TRIÁNGULOS Y CUADRILÁTEROS.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TRIÁNGULOS Y CUADRILÁTEROS."

Transcripción

1 TRIÁNGULOS Y CUADRILÁTEROS. 1. Triángulos. Al polígono de tres lados se le llama triángulo. Clasificación: Según sus lados, un triángulo puede ser Equilátero, si tiene los tres lados iguales Isósceles, si sólo tiene dos lados iguales Escaleno, si sus tres lados son desiguales Según sus ángulos, un triángulo puede ser Acutángulo, si tiene los tres ángulos agudos Obtusángulo, si tiene un ángulo obtuso Rectángulo, si tiene un ángulo recto. Propiedades de un triángulo. En todo triángulo se cumplen las siguientes propiedades: a) La suma de sus ángulos interiores es igual a 180º. b) La suma de las longitudes de dos lados cualesquiera es mayor que la longitud del otro lado. c) El área o medida de su extensión se calcula con la fórmula A = base altura 3. Puntos y rectas notables de un triángulo. Las rectas notables de un triángulo son: alturas, medianas, mediatrices y bisectrices. Los puntos notables de un triángulo son: ortocentro, baricentro, circuncentro e incentro. 1

2 Medianas: una mediana de un triángulo correspondiente a un vértice es la recta que une dicho vértice con el punto medio del lado opuesto. Todo triángulo tiene tres medianas. Las tres medianas se cortan en un mismo punto llamado baricentro. Es el centro de gravedad del triángulo. Alturas: una altura de un triángulo correspondiente a un vértice es el segmento (o recta) trazado desde dicho vértice perpendicularmente al lado opuesto. Todo triángulo tiene tres alturas. Las tres alturas se cortan en un mismo punto llamado ortocentro. Mediatrices: una mediatriz de un triángulo correspondiente a un lado es la recta perpendicular a dicho lado trazada por su punto medio. Todo triángulo tiene tres mediatrices. Las tres mediatrices se cortan en un mismo punto llamado circuncentro. El circuncentro es el centro de la circunferencia circunscrita al triángulo. Bisectrices: una bisectriz de un triángulo correspondiente a un ángulo interior es la recta que divide a dicho ángulo en dos ángulos iguales. Todo triángulo tiene tres bisectrices. Las tres bisectrices se cortan en un mismo punto llamado incentro. El incentro es el centro de la circunferencia inscrita en el triángulo.

3 En un triángulo equilátero, el ortocentro, el baricentro, el circuncentro y el incentro coinciden. 4. Teorema de Pitágoras. En un triángulo rectángulo, el lado opuesto al ángulo recto se llama hipotenusa y los lados que determinan el ángulo recto se llaman catetos. El teorema de Pitágoras afirma lo siguiente: En todo triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos a = b + c 5. Cuadriláteros. Un cuadrilátero es el polígono de cuatro lados. En todo cuadrilátero, la suma de los ángulos interiores es 360º. Clasificación: Según la posición relativa de sus lados, los cuadriláteros se dividen en tres grupos: A) Paralelogramos: tienen los lados paralelos dos a dos B) Trapecios: tienen dos lados paralelos y otros dos lados no paralelos. C) Trapezoides: no tienen ningún par de lados paralelos. A) Características comunes a todos los paralelogramos: 1. Los lados opuestos de un paralelogramo son iguales.. Dos ángulos opuestos son iguales. 3. Dos ángulos consecutivos son suplementarios. 4. Las diagonales se cortan en su punto medio. Dentro de la familia de los paralelogramos se encuentran el cuadrado, el rectángulo, el rombo y el romboide. En particular, hay que saber que: - El cuadrado tiene los cuatro lados iguales y los cuatro ángulos rectos. Su área es A = lado - El rectángulo también tiene los cuatro ángulos rectos. Su área es A = base altura - El rombo tiene los cuatro lados iguales pero no tiene ángulos rectos. Su área es A = Diagonal mayor Diagonal menor - El romboide no tiene ángulos rectos. Su área es A = base altura 3

4 B) Características comunes a todos los trapecios: 1. En los trapecios a los dos lados paralelos se les llaman bases.. A la distancia entre las bases se le llama altura del trapecio. 3. El área de un trapecio es A = ( Base mayor + base menor ) altura Dentro de la familia de los trapecios se encuentran el trapecio isósceles, que es el que tiene iguales los lados no paralelos, y el trapecio rectángulo, que tiene uno de los lados no paralelos perpendicular a las bases. 4

5 CIRCUNFERENCIA Y CÍRCULO. 1. Circunferencia.. Posiciones relativas de una recta y una circunferencia. Hay tres situaciones posibles: La circunferencia es la línea curva y cerrada formada por los puntos del plano situados a la misma distancia de un punto fijo llamado centro. Elementos de una circunferencia: Radio es el segmento que une el centro con un punto cualquiera de la circunferencia. Cuerda es el segmento que se obtiene al unir dos puntos cualesquiera de la circunferencia. Diámetro es la cuerda que pasa por el centro. Arco es el trozo de circunferencia comprendido entre dos puntos de ella. 1. Si la recta no toca a ningún punto de la circunferencia, se dice que la recta es exterior a la circunferencia.. Si la recta corta en dos puntos a la circunferencia, se dice que la recta es secante a la circunferencia. 3. Si la recta toca en un solo punto a la circunferencia, se dice que la recta es tangente a la circunferencia. En este caso, la recta es perpendicular al radio en el punto de contacto. 3. Posiciones relativas de dos circunferencias. Hay seis situaciones posibles: 1. Si las circunferencias no se tocan en ningún punto, estando una de ellas fuera de la otra, se dice que las circunferencias son exteriores. 5

6 . Si las circunferencias no se tocan en ningún punto, estando una de ellas dentro de la otra con distinto centro, se dice que las circunferencias son interiores. 3. Si las circunferencias no se tocan en ningún punto, estando una de ellas dentro de la otra y con el mismo centro, se dice que las circunferencias son concéntricas. 4. Si las circunferencias se cortan en dos puntos, se dice que las circunferencias son secantes. 5. Si las circunferencias se tocan en un solo punto, estando una de ellas fuera de la otra, se dice que las circunferencias son tangentes exteriores. 6. Si las circunferencias se tocan en un solo punto, estando una de ellas dentro de la otra, se dice que las circunferencias son tangentes interiores. 4. Longitud de un arco de circunferencia. Longitud de la circunferencia. Se llama ángulo central de una circunferencia al que tiene por vértice el centro de la circunferencia. Los lados del ángulo central cortan a la circunferencia en dos puntos B y C, determinando un arco de circunferencia Si la medida del ángulo es n grados y la circunferencia tiene radio r, entonces la longitud del arco BC es 6

7 Si en la fórmula anterior consideramos n = 360º, nos queda que la longitud de una circunferencia de radio r es 5. Círculo. Sector circular. Corona circular. Se llama círculo a la porción de plano que queda dentro de una circunferencia. Dado un ángulo central de medida n grados, se llama sector circular de amplitud n grados a la porción de plano que queda entre los lados del ángulo y el arco de circunferencia asociado. En una circunferencia de radio r, se tiene que: El área de un sector circular de amplitud n grados es Si en la fórmula anterior consideramos n = 360º, nos queda que el área del círculo es 6. Medida de superficies. Se llama área de una superficie a la medida de su extensión. Para medir la extensión de cualquier figura hay que establecer previamente una unidad de medida que nos sirva de patrón y hallar el número de veces que la figura contiene a esta unidad. El número que expresa esta medida se llama área de la figura y depende de la unidad elegida. El área de una figura puede calcularse por dos métodos. a) Por fórmulas: se descompone la figura en figuras planas cuyas áreas sean susceptibles de calcularse mediante una fórmula conocida. El área total de la figura será la suma de las áreas parciales calculadas previamente. Con este método, las unidades de superficie utilizadas habitualmente son algunas de las que figuran a continuación: km hm dam m dm cm mm b) Por cuadriculación: se sitúa la figura sobre una trama cuadriculada y el área total de la figura será el número de cuadraditos que ocupa. Para figuras situadas sobre una trama cuadriculada podemos establecer como unidad de medida el cuadradito que se repite en la trama. Ejemplo: al siguiente recinto se le puede calcular el área por los dos métodos. Cada cuadradito de la retícula tiene 0.5 cm de lado. Por lo tanto, cada cuadradito equivale a 0.5 cm de superficie. 7

8 FIN Zona TIC Thatquiz.com: Geometría-Geometría Descartes: descartes.cnice.mecd.es/indice_ud.php Primer Ciclo de ESO. Áreas de figuras planas 1. Polígonos regulares y círculos; descartes.cnice.mecd.es/indice_ud.php 3º de ESO 1. Ángulos en la circunferencia. Arco capaz descartes.cnice.mecd.es/indice_ud.php 4º de ESO A 1. Relaciones entre figuras geométricas en el plano descartes.cnice.mecd.es/indice_ud.php 4º de ESO B 1. La circunferencia Hot Potatoes: WEB CV/DPTO MATES/POTATOES RED/1. Geometría elemental;. Figuras planas; 3. Matemáticas de ESO Clic: 1. GEOPRIM;. GEOCLICE-37 PAQUETES; 3. GEOMES-CIRCUMT, COSSOS1T FIN 8

9 9

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.

Más detalles

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el

Más detalles

- 1 - RECTAS Y ÁNGULOS. Tipos de ángulos Los ángulos se clasifican según su apertura: -Agudos: menores de 90º. Rectas

- 1 - RECTAS Y ÁNGULOS. Tipos de ángulos Los ángulos se clasifican según su apertura: -Agudos: menores de 90º. Rectas Alonso Fernández Galián Geometría plana elemental Rectas RECTAS Y ÁNGULOS Una recta es una línea que no está curvada, y que no tiene principio ni final. Tipos de ángulos Los ángulos se clasifican según

Más detalles

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas.

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. MYP (MIDDLE YEARS PROGRAMME) 2015-2016 Fecha 30/03/2016 APUNTES DE GEOMETRÍA 1º ESO 1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. Un punto es una posición en el espacio, adimensional,

Más detalles

GEOMETRÍA LLANA: CONCEPTOS BÁSICOS (1ESO)

GEOMETRÍA LLANA: CONCEPTOS BÁSICOS (1ESO) GEOMETRÍA LLANA: CONCEPTOS BÁSICOS (1ESO) PUNTOS, RECTOS Y PLANES 1.- Punto: Intersección de dos rectos. No tiene dimensiones (ni largo, ni ancho, ni alto). 2.- Recta: Conjunto de puntos con una sola dimensión.

Más detalles

Figuras planas. Definiciones

Figuras planas. Definiciones Figuras planas Definiciones Polígono: definición Un polígono es una figura plana (yace en un plano) cerrada por tres o más segmentos. Los lados de un polígono son cada uno de los segmentos que delimitan

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

Geometría. Ángulos. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Ángulos. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

Clasificación de polígonos según sus lados

Clasificación de polígonos según sus lados POLÍGONOS Polígonos Un polígono es la región del plano limitada por tres o más segmentos. Elementos de un polígono Lados Son los segmentos que lo limitan. Vértices Son los puntos donde concurren dos lados.

Más detalles

GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS

GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS Un punto se nombra con letras mayúsculas: A, B, C Una recta, formada por infinitos puntos, se nombra con letras minúsculas: a, b, c Dos rectas pueden ser paralelas, secantes o coincidentes. 1. Paralelas

Más detalles

Las bisectrices de dos ángulos adyacentes son perpendiculares. Las bisectrices de los ángulos opuestos por el vértice están en línea recta.

Las bisectrices de dos ángulos adyacentes son perpendiculares. Las bisectrices de los ángulos opuestos por el vértice están en línea recta. CONCEPTOS Y TEOREMAS BÁSICOS PARA LA RESOLUCIÓN DE PROBLEMAS DE GEOMETRÍA PLANA 1. CONSIDERACIONES GENERALES El objeto de la Geometría plana es el estudio de las figuras geométricas en el plano desde el

Más detalles

TEMA 6: GEOMETRÍA EN EL PLANO

TEMA 6: GEOMETRÍA EN EL PLANO TEMA 6: GEOMETRÍA EN EL PLANO Definiciones/Clasificaciones Fórmulas y teoremas Dem. Def. y Clasificación de polígonos: Regular o irregular Cóncavo o convexo Por número de lados: o Triángulos: clasificación

Más detalles

Cuaderno: LIMPIEZA Y ORGANIZACIÓN Realización de TAREAS TEMA 12 FIGURAS PLANAS Y ESPACIALES ALUMNO/A: Nº

Cuaderno: LIMPIEZA Y ORGANIZACIÓN Realización de TAREAS TEMA 12 FIGURAS PLANAS Y ESPACIALES ALUMNO/A: Nº Cuaderno: LIMPIEZA Y ORGANIZACIÓN Realización de TAREAS SATISFACTORIO ACEPTABLE MEJORABLE TEMA 12 FIGURAS PLANAS Y ESPACIALES ALUMNO/A: Nº Ejercicios TEMA 12 FIGURAS PLANAS Y ESPACIALES (1º ESO) Página

Más detalles

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada. 1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:

Más detalles

FORMACIÓN PROFESIONAL BÁSICA MATEMÁTICAS II CAPÍTULO 4: GEOMETRÍA ELEMENTAL DEL PLANO

FORMACIÓN PROFESIONAL BÁSICA MATEMÁTICAS II CAPÍTULO 4: GEOMETRÍA ELEMENTAL DEL PLANO 59 FORMACIÓN PROFESIONAL BÁSICA MATEMÁTICAS II CAPÍTULO 4: GEOMETRÍA ELEMENTAL DEL PLANO 1. ELEMENTOS DEL PLANO ACTIVIDADES PROPUESTAS 1. Copia en tu cuaderno el siguiente dibujo y realiza las siguientes

Más detalles

TEMA 5: GEOMETRÍA PLANA. Contenidos:

TEMA 5: GEOMETRÍA PLANA. Contenidos: Contenidos: - Elementos básicos del plano: punto, recta y segmento. Rectas paralelas y perpendiculares. Ángulos: definición, clasificación y medida. - Instrumentos de dibujo. Construcción de segmentos,

Más detalles

Unidad 11. Figuras planas

Unidad 11. Figuras planas Unidad 11. Figuras planas Matemáticas Múltiplo 1.º ESO / Resumen Unidad 11 FIGURS LNS OLÍGONOS IRUNFERENI SIMETRÍ Elementos onstrucción lasificación Según el número de lados óncavos y convexos Regulares

Más detalles

El polígono es una porción del plano limitado por una línea poligonal cerrada.

El polígono es una porción del plano limitado por una línea poligonal cerrada. UNIDAD 12: GEOMETRÍA PLANA 12.1. Los polígonos: Elementos El polígono es una porción del plano limitado por una línea poligonal cerrada. Un polígono se nombra con las letras mayúsculas situadas en los

Más detalles

A 2 TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO TEOREMA DE PITÁGORAS:

A 2 TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO TEOREMA DE PITÁGORAS: TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS ELEMENTOS CLASIFICACIÓN TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO A b h A b a A perímetro apotema A r TEOREMA DE PITÁGORAS: a b c 1 POLÍGONOS

Más detalles

Ángulos consecutivos, suplementarios, adyacentes, opuestos por el vértice y complementarios.

Ángulos consecutivos, suplementarios, adyacentes, opuestos por el vértice y complementarios. ÁNGULOS Dadas dos semirrectas de origen común (Ox, Oy), no opuestas ni coincidentes, llamaremos ángulo convexo de vértice O, a la intersección del semiplano de borde la recta sostén de Ox, que contiene

Más detalles

Ángulos 1º = 60' = 3600'' 1' = 60''

Ángulos 1º = 60' = 3600'' 1' = 60'' Ángulos Definición de ángulo Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. Medida de ángulos Para

Más detalles

FIGURAS GEOMETRICAS PLANAS

FIGURAS GEOMETRICAS PLANAS UNIDAD 9 FIGURAS GEOMETRICAS PLANAS Objetivo General Al terminar esta Unidad entenderás y aplicaras los conceptos generales de las figuras geométricas planas, y resolverás ejercicios y problemas con figuras

Más detalles

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS. EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se

Más detalles

Unidad didáctica 9 Geometría plana

Unidad didáctica 9 Geometría plana Unidad didáctica 9 Geometría plana 1.- Ángulos Un ángulo es la porción de plano limitada por dos semirrectas que tienen el mismo origen. Los lados del ángulo son las semirrectas que lo forman. El vértice

Más detalles

TEMA 6: LAS FORMAS POLIGONALES

TEMA 6: LAS FORMAS POLIGONALES EDUCACIÓN PLÁSTICA Y VISUAL 1º DE LA E.S.O. TEMA 6: LAS FORMAS POLIGONALES Los polígonos son formas muy atractivas para realizar composiciones plásticas. Son la base del llamado arte geométrico, desarrollado

Más detalles

TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS.

TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS. TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS. LOS POLÍGONOS El polígono es una porción del plano limitado por una línea poligonal cerrada. Un polígono se nombra con las letras mayúsculas situadas en los vértices.

Más detalles

UNIDAD 2: ELEMENTOS GEOMÉTRICOS

UNIDAD 2: ELEMENTOS GEOMÉTRICOS UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este

Más detalles

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS.

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. Resumen AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO EN ÉSTE ARTÍCULO, SE ESTUDIAN LOS CUERPOS

Más detalles

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos 1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular

Más detalles

Los elementos básicos de la Geometría Plana son el punto, la línea, y el plano.

Los elementos básicos de la Geometría Plana son el punto, la línea, y el plano. GEOMETRÍA PLANA Dibujo Geométrico La geometría es la parte de las matemáticas que estudia las propiedades y las medidas de las figuras planas y tridimensionales en el espacio. La palabra procede de dos

Más detalles

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.

Más detalles

Indice....1 Recta Punto Semirrecta Segmento Posición relativa de dos rectas en el plano Ángulo.-...

Indice....1 Recta Punto Semirrecta Segmento Posición relativa de dos rectas en el plano Ángulo.-... Geometría plana1 2017.odt Departamento de Matemáticas IES Isaac Díaz Pardo. Sada Geometría del plano Curso 1º Nombre: Nº : - 1- Indice....1 Recta.-...2 Punto.-...2 Semirrecta.-...2 Segmento.-...2 Posición

Más detalles

Un punto divide a una recta en dos semirrectas. Ese punto es el origen de ambas semirrectas.

Un punto divide a una recta en dos semirrectas. Ese punto es el origen de ambas semirrectas. Una línea recta es una línea que no tiene principio ni fin. Una semirrecta es una línea que tiene principio pero no tiene final. o Un punto divide a una recta en dos semirrectas. Ese punto es el origen

Más detalles

Autor: 2º ciclo de E.P.

Autor: 2º ciclo de E.P. 1 Autor: 2º ciclo de E.P. Una línea recta es una línea que no tiene principio ni fin. Una semirrecta es una línea que tiene principio pero no tiene final. o Un punto divide a una recta en dos semirrectas.

Más detalles

DIBUJO GEOMÉTRICO. - Segmento: es una parte limitada de la recta comprendida entre dos puntos que por lo tanto se nombraran con mayúscula.

DIBUJO GEOMÉTRICO. - Segmento: es una parte limitada de la recta comprendida entre dos puntos que por lo tanto se nombraran con mayúscula. DIBUJO GEOMÉTRICO 1. SIGNOS Y LÍNEAS. A. El punto: es la intersección de dos rectas. Se designa mediante una letra mayúscula y se puede representar también con un círculo pequeño o un punto. A B C D X

Más detalles

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA Las matemáticas, históricamente, comenzaron con la geometría. La geometría es la ciencia que estudia la forma y posición de la figuras y nos enseña a medir su extensión. Geometría (del griego geo, tierra,

Más detalles

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo:

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo: 3º ESO E UNIDAD 11.- GEOMETRÍA DEL PLANO PROFESOR: RAFAEL NÚÑEZ ------------------------------------------------------------------------------------------------------------------------------------- 1.-

Más detalles

Son los segmentos, cada uno de ellos con extremos en un vértice y en el punto medio del lado opuesto.

Son los segmentos, cada uno de ellos con extremos en un vértice y en el punto medio del lado opuesto. TRIÁNGULOS: LÍNEAS NOTABLES DE UN TRIÁNGULO: Medianas Son los segmentos, cada uno de ellos con extremos en un vértice y en el punto medio del lado opuesto. Notación: A la mediana correspondiente al vértice

Más detalles

Geometría Conceptos básicos Elementos de Geometría. 1. Por un punto fuera de una recta pasa una única paralela a esa recta.

Geometría Conceptos básicos Elementos de Geometría. 1. Por un punto fuera de una recta pasa una única paralela a esa recta. Geometría Conceptos básicos Elementos de Geometría Debido a que los conceptos de Geometría están siempre presente en Matemáticas, Física e Ingeniería, se hará un repaso de estas materias y se presentará

Más detalles

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo

Más detalles

Geometría plana. El área se calcula descomponiendo el polígono en triángulos y calculando por separado sus áreas. A 1

Geometría plana. El área se calcula descomponiendo el polígono en triángulos y calculando por separado sus áreas. A 1 Apéndice Geometría plana. Fórmulas Miscelánea Calculadora Científica Geometría plana Polígonos Polígono es una superficie cerrada limitada por segmentos de recta llamados lados. Se llama vértices a los

Más detalles

Ejercicios de Geometría Plana

Ejercicios de Geometría Plana jercicios de Geometría lana 1. n la (, ),,,, y son puntos de la circunferencia, =. rueba que: y diámetros a) GH es isósceles. b) HG es un trapecio isósceles. c) GH. 2. n la figura y paralelogramos, y puntos

Más detalles

TRIÁNGULOS. APM Página 1

TRIÁNGULOS. APM Página 1 TRIÁNGULOS 1. Definición de triángulo. 2. Propiedades de los triángulos. 3. Construcción de triángulos. 3.1. Conociendo los tres lados. 3.2. Conociendo dos lados y el ángulo que forman. 3.3. Conociendo

Más detalles

a 2 = = 1600 ; a = 40 A = = 80. Iguales A = 361 1:150

a 2 = = 1600 ; a = 40 A = = 80. Iguales A = 361 1:150 uno es agudo y el otro es obtuso. Á = (48. 5 ) / 2 = 120 D 2 = 20 2 + 10 2 + 6 2 = 536 ; D = 23 15 V = V S + V c = 2 / 3. π 125 + 1 / 3. π 25. 3 = 325/3. π Área = lado x lado = l 2 Los paralelepípedos

Más detalles

MATEMÁTICAS Y SU DIDÁCTICA

MATEMÁTICAS Y SU DIDÁCTICA MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se

Más detalles

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm.

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm. ACTIVIDAD DE APOYO GEOMETRIA GRADO 11 1. Calcular el valor de la altura del triángulo equilátero y de la diagonal del cuadrado (resultado con dos decimales, bien aproimados): h 6 cm (Sol: 3,46 cm) (Sol:

Más detalles

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos.

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Geometría plana B6 Triángulos Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Clasificación de los polígonos Según el número de lados los polígonos se llaman: Triángulo

Más detalles

DIBUJO TÉCNICO BACHILLERATO TRABAJOS - LÁMINAS TEMA 3. POLÍGONOS. Departamento de Artes Plásticas y Dibujo

DIBUJO TÉCNICO BACHILLERATO TRABAJOS - LÁMINAS TEMA 3. POLÍGONOS. Departamento de Artes Plásticas y Dibujo DIBUJO TÉCNICO BACHILLERATO TRABAJOS - LÁMINAS TEMA 3. POLÍGONOS. Departamento de Artes Plásticas y Dibujo 1. Construir un triángulo equilátero conocida la altura. 2. Construir un triángulo isósceles conocida

Más detalles

REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA

REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA MAT B Repartido Nº I REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA Conceptos primitivos Partiremos de un conjunto que llamaremos espacio, E, a cuyos elementos llamamos puntos, (a los cuales escribiremos

Más detalles

2.-GEOMETRÍA PLANA O EUCLIDIANA

2.-GEOMETRÍA PLANA O EUCLIDIANA 2.-GEOMETRÍA PLANA O EUCLIDIANA 2.1.-Triángulos. Definición, clasificación y notación. Puntos notables, ortocentro, circuncentro, baricentro e incentro. Propiedades de las medianas. Los Triángulos son

Más detalles

Triángulos IES BELLAVISTA

Triángulos IES BELLAVISTA Triángulos IES BELLAVISTA Definiciones y notación Un triángulo es la figura plana limitada por tres rectas que se cortan dos a dos. Los puntos de corte se denominan vértices. El triángulo tiene tres lados

Más detalles

Introducción. Este trabajo será realizado con los siguientes fines :

Introducción. Este trabajo será realizado con los siguientes fines : Introducción Este trabajo será realizado con los siguientes fines : Aprender mas sobre la geometría analítica. Tener mejores conceptos sobre ella ; los cuales me pueden ayudar con las pruebas ICFES. Otro

Más detalles

Polígonos. Triángulos

Polígonos. Triángulos CLAVES PARA EMPEZAR Cada hora equivale a una abertura de 360 o : 12 30 o A las 12 h: ángulo 0 o A las 11 h y a la 1 h: ángulo 30 o A las 9 h y a las 3 h: ángulo 90 o A las 7 h y a las 5 h: ángulo 150 o

Más detalles

LOS POLIGONOS. 1. Definiciones.

LOS POLIGONOS. 1. Definiciones. LOS POLIGONOS 1. Definiciones. Un triángulo es un polígono cerrado y convexo constituido por tres ángulos (letras mayúsculas y sentido contrario a las agujas del reloj) y tres lado (letras minúsculas).

Más detalles

1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto).

1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto). 1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto). 6.- Espacio: Conjunto de puntos con tres dimensiones: largo, ancho y alto. Es infinito, sin límites. 2.- Recta:

Más detalles

Mª Rosa Villegas Pérez

Mª Rosa Villegas Pérez Mª Rosa Villegas Pérez FIGURAS PLANAS G.T. Elaboración de Materiales y Recursos Didácticos en un Centro TIC. Polígonos.- / 14 POLÍGONOS Un polígono es una figura plana y cerrada formada al unir tres o

Más detalles

Unidad 7 Figuras planas. Polígonos

Unidad 7 Figuras planas. Polígonos Polígonos 1.- Halla la suma de los ángulos interiores de los siguientes polígonos convexos. a) Cuadrilátero b) Heptágono c) Octógono.- Halla la medida de los ángulos interiores de: a) Un octógono regular.

Más detalles

PERÍMETROS ÁREAS - VOLÚMENES

PERÍMETROS ÁREAS - VOLÚMENES ERÍMETROS ÁREAS - VOLÚMENES 1.- OLÍGONOS olígono: arte del plano limitada por una línea poligonal cerrada. Lado: Segmento que une dos vértices consecutivos. En un polígono el número de lados y el número

Más detalles

Complemento de un ángulo es lo que le falta al ángulo para completar 90. Complemento de un ángulo es lo que le falta al ángulo para completar 180

Complemento de un ángulo es lo que le falta al ángulo para completar 90. Complemento de un ángulo es lo que le falta al ángulo para completar 180 CLASIFICACIÓN DE ÁNGULOS Nombre Definición Figura Ángulo recto Mide 90 Ángulo agudo Mide menos de 90 Ángulo obtuso Mide más de 90 Ángulo extendido Mide 180 Ángulo completo Mide 360 ÁNGULOS COMPARATIVOS

Más detalles

n Por ejemplo, en un pentágono tenemos que saber que sus ángulos suman 540º y cada ángulo del pentágono son 108º.

n Por ejemplo, en un pentágono tenemos que saber que sus ángulos suman 540º y cada ángulo del pentágono son 108º. MATEMÁTICAS 3º ESO TEMA 10 PROBLEMAS MÉTRICOS EM EL PLANO- 1. ÁNGULOS EN LOS POLÍGONOS La suma de los ángulos de un polígono de n lados es: 180º (n-2) 180º(n - 2) La medida de cada ángulo de un polígono

Más detalles

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES - MATEMÁTICA I TRIÁNGULOS

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES - MATEMÁTICA I TRIÁNGULOS TRIÁNGULOS Definición: Dados tres puntos no alineados, A, B y C, se llama triángulo a la intersección de los semiplanos que tienen como borde la recta determinada por dos de estos puntos y contiene al

Más detalles

MATEMÁTICAS Nivel II ESPA Geometría

MATEMÁTICAS Nivel II ESPA Geometría MATEMÁTICAS Nivel II ESPA Geometría Lecc. 12. GEOMETRÍA 1. Puntos, rectas, ángulos; 2. Medida de ángulos; 3. Polígonos; 4. Triángulos; 5. Cuadrado y rectángulo; 6. Circunferencia; 7. Círculo 1. PUNTOS,

Más detalles

1.SISTEMAS DE MEDIDAS: longitud, superficie, volumen. Conversiones.

1.SISTEMAS DE MEDIDAS: longitud, superficie, volumen. Conversiones. ÍNDICE DEL TEMA 1.SISTEMAS DE MEDIDAS: longitud, superficie, volumen. Conversiones. 2. FIGURAS PLANAS : 2.1. POLÍGONOS Triángulos Cuadriláteros Polígonos regulares 2.2. CIRCUNFERENCIA Y CÍRCULO: Elementos.

Más detalles

Recta s. D Semirrecta de origen D

Recta s. D Semirrecta de origen D 58 CAPÍTULO 12: FIGURAS PLANAS. POLÍGONOS, CÍRCULO Y CIRCUNFERENCIA. TEORÍA. Matemáticas 1º y 2º de ESO 1. ELEMENTOS DEL PLANO 1.1. Puntos, rectas, semirrectas, segmentos. Imagina que cada uno de los límites

Más detalles

FORMAS POLIGONALES TEMA 8

FORMAS POLIGONALES TEMA 8 FORMAS POLIGONALES TEMA 8 1. LOS POLÍGONOS DEFINICIÓN: Un polígono es una figura geométrica plana limitada por segmentos llamados lados, y por vértices. A B C A Lado D Clasificación de los polígonos:

Más detalles

Proporcionalidad en la circunferencia

Proporcionalidad en la circunferencia Pre-universitario Manuel Guerrero Ceballos Clase N 13 MODULO COMPLEMENTRIO Proporcionalidad en la circunferencia Resumen de la clase anterior Cuadriláteros suma de los ángulos interiores 360º suma de los

Más detalles

CICLO ESCOLAR: FEBRERO JULIO 2016

CICLO ESCOLAR: FEBRERO JULIO 2016 SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCION GENERAL DE EDUCACIÓN TECNOLOGICA INDUSTRIAL CENTRO DE ESTUDIOS TECNOLOGICO INDUSTRIAL Y DE SERVICIOS, No. 5 GERTRUDIS

Más detalles

El Triángulo y su clasificación

El Triángulo y su clasificación El Triángulo y su clasificación 1. Definir que es Triángulo? R/. Un triángulo es un polígono de tres lados; está determinado por tres segmentos de recta que se denominan lados, o tres puntos no alineados

Más detalles

Elementos del cilindro

Elementos del cilindro Definición de cilindro Un cilindro es un cuerpo geométrico engendrado por un rectángulo que gira alrededor de uno de sus lados. Desarrollo del cilindro Elementos del cilindro Eje Es el lado fijo alrededor

Más detalles

RELACIÓN DE EJERCICIOS DE GEOMETRÍA PLANA

RELACIÓN DE EJERCICIOS DE GEOMETRÍA PLANA RELACIÓN DE EJERCICIOS DE GEOMETRÍA PLANA 1. Halla el perímetro y el área de las siguientes figuras: 2. Entre las dos diagonales de un rombo suman 100 cm, siendo la menor 20 cm más corta que la mayor.

Más detalles

P RACTICA. 1 Di cuáles de estos triángulos son: 2 Di cómo son, según sus lados y según sus ángulos, los triángulos siguientes:

P RACTICA. 1 Di cuáles de estos triángulos son: 2 Di cómo son, según sus lados y según sus ángulos, los triángulos siguientes: P RCTIC Polígonos: clasificación 1 Di cuáles de estos triángulos son: a) cutángulos. b) Rectángulos. c) Obtusángulos isósceles. B C D G E a) cutángulos: C, F y G. b) Rectángulos: D y E. c) Obtusángulos

Más detalles

Cuadriláteros y circunferencia

Cuadriláteros y circunferencia CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C

Más detalles

8 GEOMETRÍA DEL PLANO

8 GEOMETRÍA DEL PLANO EJEROS PROPUESTOS 8.1 alcula la medida del ángulo que falta en cada figura. 6 A 145 15 105 160 130 En un triángulo, la suma de las medidas de sus ángulos es 180. Ap 180 90 6 8 El ángulo mide 8. En un hexágono,

Más detalles

Tema 2: --TRAZADOS DE FORMAS POLIGONALES

Tema 2: --TRAZADOS DE FORMAS POLIGONALES Tema 2: --TRAZADOS DE FORMAS POLIGONALES 1.- TRIÁNGULOS: - CLASIFICACIÓN Y PUNTOS NOTABLES 2.- CUADRILÁTEROS: PROPIEDADES Y CLASIFICACIÓN 3.- POLÍGONOS REGULARES: CLASIFICACIÓN Y CONSTRUCCIÓN Ø INTRODUCCIÓN:

Más detalles

TEMA 6: GEOMETRÍA PLANA

TEMA 6: GEOMETRÍA PLANA TEMA 6: GEOMETRÍA PLANA 1. INTRODUCCIÓN A LA GEOMETRÍA En nuestro entorno podemos visualizar objetos que se relacionan con elementos geométricos: por ejemplo la ventana de nuestra casa tiene forma rectangular.

Más detalles

TALLER No. 17 GEOMETRÍA

TALLER No. 17 GEOMETRÍA TLLER No. 17 GEOMETRÍ ontenidos: Los triángulos Fecha de entrega: Mayo 12 de 2014 1. Investigue sobre las líneas y puntos notables en un triángulo. 2. Responda las siguientes preguntas: a. Qué es un polígono?

Más detalles

FICHA DE TRABAJO Nº 18

FICHA DE TRABAJO Nº 18 FICHA DE TRABAJO Nº 18 Nombre Nº orden Bimestre IV 3ºgrado - sección A B C D Ciclo III Fecha: - 11-12 Área Matemática Tema TRIÁNGULOS II: Líneas y Puntos Notables LINEAS y PUNTOS NOTABLES EN EL TRIANGULO

Más detalles

Triángulo es la porción de plano limitado por tres rectas que se cortan dos a dos.

Triángulo es la porción de plano limitado por tres rectas que se cortan dos a dos. Definición Triángulo es la porción de plano limitado por tres rectas que se cortan dos a dos. Elementos primarios Vértice:, y. Lados:, y. Ángulos interiores:, y. Ángulos exteriores:, y. * Observaciones:

Más detalles

TERCER PERÍODO OCTAVO GRADO COMPETENCIA:

TERCER PERÍODO OCTAVO GRADO COMPETENCIA: COMPETENCIA: Utilizar representaciones geométricas de figuras planas (triángulo, cuadriláteros, circunferencia círculo y polígonos regulares) para conocer sus elementos y las fórmulas para hallar su respectiva

Más detalles

ELEMENTOS BÁSICOS DE GEOMETRÍA

ELEMENTOS BÁSICOS DE GEOMETRÍA ELEMENTOS BÁSICOS DE GEOMETRÍ (La Geometría es la parte de las Matemáticas que estudia las propiedades de las figuras y las relaciones entre elementos) PUNTO : es una posición y no tiene dimensiones. B

Más detalles

1. INCENTRO Y ORTOCENTRO EN UN TRIÁNGULO ACUTÁNGULO.

1. INCENTRO Y ORTOCENTRO EN UN TRIÁNGULO ACUTÁNGULO. 1. INCENTRO Y ORTOCENTRO ❶ Sitúate en el ortocentro como punto de partida. ❷ Recorre la altura hasta el lado más alejado. ❸ Desplázate por el perímetro hasta el vértice más próximo. ❹ Dirígete al incentro.

Más detalles

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado...

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado... Geometría Plana 3º E.S.O. PARTE TEÓRICA 1.- Define para un triángulo los siguientes conceptos: Mediatriz: Bisectriz: Mediana: Altura: 2.- Completa las siguientes frases: a) Las mediatrices de un triángulo

Más detalles

Unidad Didáctica 8. Formas Poligonales

Unidad Didáctica 8. Formas Poligonales Unidad Didáctica 8 Formas Poligonales 1.- Polígonos Es una palabra de origen griego. Se compone de POLI que significa varios, y gono o ángulo. Por lo tanto un polígono es una figura geométrica plana limitada

Más detalles

ESTUDIO GEOMÉTRICO SOBRE EL TRIÁNGULO

ESTUDIO GEOMÉTRICO SOBRE EL TRIÁNGULO ESTUDIO GEOMÉTRICO SOBRE EL TRIÁNGULO 1. EL TRIÁNGULO COMO POLÍGONO Debemos comenzar el estudio geométrico del triángulo considerándolo como el más sencillo de los polígonos. Así, vamos a considerar algunas

Más detalles

ALTURAS DE UN TRIÁNGULO

ALTURAS DE UN TRIÁNGULO TRIÁNGULO Polígono de tres lados. Según la longitud de sus lados, los triángulos se clasifican en equiláteros, si sus tres lados son iguales, isósceles, si tienen dos lados iguales, y escálenos, si los

Más detalles

TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS:

TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS: TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS: Un polígono es un figura cerrada formada por segmentos de recta que no se

Más detalles

MATEMÁTICAS Y SU DIDÁCTICA

MATEMÁTICAS Y SU DIDÁCTICA MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2009 2010 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se

Más detalles

Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles.

Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles. FICHA REFUERZO TEMA 12: FIGURAS PLANAS Y ESPACIALES CURSO: 1 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja

Más detalles

TEMA 4. Geometría. Teoría. Matemáticas

TEMA 4. Geometría. Teoría. Matemáticas 1 1.- Rectas y ángulos La geometría se basa en tres conceptos fundamentales que forman parte del espacio geométrico, es decir, el conjunto formado por todos los puntos: El punto La recta El plano Partiendo

Más detalles

3) Dibuja 2 rectas, c y d, que se crucen en un punto pero no sean perpendiculares entre sí.

3) Dibuja 2 rectas, c y d, que se crucen en un punto pero no sean perpendiculares entre sí. Guía de trabajos prácticos Nº 10: Rectas y Planos 1) Dibuja 2 rectas, a y b, que sean paralelas entre sí. 2) Dibuja 2 rectas, a y b, que sean perpendiculares entre sí. 3) Dibuja 2 rectas, c y d, que se

Más detalles

PRIMERA EVALUACIÓN DE DIBUJO TÉCNICO I

PRIMERA EVALUACIÓN DE DIBUJO TÉCNICO I PRIMERA EVALUACIÓN DE DIBUJO TÉCNICO I 1. UD: TRAZADOS FUNDAMENTALES EN EL PLANO 1.1. Tipos de línea- 21 1.1.1. Línea recta 1.1.2. Línea curva 1.1.3. Línea quebrada 1.1.4. Semirrecta 1.2. Segmento 1.2.1.

Más detalles

TIPOS DE LÍNEAS Las rectas no tienen principio ni fin. La recta es una línea formada por una serie de puntos en una misma dirección...

TIPOS DE LÍNEAS Las rectas no tienen principio ni fin. La recta es una línea formada por una serie de puntos en una misma dirección... TEMA 8 RECTAS Y ÁNGULOS TIPOS DE LÍNEAS Las rectas no tienen principio ni fin. La recta es una línea formada por una serie de puntos en una misma dirección....... Línea recta Cada una de las partes en

Más detalles

Dos rectas, r y s, pueden tener un punto en común, ninguno o infinitos. Secantes Paralelas Coincidentes. r r

Dos rectas, r y s, pueden tener un punto en común, ninguno o infinitos. Secantes Paralelas Coincidentes. r r GEOMETRÍA 1. Puntos y rectas Los puntos y las rectas son dos de los elementos geométricos fundamentales. Los puntos se nombran con letras mayúsculas: A, B, C, La recta está formada por infinitos puntos

Más detalles

1.1. Trazar la mediatriz del segmento Trazar la perpendicular que pasa por el punto Trazar la perpendicular que pasa por C.

1.1. Trazar la mediatriz del segmento Trazar la perpendicular que pasa por el punto Trazar la perpendicular que pasa por C. 1.1. Trazar la mediatriz del segmento. 1.2. Trazar la perpendicular que pasa por el punto. A B P 1.3. Trazar la perpendicular que pasa por C. 1.4. Trazar la perpendicular que pasa por el extremo de la

Más detalles

ESENCIALES DE GEOMETRÍA PLANA SINTÉTICA

ESENCIALES DE GEOMETRÍA PLANA SINTÉTICA ESENCIALES DE GEOMETRÍA PLANA SINTÉTICA (ENSEÑANZA MEDIA) Ángulos Enech García Martínez UCPEJV Los ángulos que tienen un vértice común pueden ser consecutivos, adyacentes y opuestos por el vértice. Los

Más detalles

8 GEOMETRÍA DEL PLANO

8 GEOMETRÍA DEL PLANO 8 GEOMETRÍ DEL PLNO EJERIIOS PR ENTRENRSE Ángulos y triángulos 8.6 Halla la medida del ángulo p en el siguiente triángulo. 6 4 180 6 p 4 p 180 6 4 11 8.7 alcula la suma de los ángulos interiores de un

Más detalles

DEPARTAMENTO DE MATEMATICAS

DEPARTAMENTO DE MATEMATICAS 1.- Halla la suma de los ángulos interiores de los siguientes polígonos convexos. a) Cuadrilátero b) Heptágono c) Octógono 2.- Halla la medida de los ángulos interiores de: a) Un octógono regular. b) Un

Más detalles