Américas Instituto de Matemática, Física y Estadística. Centro de Aprendizaje Matemático - CAM
Universidad de las Américas Instituto de Matemática, Física y Estadística. Centro de Aprendizaje Matemático - CAM Probabilidades P(A) = Casos favorables Casos posibles Objetivos: Definir el concepto de
Pruebas de Hipótesis Multiples
Pruebas de Hipótesis Multiples Cuando queremos hacer comparaciones de mas de dos poblaciones, una alternativa es comparar todos los grupos a la vez con el método de Análisis de Varianza (ANOVA) H o : µ
Tema 1: Introducción
Estadística Universidad de Salamanca Curso 2010/2011 Outline 1 Estadística 2 Outline 1 Estadística 2 La estadística es una ciencia que comprende la recopilación, tabulación, análisis e interpretación de
ANALISIS DE FRECUENCIA
ANALISIS DE FRECUENCIA HIDROLOGÍA Determinística: enfoque en el cual los parámetros se calculan en base a relaciones físicas para procesos dinámicos del ciclo hidrológico. Estocástico: Enfoque en el cual
a) Definir un espacio muestral S apropiado para este experimento. b) Consideremos la variable aleatoria
7 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería N N D).
Variables aleatorias unidimensionales
Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen
ESTRUCTURA DE LINEAS DE ESPERA
ESTRUCTURA DE LINEAS DE ESPERA La teoría de las colas es el estudio de líneas de espera. Cuatro características de un sistema de la formación de colas o líneas de espera son: la manera en que los clientes
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
Condiciones para una distribución binomial
ESTADÍSTICA INFERENCIAL FUNCIONES DE PROBABILIDAD DISCRETAS: BINOMIAL y POISSON EJERCICIOS RESUELTOS DE FUNCIÓN DE PROBABILIDAD BINOMIAL USANDO TABLAS y EXCEL Prof.: MSc. Julio R. Vargas A. Fórmulas de
Distribuciones de Probabilidad, Binomial& Otros (Cap. 5) Math. 298 Prof. Gaspar Torres Rivera
Distribuciones de robabilidad, inomial& Otros (Cap. 5) Math. 9 rof. aspar Torres Rivera Distribución de robabilidad Def. Es la distribución de las probabilidades asociadas con cada uno de los valores de
Maestría en Bioinformática Probabilidad y Estadística: Clase 3
Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias
Habilidades Matemáticas. Alejandro Vera
Habilidades Matemáticas Alejandro Vera La distribución normal Introducción Una de las herramientas de mayor uso en las empresas es la utilización de la curva normal para describir situaciones donde podemos
JUNIO Bloque A
Selectividad Junio 009 JUNIO 009 Bloque A 1.- Estudia el siguiente sistema en función del parámetro a. Resuélvelo siempre que sea posible, dejando las soluciones en función de parámetros si fuera necesario.
SESIÓN 3 SERIES, SUCESIONES Y LÍMITES
SESIÓN SERIES, SUCESIONES Y LÍMITES I. CONTENIDOS: 1. Sucesiones y series. Idea intuitiva de límite. Ejercicios resueltos.- Estrategias Centradas en el Aprendizaje: Ejercicios propuestos II. OBJETIVOS:
Área Académica: Escuela Superior de Tlahuelilpan. Tema: Introducción a la Estadística.
Área Académica: Escuela Superior de Tlahuelilpan Tema: Introducción a la Estadística. Profesor(a): Ing. Víctor Manuel Samperio Pacheco M. En C. Nubia Belzabet Pérez Olguín Ing. Alma Delia Zúñiga Mera Ing.
Métodos, Algoritmos y Herramientas
Modelado y Simulación de Sistemas Dinámicos: Métodos, Algoritmos y Herramientas Ernesto Kofman Laboratorio de Sistemas Dinámicos y Procesamiento de la Información FCEIA - Universidad Nacional de Rosario.
ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.
ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos
Distribución Chi (o Ji) cuadrada (χ( 2 )
Distribución Chi (o Ji) cuadrada (χ( 2 ) PEARSON, KARL. On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it Can Reasonably
Práctica 3: Distribuciones de Probabilidad Binomial, Poisson y Normal
Práctica 3: Distribuciones de Probabilidad Binomial, Poisson y Normal Ejercicio 1: Todos los días se seleccionan de manera aleatoria 12 unidades de un proceso de manufactura, con el propósito de verificar
ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M.
1 Introducción ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la Estimación Puntual, que es uno de los tres grandes conjuntos de técnicas que
Fase 2. Estudio de mercado: ESTADÍSTICA
1. CONCEPTO DE ESTADÍSTICA. ESTADÍSTICA DESCRIPTIVA 2. 3. TABLA DE FRECUENCIAS 4. REPRESENTACIONES GRÁFICAS 5. TIPOS DE MEDIDAS: A. MEDIDAS DE POSICIÓN B. MEDIDAS DE DISPERSIÓN C. MEDIDAS DE FORMA 1 1.
Distribuciones de probabilidad multivariadas
Capítulo 3 Distribuciones de probabilidad multivariadas Sobre un dado espacio muestral podemos definir diferentes variables aleatorias. Por ejemplo, en un experimento binomial, X 1 podría ser la variable
Clasificación de sistemas
Capítulo 2 Clasificación de sistemas 2.1 Clasificación de sistemas La comprensión de la definición de sistema y la clasificación de los diversos sistemas, nos dan indicaciones sobre cual es la herramienta
Estadística para la toma de decisiones
Estadística para la toma de decisiones ESTADÍSTICA PARA LA TOMA DE DECISIONES. 1 Sesión No. 7 Nombre: Distribuciones de probabilidad para variables continúas. Objetivo Al término de la sesión el estudiante
Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Generación de Variables Aleatorias UCR ECCI CI-453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción Las variables aleatorias se representan por medio de distribuciones
2. Recolección de información - Medidas de posición: moda, media aritmética, mínimo, máximo - Frecuencia absoluta, relativa y porcentual
Prueba Escrita de matemática / Nivel: Sétimo año 1. Estadística - Unidad estadística - Características - Datos u observaciones - Población - Muestra - Variabilidad de los datos - Variables cuantitativas
SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES
SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la
2.- Tablas de frecuencias
º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 3.- ESTADÍSTICA DESCRIPTIVA PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------
Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM
Universidad Católica del Norte Escuela de Negocios Mineros Magíster en Gestión Minera Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM Antofagasta, Junio de 2014 Freddy
Introducción a la Probabilidad
Introducción a la Probabilidad Tema 3 Ignacio Cascos Depto. Estadística, Universidad Carlos III 1 Ignacio Cascos Depto. Estadística, Universidad Carlos III 2 Objetivos Entender el concepto de experimento
Modelos Estadísticos de Crimen
Universidad de los Andes Modelos Estadísticos de Crimen 27 de Mayo de 2015 Motivacion Conocer la densidad de probabilidad del crimen sobre una ciudad, a distintas horas del día, permite Modelos Estadísticos
F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0
Probabilidades y Estadística (M) Práctica 5 1 o cuatrimestre 2014 Vectores aleatorios 1. a) Demostrar que la función F (x, y) = 1 e x y si x 0, y 0 0 en caso contrario no es la función de distribución
PROBABILIDAD Y ESTADISTICA
PLAN DE ESTUDIOS 2008 LICENCIADO EN INFORMÁTICA FACULTAD DE CONTADURÍA, ADMINISTRACIÓN E INFORMÁTICA ASIGNATURA: PROBABILIDAD Y ESTADISTICA ÁREA DEL MATEMÁTICAS CLAVE: I2PE1 CONOCIMIENTO: ETAPA FORMATIVA:
Capítulo 6: Variable Aleatoria Bidimensional
Capítulo 6: Variable Aleatoria Bidimensional Cuando introducíamos el concepto de variable aleatoria unidimensional, decíamos que se pretendía modelizar los resultados de un experimento aleatorio en el
Estadística Avanzada y Análisis de Datos
1-1 Estadística Avanzada y Análisis de Datos Javier Gorgas y Nicolás Cardiel Curso 2006-2007 2007 Máster Interuniversitario de Astrofísica 1-2 Introducción En ciencia tenemos que tomar decisiones ( son
Análisis de datos Categóricos
Introducción a los Modelos Lineales Generalizados Universidad Nacional Agraria La Molina 2016-1 Introducción Modelos Lineales Generalizados Introducción Componentes Estimación En los capítulos anteriores